Answer:
1.20 × 10³ torr
Explanation:
Step 1: Given data
Initial pressure (P₁): 822 torrInitial temperature (T₁): 325 KFinal pressure (P₂): ?Final temperature (T₂): 475 KConstant volume: 750 mLStep 2: Calculate the final pressure of the gas
Considering the constant volume, if we assume the gas behaves ideally, we can calculate its final pressure using Gay-Lussac's law.
P₁/T₁ = P₂/T₂
P₂ = P₁ × T₂/T₁
P₂ = 822 torr × 475 K/325 K = 1.20 × 10³ torr
What would the IUPAC name be?
Answer:
methyl ethanoate
Explanation:
To name the compound given above, the following must be obtained:
1. Determine the functional group of the compound.
In this case, the functional group is R–COOR' where R and R' are alkyl groups. Thus, the compound is an ester.
2. Determine the longest chain before the functional group and the compound after the functional group.
In this case, the longest chain before the functional group is carbon 2 i.e ethane and the compound after the functional group is methyl.
3. Name the compound by naming the compound after the functional group first, followed by the compound before the functional group and ending it with –oate.
This is illustrated below:
After the functional group => methyl
Before the functional group => ethane
Name of the compound => methyl ethanoate
Calculate the volume of 0.07216 M AgNO3 needed to react exactly with 0.3572 g of pure Na2CO3 to produce solid Ag2CO3.
Answer:
93.4 mL
Explanation:
Let's state the reaction:
2AgNO₃ + Na₂CO₃ → Ag₂CO₃ + 2NaNO₃
We determine the moles of sodium carbonate:
0.3572 g . 1mol / 105.98g = 3.37×10⁻³ moles
Ratio is 1:2. We say:
1 mol of sodium carbonate react to 2 moles of silver nitrate
Then, our 3.37×10⁻³ moles of carbonate may react to: 3.37×10⁻³ . 2
= 6.74×10⁻³ moles
If we convert to mmoles → 6.74×10⁻³ mol . 1000 mmol / mol = 6.74 mmol
Molarity is mol/L but we can use mmol /mL
6.74 mol / volume in mL = 0.07216 M
6.74 mol / 0.07216 M = volume in mL → 93.4 mL
Consider the reaction 4FeS2 + 11O2 → 2Fe2O3 + 8SO2. If 8 moles of FeS2 react with 15 moles of O2, what is the limiting reactant? (3 points)
SO2
O2
Fe2O3
FeS2
Answer:
O2
Explanation:
for find the limiting reactant you must calculate the moles of the reactants from the amount that you have and from the MM:
MM FeS2 = 120n = 26.2g / 120g/mol = 0,218 mol
MM O2 = 32n = 5,44g/32g/mol = 0,17 mol
The limiting reactant is
O2
please help me quickly ????
Calculate the equilibrium solubility of silver arsenate
(Ksp = 6 * 10-23) in a solution that buffered to a pH of :
a) 3
b) 6
c) 9
For H3ASO4
Ka1 = 5 * 10-3
Ka2 = 1.1 * 10-7
Ka3 = 3.2 * 10-12
Answer:
sorry don't know the answer!!!
What is the total mass of products formed when 64.18 grams of CH4 is burned with excess oxygen?
Magnesium metal reacts with a solution of silver nitrate in a single-replacement reaction, producing aqueous magnesium
nitrate and silver metal.
If a reaction starts with 0.480 mol Mg, how many moles of silver are produced?
You must show a proper set up for the calculation, the answer with a proper unit, and
the proper significant figures.
Answer:
0.960 mol of Ag
Explanation:
Mg(s) + 2AgNO3(aq) → Mg(NO3)2(aq) + 2Ag(s)
1.00 mol of Mg ---- 2.00 mol of Ag
0.480 mol of Mg ---- x
x = (0.480×2)/1 = 0.960 mol of Ag
Can someone help me with a bio organic questions??♀️
Write the formulas for each of the compounds in the following table.
1.
Ferric sulfate
2.
Strontium oxalate
3
.
Chromic acid
4.
Nickel(III) carbonate
5.
Silver bromate
6
.
Dinitrogen difluoride
1.
Magnesium molybdate
8.
Sodium hydrogen phosphate
Answer:
1. Ferric sulfate - Fe2(SO4)3
2. Strontium oxalate – SrC2O4
3. Chromic acid – CrO3
4. Nickel (III) carbonate – NiCO3
5. Silver bromate – AgBrO3
6. Dinitrogen difluoride - N2H2
7. Magnesium molybdate – MgMoO4
8. Sodium hydrogen phosphate - Na2PO4
I dont understand this
Answer:
me too
Explanation:
How do isotopes of the same atom react chemically? How do isotopes of the same atom compare in size?
Atoms of the same elements differing in the number of neutrons in their nuclei are known as isotopes. Thus, isotopes of an element have the same atomic number but different atomic mass number. Isotopes of an element have similar chemical properties but different physical properties.
if you were conducting an experiment with pepsin which has an optimal enzymatic actigity at ph 2.3, wat buffer would be the best choice
Answer: One with a pKa of 1.9
Hope this helps <3
P.S Fun Fact~~
There are only two words in the English language that have all five vowels in order: "abstemious" and "facetious."!
Answer:
Explanation: Is there choises? H3PO4 / NaH2PO4 buffer with equal concentrations would form a buffer solution pH = 2.15
About how long did it take for this population to reach the carrying capacity of this habitat
Answer:100
Explanation:
A student went to the cafeteria and bought iced tea. He then proceeded to add more sugar to his iced tea. In this solution, the iced tea was the __________ and the sugar was the ____________.
A student enters the canteen and buys iced tea. He then goes on to add more sugar to his iced tea. In this solution, iced tea is the solvent and sugar is the solute.
BRAINIEST AND POINTS
Which option below accurately describes the relationship between frequency and wavelength?
A. The higher the frequency the shorter the wavelength.
B. The lower the frequency the shorter the wavelength.
Answer:
Hi, there your answer is A. As the frequency of a wave increases, the shorter its wavelength is.
Explanation:
When frequency increases, wavelength decreases.
Hope this Helps :)
Silver nitrate, AgNO3, reacts with ferric chloride, FeCl3, to give silver chloride, AgCl, and ferric nitrate, Fe(NO3)3. In a particular experiment, it was planned to mix a solution containing 25.0 g of AgNO3 with another solution containing 45.0 grams of FeCl3. Write the chemical equation for the reaction.
Answer:
[tex]\mathbf{FeCl_3 + AgNO_3 \to 3 AgCl+Fe(NO_3)_3}[/tex]
Explanation:
From the given question,
The chemical equation is:
[tex]\mathbf{FeCl_3 + AgNO_3 \to 3 AgCl+Fe(NO_3)_3}[/tex]
We are given that:
mass of [tex]FeCl_3[/tex] = 45 g
number of moles of [tex]FeCl_3[/tex] = 45 g/162.2 g/mol
= 0.28 mol
mass of [tex]AgNO_3[/tex] = 25g
number of moles of [tex]AgNO_3[/tex] = 25/169.87
= 0.147 mol
From the given equation 1 mole of [tex]FeCl_3[/tex] is required to make 3 mole of [tex]AgNO_3[/tex]
0.28 mole of [tex]FeCl_3[/tex] = 0.28 × 3 = 0.84 mol of [tex]AgNO_3[/tex]
Here [tex]AgNO_3[/tex] is the limiting reagent.
Thus,
3 mole of [tex]AgNO_3[/tex] = 3 moles of AgCl
0.147 mole of [tex]AgNO_3[/tex] = 0.147 mole of AgCl produced.
Given 32.0 g of water, if we see a temperature change from 25.0°C to 20.0°C, then how much heat energy (q) is transferred from the water?
(The specific heat of water is 4.184 J/g°C )
Answer:
Q = 669.44 J
Explanation:
Given that,
Mass of water, m = 32 g
The temperature change from 25.0°C to 20.0°C.
We need to find the amount of heat energy transferred. Let it is Q. We know that,
[tex]Q=mc\Delta T[/tex]
Where
c is the specific heat of water
Put all the values,
[tex]Q=32\times 4.184 \times (20-25)\\Q=669.44\ J[/tex]
So, 669.44 J of heat energy is transferred from the water.
8. What was the original concentration in the BHL sample, if the dilution is 1:500 and the concentration 0.07 mg/ml
Answer:
The original concentration is "35 mg/ml".
Explanation:
According to the question,
The solution is diluted,
= 1:50
The initial volume,
V1 = 1 ml
Final concentration,
= 0.07 mg
then,
The final volume,
V2 = 500 ml
As we know,
⇒ [tex]V_1N_1=V_2N_2[/tex]
or,
⇒ [tex]N_1=\frac{V_2N_2}{V_1}[/tex]
On substituting the values, we get
⇒ [tex]=\frac{500\times 0.07}{1}[/tex]
⇒ [tex]=\frac{35}{1}[/tex]
⇒ [tex]=35 \ mg/ml[/tex]
A 0.07 mg/mL BHL solution was prepared by performing a 1:500 dilution on a 35 mg/mL solution.
A 1:500 dilution was carried out to prepare a 0.07 mg/mL BHL solution. We can find the concentration of the initial solution using the dilution rule.
What is the dilution rule?It is an equation that relates the concentration and volume of a concentrated and a dilute solution. The mathematical expression is:
C₁ × V₁ = C₂ × V₂
where,
C₁ is the concentration of the concentrated solution.V₁ is the volume of the concentrated solution.C₂ is the concentration of the dilute solution.V₂ is the volume of the dilute solution.C₁ = C₂ × (V₂/V₁)
C₁ = 0.07 mg/mL × (500/1) = 35 mg/mL
A 0.07 mg/mL BHL solution was prepared by performing a 1:500 dilution on a 35 mg/mL solution.
Learn more about dilution here: https://brainly.com/question/1615979
When an acid reacts with a strong base which product always forms
Answer:طيزي
Explanation:
Look at the table of dissociation constants for some acids.
Acid Ka Acetic acid 18 x 10-6 1.2 x 10-2 Chlorous acid Nitrous acid 4.0 x 10 -4 Propionic acid 1.3 x 10-5
Which of these is the strongest acid?
acetic acid
chlorous acid
nitrous acid
propionic acid
*Answer is B*
Answer:
chlorous acid
Explanation:
The acidic equilibrium of weak acids, HX, occurs as follows:
HX ⇄ H+ + X-
Where Ka is written as:
Ka = [H+] [X-] / [HX]
The strongest acid is the acid that produce more H+. The acid with the higher Ka is the acid that produce more [H+] and is, thus, the strongest acid.
The higher Ka is the Ka of chlorus acid = 1.2x10-2
Right answer is:
chlorous acidAnswer:
chlorous acid :)
Explanation:
Now we need to find the amount of NF3 that can be formed by the complete reactions of each of the reactants. If all of the N2 was used up in the reaction, how many moles of NF3 would be produced
The question is incomplete, the complete question is:
Nitrogen and fluorine react to form nitrogen fluoride according to the chemical equation:
[tex]N_2(g)+3F_2(g)\rightarrow 2NF_3(g)[/tex]
A sample contains 19.3 g of [tex]N_2[/tex] is reacted with 19.3 g of [tex]F_2[/tex]. Now we need to find the amount of [tex]NF_3[/tex] that can be formed by the complete reactions of each of the reactants.
If all of the [tex]N_2[/tex] was used up in the reaction, how many moles of [tex]NF_3[/tex] would be produced?
Answer: 1.378 moles of [tex]NF_3[/tex] are produced in the reaction.
Explanation:
The number of moles is defined as the ratio of the mass of a substance to its molar mass.
[tex]\text{Number of moles}=\frac{\text{Given mass}}{\text{Molar mass}}[/tex] ......(1)
Limiting reagent is defined as the reagent which is completely consumed in the reaction and limits the formation of the product.
Excess reagent is defined as the reagent which is left behind after the completion of the reaction.
In the given chemical reaction, [tex]N_2[/tex] is considered as a limiting reagent because it limits the formation of the product and it was completely consumed in the reaction.
We are given:
Mass of [tex]N_2[/tex] = 19.3 g
Molar mass of [tex]N_2[/tex] = 28.02 g/mol
Putting values in equation 1:
[tex]\text{Moles of }N_2=\frac{19.3g}{28.02g/mol}=0.689mol[/tex]
For the given chemical reaction:
[tex]N_2(g)+3F_2(g)\rightarrow 2NF_3(g)[/tex]
By the stoichiometry of the reaction:
1 mole of [tex]N_2[/tex] produces 2 moles of [tex]NF_3[/tex]
So, 0.689 moles of [tex]N_2[/tex] will produce = [tex]\frac{2}{1}\times 0.689=1.378mol[/tex] of [tex]NF_3[/tex]
Hence, 1.378 moles of [tex]NF_3[/tex] are produced in the reaction.
Hydration of alkynes gives good yields of single compounds only with symmetrical or terminal alkynes. Draw the major organic product(s) formed when 3-methylcyclodecyne undergoes hydration in the presence of HgSO4 and H2SO4.
Answer:
Following are the solution to the given choice:
Explanation:
Hex-2-yne is just not alkyne symmetric, therefore two things respectively hexan-3-one and hexan-2-one are to be given.
The attached file it displayed the response along with the mechanism, please find the.
Which of these is NOT a producer in the coral reef ecosystem? *
1. phytoplankton
2. sea grass
3. microalgae
4. coral
Answer:
option number 4. 'coral'
Explanation:
-
Given the reaction: N2 + O2 = 2NO for which the Keq at 2273 K is 1.2 x 10-4
a. Write the equilibrium constant expression for the reaction.
b. Write the equation that would allow you solve for the concentration of NO.
c. What is the concentration of NO if [NZ] = 0.166M and [02] = 0.145M?
Answer:
(a): The expression of equilibrium constant is [tex]K_{eq}=\frac{[NO]^2}{[N_2][O_2]}[/tex]
(b): The equation to solve the concentration of NO is [tex][NO]=\sqrt{K_{eq}\times [N_2]\times [O_2]}[/tex]
(c): The concentration of NO is 0.0017 M.
Explanation:
The equilibrium constant is defined as the ratio of the concentration of products to the concentration of reactants raised to the power of the stoichiometric coefficient of each. It is represented by the term [tex]K_{eq}[/tex]
(a):
The given chemical equation follows:
[tex]N_2+O_2\rightarrow 2NO[/tex]
The expression for equilbrium constant will be:
[tex]K_{eq}=\frac{[NO]^2}{[N_2][O_2]}[/tex]
(b):
The equation to solve the concentration of NO follows:
[tex][NO]=\sqrt{K_{eq}\times [N_2]\times [O_2]}[/tex] ......(1)
(c):
Given values:
[tex]K_{eq}=1.2\times 10^{-4}[/tex]
[tex][N_2]_{eq}=0.166M[/tex]
[tex][O_2]_{eq}=0.145M[/tex]
Plugging values in equation 1, we get:
[tex][NO]=\sqrt{(1.2\times 10^{-4})\times 0.166\times 0.145}[/tex]
[tex][NO]=\sqrt{2.88\times 10^{-6}}[/tex]
[tex][NO]=0.0017 M[/tex]
Hence, the concentration of NO is 0.0017 M.
THIS NOT MY WORK. its for my sister. HELP HER
Answer:
Your answer will be b(molten material from the outer core makes its way to the surface of earth)
Explanation:
Answer:
C
Explanation:
I'm pretty sure molten material comes from the inner core. I think you can search up this though, try to find where molten material comes from. Goodluck!
The MO diagram of CN is similar to N2. Based on the molecular orbital energy-level diagram of CN, which of the following statements are correct?
i. The CN bond order is 2.
ii. CN is diamagnetic.
iii. The bond enthalpy in CN- ion is higher than CN.
iv. CN has longer bond length than CN-
answer choices:
a. ii, iv
b. iii, iv
c. i, iii
d. i, ii
e. i, iv
Answer:
Nitrogen molecule (N2)
The electronic configuration of nitrogen (Z=7) = 1s2 2s2 2px12py12pz1.
The total number of electrons present in the nitrogen molecule (N2) is 14.
In order to maximize energy, these 14 electrons can be accommodated in the different molecular orbitals.
N2: KK'(σ2s)2 (σ*2s)2 (π2Px)2 (π2py)2 (σ2pz)2
Here (σ1s)2 (σ*1s)2 part of the configuration is abbreviated as KK’, which denotes the K shells of the two atoms. In calculating bond order, we can ignore KK’, as it includes two bonding and two antibonding electrons.
The bond order of N2can be calculated as follows:
Here, Nb = 10 and Na = 4
Bond order = (Nb−Na) /2
B.O = (10−4)/2
B.O = 3
So your answer should be C3.
hello HELP ME pLS ANYONE with this question I will give u 18 points pls I need real help here:((
Answer:
Boiling - The process of a liquid changing to gas.
Boiling point - The temperature at which a liquid boils.
Condensing - The process of a gas changing to a liquid.
Distillate - The liquid collect from the condenser.
Residue - The liquid left behind in the distillation flask.
Vapour - Another name for gas.
Hope it helps :)
Which piece of glassware shown below is used to hold and dispense a solution of known concentration during a titration?
Answer:
Answer C
Explanation:
Got it off of q**zlet ;)
Answer
Its C confirmed
Explanation:
Just did the test
How many moles of O2 did you produce the 8.31 moles of H2O
the equation is not present.
What will be produced at the cathode during the electrolysis of an aqueous solution of magnesium iodide, MgI2
Answer:
At the cathode during the electrolysis of an aqueous solution of magnesium iodide, MgI2 , 2I−(aq) is produced
Explanation:
At cathode, reduction reaction takes place.
The dissociation of MgI2 in aqueous solution is Mg2+(aq) and 2I−(aq)
Here, the Iodine reduces to 2I−(aq) from state of 0 (MgI2) to state of -1 (2I−(aq))
Hence, at the cathode during the electrolysis of an aqueous solution of magnesium iodide, MgI2 , 2I−(aq) is produced
Answer:
During electrolysis of an aqueous solution of magnesium iodide, MgI2 , 2I−(aq) is produced at the cathode
Explanation:
Electrolysis is a process whereby ionic compound is broken down or degraded into smaller substances when electric current flow through it.
During electrolysis of magnesium iodide, At the cathode reduction reaction occur .
MgI2 is dissociated to is Mg2+(aq) and 2I−(aq)
Then Iodine is reduced to 2I−(aq) which is 0 in (MgI2) then change to -1 (2I−(aq))
Therefore;
During electrolysis of an aqueous solution of magnesium iodide, MgI2 , 2I−(aq) is produced at the cathode.
A potted plant is placed under a grow lamp, which provides 6,400 J of energy to the plant and the soil over the course of an hour. The specific heat capacity of the soil is about 0.840 J/g°C and the temperature goes up by 9.25°C of soil. How many grams of soil are there?
Answer:
823.7g
Explanation:
Using the formula as follows:
Q = m × c × ∆T
Where;
Q = amount of heat (J)
m = mass of substance (g)
c = specific heat capacity (J/g°C)
∆T = change in temperature (°C)
Using the information given in this question as follows:
Q = 6,400 J
m = ?
c of soil = 0.840 J/g°C
∆T = 9.25°C
Using Q = mc∆T
m = Q ÷ c∆T
m = 6,400 ÷ (0.840 × 9.25)
m = 6400 ÷ 7.77
m = 823.7g
Answer:
There are 823.68 grams.
Explanation:
Calorimetry is responsible for measuring the amount of heat generated or lost in certain physical or chemical processes.
Between heat and temperature there is a relationship of direct proportionality. The constant of proportionality depends on the substance that constitutes the body and its mass, and is the product of the specific heat by the mass of the body. In summary, the amount of heat Q that receives or transmits a mass m of a substance with specific heat C to raise its temperature from T1 to T2 is given by the formula:
Q= C*m* (T2- T1) = C*m* ΔT
In this case:
Q= 6400 JC= 0.840 [tex]\frac{J}{g*C}[/tex]m= ?ΔT= 9.25 CReplacing:
6400J= 0.840 [tex]\frac{J}{g*C}[/tex] *m* 9.25 C
Solving:
[tex]m=\frac{6400 J}{0.840 \frac{J}{g*C} *9.25 C}[/tex]
m=823.68 grams
There are 823.68 grams.