A 75 kg ball carrier is running to the right at 6.5 m/s. An 80 kg defender is chasing the ball carrier running at 7.0 m/s. The defender catches the ball carrier in a completely inelastic collision. What is the final speed of the defender/ball carrier mass

Answers

Answer 1

Answer:

 6.758V

Explanation:

The computation of the final speed of the defender/ball carrier mass is shown below:-

Data provided in the question

Measurement of ball = 75 kg

Right m/s = 6.5 m/s

Defender = 80 kg

Carrying running 7.0 m/s

Based on the above information, the final speed of the defender or ball carrier mass is

As we know that

Conservation of momentum is

= Ball in Kg × Right m/s + Defender in Kg × running m/s

= 75 × 6.5 + 80 × 7

= (75 + 80)V

Therefore, the Final speed = 6.758V


Related Questions

What is the magnitude of the maximum stress that exists at the tip of an internal crack having a radius of curvature of 2.5 × 10−4 mm and a crack length of 2.5 × 10−2 mm when a tensile stress of 170 MPa is applied (in MPa)

Answers

Answer:

2404 MPa

Explanation:

See attachment for solution

The maximum stress that exists at the tip of the internal crack is 3,400 Mpa.

The given parameters;

radius of the internal crack, r = 2.5 x 10⁻⁴ mmcrack length, l = 2.5 x 10⁻²tensile stress, σ = 170 MPa = 170 x 10⁶ N/m²

The maximum stress that exists at the tip of the internal crack is calculated as follows;

[tex]\sigma _{max} = 2\sigma \times \sqrt{(\frac{l}{r} )} \\\\\sigma _{max} = 2 \times 170 \times 10^6 \times \sqrt{(\frac{2.5\times 10^{-2}}{2.5 \times 10^{-4}})} \\\\\sigma _{max} = 3.4 \times 10^{9} \ Pa\\\\\sigma _{max} = 3,400\ Mpa[/tex]

Thus, the maximum stress that exists at the tip of the internal crack is 3,400 Mpa.

Learn more here:https://brainly.com/question/19264500

A slender rod of length L has a varying mass-per-unit-length from the left end (x=0) according to dm/dx=Cx where C has units kg/m2. Find the total mass in terms of C and L, and then calculate the moment of inertia of the rod for an axis at the left end note: you need the total mass in order to get the answer in terms of ML^2

Answers

Answer:

ML²/6

Explanation:

Pls see attached file

The total mass is M = CL²/2, and the moment of inertia is I = ML²/2,

Moment of inertia:

The length of the rod is L. It has a non-uniform distribution of mass given by:

dm/dx = Cx

where C has units kg/m²

dm = Cxdx

the total mass M of the rod can be calculated by integrating the above relation over the length:

[tex]M =\int\limits^L_0 {} \, dm\\\\M=\int\limits^L_0 {Cx} \, dx\\\\M=C[x^2/2]^L_0\\\\M=C[L^2/2]\\\\[/tex]

Thus,

C = 2M/L²

Now, the moment of inertia of the small element dx of the rod is given by:

dI = dm.x²

dI = Cx.x²dx

[tex]dI = \frac{2M}{L^2}x^3dx\\\\I= \frac{2M}{L^2}\int\limits^L_0 {x^3} \, dx \\\\I= \frac{2M}{L^2}[\frac{L^4}{4}][/tex]

I = ML²/2

Learn more about moment of inertia:

https://brainly.com/question/6953943?referrer=searchResults

What happens when you increase the number of slits per millimeter (decrease the spacing between slits)?

Answers

Answer:

Increasing the number of slits not only makes the diffraction maximum sharper, but also much more intense. If a 1 mm diameter laser beam strikes a 600 line/mm grating, then it covers 600 slits and the resulting line intensity is 90,000 x that of a double slit. Such a multiple-slit is called a diffraction grating.

An ultrasound machine uses 1.64 × 105 watts of power. If it draws 12.0 amps of current, what is the resistance?

Answers

Answer:

R = 1138.9 Ω

Explanation:

Hello,

In this case, for the given power (P) and current (I), we can compute the resistance (R) via:

R = P / I²

Thus, we obtain:

R = 1.64x10⁵ W / (12.0 A)²

R = 1138.9 Ω

Best regards.

what is the maximum torque on a coil 5 cm x 12 cm, composed of 600 turns, when it is carrying a current of 10^-5 A in a uniform field of .1 T

Answers

Answer:

3.6×10⁻⁶  Nm

Explanation:

From the question,

The expression for maximum torque is given as

τ = BANI.................Equation 1

where τ = maximum torque, B = magnetic field, A = Area of the coil, N = number of turns, I = current carried by the coil.

Given: B = 0.1 T, A = (5×12) = 60 cm² = 0.006 m², N = 600 turns, I = 10⁻⁵ A.

Substitute these values into equation 1

τ = 0.1(0.006)(600)(10⁻⁵)

τ = 3.6×10⁻⁶  Nm

A 2.0-kg object moving 5.0 m/s collides with and sticks to an 8.0-kg object initially at rest. Determine the kinetic energy lost by the system as a result of this collision.

Answers

Answer:

20J

Explanation:

In a collision, whether elastic or inelastic, momentum is always conserved. Therefore, using the principle of conservation of momentum we can first get the final velocity of the two bodies after collision. This is given by;

m₁u₁ + m₂u₂ = (m₁ + m₂)v          ---------------(i)

Where;

m₁ and m₂ are the masses of first and second objects respectively

u₁ and u₂ are the initial velocities of the first and second objects respectively

v  is the final velocity of the two objects after collision;

From the question;

m₁ = 2.0kg

m₂ = 8.0kg

u₁ = 5.0m/s

u₂ = 0        (since the object is initially at rest)

Substitute these values into equation (i) as follows;

(2.0 x 5.0) + (8.0 x 0) = (2.0 + 8.0)v

(10.0) + (0) = (10.0)v

10.0 = 10.0v

v = 1m/s

The two bodies stick together and move off with a velocity of 1m/s after collision.

The kinetic energy(KE₁) of the objects before collision is given by

KE₁ = [tex]\frac{1}{2}[/tex]m₁u₁² +  [tex]\frac{1}{2}[/tex]m₂u₂²       ---------------(ii)

Substitute the appropriate values into equation (ii)

KE₁ = ([tex]\frac{1}{2}[/tex] x 2.0 x 5.0²) +  ([tex]\frac{1}{2}[/tex] x 8.0 x 0²)

KE₁ = 25.0J

Also, the kinetic energy(KE₂) of the objects after collision is given by

KE₂ = [tex]\frac{1}{2}[/tex](m₁ + m₂)v²      ---------------(iii)

Substitute the appropriate values into equation (iii)

KE₂ = [tex]\frac{1}{2}[/tex] ( 2.0 + 8.0) x 1²

KE₂ = 5J

The kinetic energy lost (K) by the system is therefore the difference between the kinetic energy before collision and kinetic energy after collision

K = KE₂ - KE₁

K = 5 - 25

K = -20J

The negative sign shows that energy was lost. The kinetic energy lost by the system is 20J

Blue light (λ = 475 nm) is sent through a single slit with a width of 2.1 µm. What is the maximum possible number of bright fringes, including the central maximum, produced on the screen? (Hint: What is the largest angle that can be used?)

Answers

Answer:

  m = 4

Explanation:

The expression that explains the constructive interference of a diffraction pattern is

         a sin θ = m λ

where a  is the width of the slit and λ the wavelength

         sin θ = m λ / a

The maximum value is for when the sine is 1, let's substitute

         1 = m λ/a  

         m = a /λ

let's reduce the magnitudes to the SI system

        a = 2.1 um = 2.1 10⁻⁶

        lam = 475 nm = 475 10⁻⁹ m

let's calculate

        m = 2.1  10⁻⁶ / 475 10⁻⁹

        m = 4.42

with m must be an integer the highest value is

         m = 4

Complete the following statement:

Bimetallic strips used as adjustable switches in electric appliances consist of metallic strips that must have different:_____

a. volume.
b. specific heat capacities.
c. expansion coefficients.
d. mass.
e. length.

Answers

Answer: c. expansion coefficients.

Explanation: Bimetallic strips used as adjustable switches in electric appliances consist of metallic strips that must have different expansion coefficients.

I found the answer on Quizlet. :)

Bimetallic strips used as adjustable switches in electric appliances consist of metallic strips that must have different expansion coefficients. The correct option is c.

What is the expansion coefficient?

The coefficient of thermal expansion (CTE) is the rate at which a material expands as its temperature rises. This coefficient is determined at constant pressure and without a phase change, i.e. the material is expected to remain solid or fluid.

Bimetallic strips, which are utilized as adjustable switches in electric appliances, are made up of metallic strips with differing expansion coefficients. The coefficient of thermal expansion indicates how the size of an object varies as temperature changes.

Therefore, the correct option is c. expansion coefficients.

To learn more about the expansion coefficient, refer to the link:

https://brainly.com/question/14780533

#SPJ2

Classify the bending of light as exhibited by the ray diagrams. According to your data, is light refracted away from or toward the normal as it passes at an angle into a medium with a higher index of refraction?

Answers

Answer:

the ray of light should approach normal

Explanation:

When light passes through two means of different refractive index, it fulfills the equation

              n₁ sin  θ₁ = n₂ sin θ₂

where index 1 and 2 refer to each medium

In this problem, they tell us that light passes to a medium with a higher index, which is why

               n₁ <n₂

let's look for the angle in the second half

            sinθ₂ = n₁ /n₂  sin θ₁

            θ₂ = sin⁻¹ (n₁ /n₂  sin θ₁)

let's examine the angle argument the quantity n₁ /n₂ <1   therefore the argument decreases, therefore the sine and the angle decreases

Consequently the ray of light should approach normal

Find the average power Pavg created by the force F in terms of the average speed vavg of the sled.

Answers

Complete Question

The complete question is shown on the first and second uploaded image

Answer:

The power created  is  [tex]P_{avg} = F * v_{avg}[/tex]

Explanation:

From the question we are told that

    The that the average power is  mathematically represented as

            [tex]P_{avg} = \frac{W }{\Delta t }[/tex]

Where W is  is the Workdone which is  mathematically represented as

         [tex]W = F * s[/tex]

      Where F is  the applies force and  s  is the displacement  due to the force  

        So  

                [tex]P_{avg} = \frac{F *s }{\Delta t }[/tex]

Now this  displacement can be represented mathematically as  

            [tex]s = v_{avg} * \Delta t[/tex]

Where [tex]v_{avg }[/tex] is the average  velocity and [tex]\Delta t[/tex] is the time  taken  

So  

            [tex]P_{avg} = \frac{F *v_{avg} * \Delta t }{\Delta t }[/tex]

=>         [tex]P_{avg} = F * v_{avg}[/tex]

Answer:

Pavg =  Fvavg

Explanation:

Since the P (power) done by the F (force) is:

P = Fs/t

and we are looking for the velocity, so then it would be:

P = Fv

with the average velocity the answer is:

Pavg =  Favg

If an object is moving at a constant speed, and the force F is also constant, this formula can be used to find the average power. If v  is changing, the formula can be used to find the instantaneous power at any given moment (with the quantity v in this case meaning the instantaneous velocity, of course).

A small merry-go round is spinning about its center in a clockwise direction at 1.6 r a d s and with rotational kinetic energy of 580 J. Calculate the moment of inertia of the merry-go round.

Answers

Answer:

The moment of inertia of the merry-go round is 453.125 kg.m²

Explanation:

Given;'

angular velocity of the merry-go round, ω = 1.6 rad/s

rotational kinetic energy, K =  580 J

Rotational kinetic energy is given as;

K = ¹/₂Iω²

Where;

I is the moment of inertia of the merry-go round

[tex]I = \frac{2K}{\omega^2} \\\\I = \frac{2*580}{1.6^2} \\\\I = 453.125 \ kg.m^2[/tex]

Therefore, the moment of inertia of the merry-go round is 453.125 kg.m²

Since the small merry-go round is spinning about its center in a clockwise direction, its moment of inertia is equal to 453.13 [tex]Kgm^2[/tex]

Given the following data:

Angular velocity = 1.6 rad/sRotational kinetic energy = 580 Joules.

To calculate the moment of inertia of the small merry-go round:

Mathematically, the rotational kinetic energy of an object is giving by the formula:

[tex]E_{rotational} = \frac{1}{2} Iw^2[/tex]

Where:

I is the moment of inertia.w is the angular speed.

Making moment of inertia (I) the subject of formula, we have:

[tex]I = \frac{2E_{rotational}}{w^2}[/tex]

Substituting the given parameters into the formula, we have;

[tex]I = \frac{2(580)}{1.6^2}\\\\I = \frac{1160}{2.56}[/tex]

Moment of inertia (I) = 453.13 [tex]Kgm^2[/tex]

Read more: https://brainly.com/question/13030939

⦁ A 68 kg crate is dragged across a floor by pulling on a rope attached to the crate and inclined 15° above the horizontal. (a) If the coefficient of static friction is 0.5, what minimum force magnitude is required from the rope to start the crate moving? (b) If µk= 0.35, what is the magnitude of the initial acceleration of the crate?

Answers

Answer:

303.29N and 1.44m/s^2

Explanation:

Make sure to label each vector with none, mg, fk, a, FN or T

Given

Mass m = 68.0 kg

Angle θ = 15.0°

g = 9.8m/s^2

Coefficient of static friction μs = 0.50

Coefficient of kinetic friction μk =0.35

Solution

Vertically

N = mg - Fsinθ

Horizontally

Fs = F cos θ

μsN = Fcos θ

μs( mg- Fsinθ) = Fcos θ

μsmg - μsFsinθ = Fcos θ

μsmg = Fcos θ + μsFsinθ

F = μsmg/ cos θ + μs sinθ

F = 0.5×68×9.8/cos 15×0.5×sin15

F = 332.2/0.9659+0.5×0.2588

F =332.2/1.0953

F = 303.29N

Fnet = F - Fk

ma = F - μkN

a = F - μk( mg - Fsinθ)

a = 303.29 - 0.35(68.0 * 9.8- 303.29*sin15)/68.0

303.29-0.35( 666.4 - 303.29*0.2588)/68.0

303.29-0.35(666.4-78.491)/68.0

303.29-0.35(587.90)/68.0

(303.29-205.45)/68.0

97.83/68.0

a = 1.438m/s^2

a = 1.44m/s^2

An arrow is launched vertically upward at a speed of 50 m/s. What is the arrow’s speed at the highest point? Ignore air resistance

Answers

Answer:

depending on how high it goes at 100m it has taken 2 secondes

Explanation:

At the highest point, the arrow is changing from moving up to moving down. At that exact point, its speed AND its velocity are both ZERO.

And air resistance actually makes no difference.

A proud new Jaguar owner drives her car at a speed of 25 m/s into a corner. The coefficients of friction between the road and the tires are 0.70 (static) and 0.40 (kinetic) assuming the car is not skidding while traveling along the curve, what is the magnitude of the centripetal acceleration of the car

Answers

Answer:

ac = 3.92 m/s²

Explanation:

In this case the frictional force must balance the centripetal force for the car not to skid. Therefore,

Frictional Force = Centripetal Force

where,

Frictional Force = μ(Normal Force) = μ(weight) = μmg

Centripetal Force = (m)(ac)

Therefore,

μmg = (m)(ac)

ac = μg

where,

ac = magnitude of centripetal acceleration of car = ?

μ = coefficient of friction of tires (kinetic) = 0.4

g = 9.8 m/s²

Therefore,

ac = (0.4)(9.8 m/s²)

ac = 3.92 m/s²

Based on the data provided, the centripetal acceleration is 3.92 m/s²

What is centripetal acceleration?

Centripetal acceleration is the acceleration of a body moving in a circular path which is directed toward the center of the circle.

In the given question, the frictional force must balance the centripetal force for the car not to skid.

Frictional Force = Centripetal Force

where,

Frictional Force = μR

R = mg

F = μmg

Centripetal Force = m

Then

μmg = ma

a = μg

ac = 0.4 * 9.8 m/s²

ac = 3.92 m/s²

Therefore, the centripetal acceleration is 3.92 m/s².

Learn more about centripetal acceleration at: https://brainly.com/question/25243603

A trough is filled with a liquid of density 810 kg/m3. The ends of the trough are equilateral triangles with sides 8 m long and vertex at the bottom. Find the hydrostatic force on one end of the trough. (Use 9.8 m/s2 for the acceleration due to gravity.)

Answers

Answer:

The hydrostatic force on one end of the trough is 54994.464 N

Explanation:

Given;

liquid density, ρ = 810 kg/m³

side of the equilateral triangle, L = 8m

acceleration due to gravity, g =  9.8 m/s²

Hydrostatic force is given as;

H = ρgh

where;

h is the vertical height of the equilateral triangle

Draw a line to bisect upper end of the trough, to the vertex at the bottom, this line is the height of the equilateral triangle.

let the half side of the triangle = x

x = ⁸/₂ = 4m

The half section of the triangle forms a right angled triangle

h² = 8² - 4²

h² = 48

h = √48

h = 6.928m

F = ρgh

F = 810 x 9.8 x 6.928

F = 54994.464 N

Therefore, the hydrostatic force on one end of the trough is 54994.464 N

A total electric charge of 2.00 nC is distributed uniformly over the surface of a metal sphere with a radius of 26.0 cm . The potential is zero at a point at infinity.
a) Find the value of the potential at 45.0 cm from the center of the sphere.
b) Find the value of the potential at 26.0 cm from the center of the sphere.
c) Find the value of the potential at 16.0 cm from the center of the sphere.

Answers

Answer:

a) 40 V

b) 69.23 V

c) 69.23 V

Explanation:

See attachment for solution

How much electromagnetic energy is contained in each cubic meter near the Earth's surface if the intensity of sunlight under clear skies is 1000 W/m2

Answers

Answer:

344.8 x10^-8J/m³

Explanation:

Using=> energy intensity/ speed oflight

= 1000/2.9x10^8

= 344.8 x10^-8J/m³

The electromagnetic energy is 344.8 x10⁻⁸J/m³

We have to use the formula which says

Electromagnetic energy = energy intensity/ speed of light

We are given intensity as 1000 W/m²

Electromagnetic energy    = 1000/2.9 x 10⁸

                                             = 344.8 x 10⁻⁸J/m³

Therefore the electromagnetic energy is contained in each cubic meter will be  344.8 x 10⁻⁸J/m³

Read more on https://brainly.com/question/17136549

At what minimum speed must a roller coaster be traveling when upside down at the top of a 7.4 m radius loop-the-loop circle so the passengers will not fall out?

Answers

Answer:

v = 8.5 m/s

Explanation:

In order for the passengers not to fall out of the loop circle, the centripetal force must be equal to the weight of the passenger. Therefore,

Weight = Centripetal Force

but,

Weight = mg

Centripetal Force = mv²/r

Therefore,

mg = mv²/r

g = v²/r

v² = gr

v = √gr

where,

v = minimum speed required = ?

g = 9.8 m/s²

r = radius = 7.4 m

Therefore,

v = √(9.8 m/s²)(7.4 m)

v = 8.5 m/s

Minimum speed for a roller coaster while travelling upside down  so that the person will not fall out = 8.5 m/s

For a roller coaster be traveling when upside down the Force balance equation can be written for a person of mass m.

In the given condition the weight of the person must be balanced by the centrifugal force.

and for the person not to fall out centrifugal force must be greater than or equal to the weight of the person

According to the Newton's Second Law of motion we can write force balance

[tex]\rm mv^2/r -mg =0 \\\\mg = mv^2 /r (Same\; mass) \\\\\\g = v^2/r\\\\v = \sqrt {gr}......(1)[/tex]

Given Radius of loop = r = 7.4 m

Putting the value  of r = 7.4 m  in equation (1) we get

[tex]\sqrt{9.8\times 7.4 } = \sqrt{72.594} = 8.5\; m/s[/tex]

For more information please refer to the link below

https://brainly.com/question/13259103

A uniform solid disk and a uniform ring are place side by side at the top of a rough incline of height h.
a) If they are released from rest and roll without slipping, determine the velocity vring of the ring when it reaches the bottom.
b) Verify your answer by calculating their speeds when they reach the bottom in terms of h.

Answers

Explanation:

velocity of disc [tex]=\sqrt((gh)/0.75)[/tex]

lets call (h) 1 m to make it simple.

= 3.614 m/s

[tex]\sqrt((4/3) x 1 x 9.8) = 3.614[/tex] m/s pointing towards this:

[tex]4×V_d=\sqrt(4/3hg)[/tex]

[tex]V_h=\sqrt(hg)[/tex]

velocity of hoop=[tex]\sqrt(gh)[/tex]

lets call (h) 1m to make it simple again.

[tex]\sqrt(9.8 x 1) = 3.13[/tex] m/s

[tex]\sqrt(gh) = sqrt(hg)

so [tex]4×V_d= \sqrt(4/3hg)V_h=\sqrt(hg)[/tex]

The disc is the fastest.

While i'm on this subject i'll show you this:

Solid ball [tex]=0.7v^2= gh[/tex]

solid disc [tex]= 0.75v^2 = gh[/tex]

hoop [tex]=v^2=gh[/tex]

The above is simplified from linear KE + rotational KE, the radius or mass makes no difference to the above formula.

The solid ball will be the faster of the 3, like above i'll show you.

solid ball: velocity [tex]=\sqrt((gh)/0.7)[/tex]

let (h) be 1m again to compare.

[tex]\sqrt((9.8 x 1)/0.7) = 3.741[/tex] m/s

solid disk speed [tex]=\sqrt((gh)/0.75)[/tex]

uniform hoop speed [tex]=\sqrt(gh)[/tex]

solid sphere speed [tex]=\sqrt((gh)/0.7)[/tex]

We observe that a small sample of material placed in a non-uniform magnetic field accelerates toward a region of stronger field. What can we say about the material?

Answers

Answer:

C) It is either ferromagnetic or paramagnetic

Explanation:

The complete question is given below

We observe that a small sample of material placed in a non-uniform magnetic field accelerates toward a region of stronger field. What can we say about the material?

A) It must be ferromagnetic.

B) It must be paramagnetic.

C) It is either ferromagnetic or paramagnetic.

D) It must be diamagnetic.

A ferromagnetic material will respond towards a magnetic field. They are those materials that are attracted to a magnet. Ferromagnetism is associated with our everyday magnets and is the strongest form of magnetism in nature. Iron and its alloys is very good example of a material that readily demonstrate ferromagnetism.

Paramagnetic materials are weakly attracted to an externally applied magnetic field. They usually accelerate towards an electric field, and form internal induced magnetic field in the direction of the external magnetic field.

The difference is that ferromagnetic materials can retain their magnetization when the externally applied magnetic field is removed, unlike paramagnetic materials that do not retain their magnetization.

In contrast, a diamagnetic material is repelled away from an externally applied magnetic field.

According to string theory, six space-time dimensions cannot be measured except as quantum numbers of internal particle properties because they are curled up in size of the order of

Answers

Answer:

Order of 10^(-35) m.

Explanation:

The string theory is a theoretical concept whereby the very small particles of particle physics are replaced by one dimensional objects which are called strings. This theory is also applicable to black hole physics, nuclear physics, cosmology, etc.

Now, according to string theory, six space-time dimensions cannot be measured except as quantum numbers of internal particle properties because they are curled up in size of the order of 10^(-35) m.

This is because the length of the scale is assumed to be on the order of the Planck length, or 10^(−35) meters which is the scale at which the effects of quantum gravity are usually believed to become very significant.

Two mirrors are touching so they have an angle of 35.4 degrees with one another. A light ray is incident on the first at an angle of 55.7 degrees with respect to the normal to the surface. What is the angle of reflection from the second surface

Answers

Answer:

54.6°

Explanation:

From law of reflection i=r.

So, construct the reflected ray at 55.7°degrees from the normal and let it fall on the other mirror.  

Now draw the second normal at the point of incidence and again measure the angle of incidence, and draw the angle of reflection.

If you consider triangle AOB, one angle is ∠AOB=90°

 and ∠OAB is 54.6°

 

From angle sum property third angle ie ∠ABO=180°-90°-54.6°=35.4°

 

So, the second incident angle will be 54.6°

Hence, the second reflected angle will be 54.6 degrees.

A 1.20 kg water balloon will break if it experiences more than 530 N of force. Your 'friend' whips the water balloon toward you at 13.0 m/s. The maximum force you apply in catching the water balloon is twice the average force. How long must the interaction time of your catch be to make sure the water balloon doesn't soak you

Answers

Answer:

t = 0.029s

Explanation:

In order to calculate the interaction time at the moment of catching the ball, you take into account that the force exerted on an object is also given by the change, on time, of its linear momentum:

[tex]F=\frac{\Delta p}{\Delta t}=m\frac{\Delta v}{\Delta t}[/tex]       (1)

m: mass of the water balloon = 1.20kg

Δv: change in the speed of the balloon = v2 - v1

v2: final speed = 0m/s (the balloon stops in my hands)

v1: initial speed = 13.0m/s

Δt: interaction time = ?

The water balloon brakes if the force is more than 530N. You solve the equation (1) for Δt and replace the values of the other parameters:

[tex]|F|=|530N|= |m\frac{v_2-v_1}{\Delta t}|\\\\|530N|=| (1.20kg)\frac{0m/s-13.0m/s}{\Delta t}|\\\\\Delta t=0.029s[/tex]

The interaction time to avoid that the water balloon breaks is 0.029s

A solid sphere is rolling smoothly with a speed of 6.0 m/s on a horizontal surface. It then rolls up a ramp to a maximum height of h and stops. Calculate this maximum height. (The moment of inertia of a solid sphere is I

Answers

Answer:

Explanation:

This exercise we will work using energy conservation, let's use two points

 lower. Ramp starting point

        Em₀ = K = ½ m v² + ½ I w²

more height. Point where e stops

        [tex]Em_{f}[/tex] = m g h

at the starting point the sphere is spinning let's look for the relationship between the angular and linear variables

        v = w r

the moment of inertia of a sphere is tabulated

         I = 2/5 M R2

let's use that energy is conserved

        Em₀ = Em_{f}

        ½ m v² + ½ (2/5 m r²) (v / r)² = m g h

        ½ v² + 1/5 v2 = g h

        h= 7/10 v² / g

a person lifts 4.5kg block up a vertical distance of 1.2meters and then carries it horizontally for 7.3meters. Calculate the Total Work done by the person and the block.

Answers

Answer:

The total work done by the person is given as = m g h

= 4.5kg x 9.8m/s²x1.2m

= 52.92J

This is the work done in moving the block in a vertical distance

However there is no work done when the block is moved in a horizontal direction since ko work is done against gravity.

Explanation:

An airplane flies in a horizontal circle of radius 500 m at a speed of 150 m/s. If the radius were changed to 1000 m, but the speed remained the same, by what factor would its centripetal acceleration change?

Answers

Answer:

The centripetal acceleration changed by a factor of 0.5

Explanation:

Given;

first radius of the horizontal circle, r₁ = 500 m

speed of the airplane, v = 150 m/s

second radius of the airplane, r₂ = 1000 m

Centripetal acceleration is given as;

[tex]a = \frac{v^2}{r}[/tex]

At constant speed, we will have;

[tex]v^2 =ar\\\\v = \sqrt{ar}\\\\at \ constant\ v;\\\sqrt{a_1r_1} = \sqrt{a_2r_2}\\\\a_1r_1 = a_2r_2\\\\a_2 = \frac{a_1r_1}{r_2} \\\\a_2 = \frac{a_1*500}{1000}\\\\a_2 = \frac{a_1}{2} \\\\a_2 = \frac{1}{2} a_1[/tex]

a₂ = 0.5a₁

Therefore, the centripetal acceleration changed by a factor of 0.5

define limitations in the operation conditions of a pn junction

Answers

Answer:

Such limitations are given below.

Explanation:

Each pn junction provides limited measurements of maximum forwarding current, highest possible inversion voltage as well as the maximum output level.If controlled within certain adsorption conditions, the pn junction could very well offer satisfying performance. In connector operation, the maximum inversion voltage seems to be of significant importance.

Kinetic energy is the energy an object has due to its

Answers

The kinetic energy of an object is the energy it has because of its motion. ... When we double the mass, we double the energy; however, when we double the velocity, energy increases by a factor of four.

Kinetic energy is the energy an object has due to its Motion.

Kinetic energy is a characteristic of a moving particle. It is a type of energy that a matter or particle possesses due to its motion.

It is expressed:

[tex]K_E = \frac{1}{2}mv^2[/tex]

Where m is the mass of the particle and v is velocity.

Hence, Kinetic energy is the energy an object has due to its Motion.

Learn more: https://brainly.com/question/999862

6a. A special lamp can produce UV radiation. Which two statements
describe the electromagnetic waves emitted by a UV lamp? *
They have a higher frequency than X-rays.
They have the same wave speed as visible light
They have a longer wavelength than microwaves.
They have a lower frequency than gamma rays.
They have a greater wave speed than radio waves.

Answers

Answer:

The correct options are:

B) They have the same wave speed as visible light

D) They have a lower frequency than gamma rays.

Explanation:

B) Ultraviolet rays, commonly known as UV rays, are a type of electromagnetic ways. As electromagnetic waves, in the layman's term, are all kinds of life that can be identified, all electromagnetic waves (UV rays, visible light, infrared, radio etc) all travel with the same velocity, that is the speed of light, given as v = 3 × 10⁸ m/s

D) The frequency of all electromagnetic rays can be found by electromagnetic spectrum (picture attached below).

We can clearly see in the picture that the frequencies of UV rays lie at about 10¹⁵ - 10¹⁶ Hz which is lower than the frequency of Gamma ray, which lie at about 10²⁰ Hz.

In an engine, a piston oscillates with simple harmonic motion so that its position varies according to the expression, x = 8.00 cos 5t + π 8 where x is in centimeters and t is in seconds. (a) At t = 0, find the position of the piston. cm (b) At t = 0, find velocity of the piston. cm/s (c) At t = 0, find acceleration of the piston. cm/s2 (d) Find the period and amplitude of the motion. period s amplitude cm

Answers

Question:

In an engine, a piston oscillates with simple harmonic motion so that its position varies according to the expression, x = 8.00 cos (5t + π / 8) where x is in centimeters and t is in seconds. (a) At t = 0, find the position of the piston. cm (b) At t = 0, find velocity of the piston. cm/s (c) At t = 0, find acceleration of the piston. cm/s2 (d) Find the period and amplitude of the motion. period s amplitude cm

Answer:

(a) 7.392cm

(b) -15.32 cm/s

(c) -184cm/s²

(d) 0.4πs and 8.00cm

Explanation:

The general equation of a simple harmonic motion (SHM) is given by;

x(t) = A cos (wt + Φ)        --------------(i)

Where;

x(t) = position of the body at a given time t

A =  amplitude or maximum displacement during oscillation

w = angular velocity

t = time

Φ = phase constant.

Given from question:

x(t) = 8.00 cos (5t + π / 8)         ---------------(ii)

(a) At time t = 0;

The position, x(t), of the body (piston) is given by substituting the value of t = 0 into equation (ii) as follows;

x(0) = 8.00 cos (5(0) + π / 8)

x(0) = 8.00 cos (π /8)

x(0) = 8.00 x 0.924

x(0) = 7.392 cm

Therefore, the position of the piston at time t = 0 is 7.392cm

(b) To get the velocity, v(t), of the piston at t = 0, first differentiate equation (ii) with respect to t as follows;

v(t) = [tex]\frac{dx(t)}{dt}[/tex]

v(t) = [tex]\frac{d(8.00cos(5t + \pi / 8 ))}{dt}[/tex]

v(t) = 8 (-5 sin (5t + π / 8))

v(t) = -40sin(5t + π / 8)     --------------------(iii)

Now, substitute t=0 into the equation as follows;

v(0) = -40 sin(5(0) + π / 8)

v(0) = -40 sin(π / 8)

v(0) = -40 x 0.383

v(0) = -15.32 cm/s

Therefore, the velocity of the piston at time t = 0 is -15.32 cm/s

(c) To find the acceleration a(t) of the piston at t = 0, first differentiate equation (iii), which is the velocity equation, with respect to t as follows;

a(t) = [tex]\frac{dv(t)}{dt}[/tex]

a(t) = [tex]\frac{d(-40sin (5t + \pi /8))}{dt}[/tex]

a(t) = -200 cos (5t + π / 8)

Now, substitute t = 0 into the equation as follows;

a(0) = -200 cos (5(0) + π / 8)

a(0) = -200 cos (π / 8)

a(0) = -200 x 0.924

a(0) = -184.8 cm/s²

Therefore, the acceleration of the piston at time t = 0 is -184cm/s²

(d) To find the period, T, first, let's compare equations (i) and (ii) as follows;

x(t) = A cos (wt + Φ)                   --------------(i)

x(t) = 8.00 cos (5t + π / 8)         ---------------(ii)

From these equations it can be deduced that;

Amplitude, A = 8.00cm

Angular velocity, w = 5 rads/s

But;

w = [tex]\frac{2\pi }{T}[/tex]           [Where T = period of oscillation]

=> T = [tex]\frac{2\pi }{w}[/tex]

=> T = [tex]\frac{2\pi }{5}[/tex]

=> T = 0.4π s

Therefore, the period and amplitude of the piston's motion are respectively 0.4πs and 8.00cm

Other Questions
ANY QUOTATIONS NEEDED?? 1. Mr. Guerra explained that the story Luke Baldwins Vow deals with conflicts in values. 2. Kims report, which she titled The Wit of Oscar Wilde, includes quotations from the short story The Happy Prince. 3. I think Words to Live By would be an excellent title for our song. 4. Next, read the chapter titled Talk of the Town. 5. My little brother wrote a song; he calls it Springtime in the Mountains. 6. Walt Whitmans poem When Lilacs Last in the Dooryard Bloomd is a tribute to Abraham Lincoln. 7. Have you read the story All Summer in a Day? 8. Mr. Torres has assigned the next chapter, The Gilded Age, for Monday. The Ball Corporation's beverage can manufacturing plant in Fort Atkinson, Wisconsin, uses a metal supplier that provides metal with a known thickness standard deviation = .000586 mm. Assume a random sample of 59 sheets of metal resulted in an x = .2905 mm. Calculate the 95 percent confidence interval for the true mean metal thickness. Please Help...Anyone? I am revising for a test tomorrow, so please explain how you get the answer, too.. The ratios of the ages of Sunil and his Wife is 4:3. After 4 years, the ratio will be 9:7. What is the present age of Sunil Its a square triangle with a side length leading from the top which is B down to the little square inside the triangle which is C and A is the sharp tip of the triangle A TO B IS 11CM AND B TO C IS 4 CM QUESTION= WHAT IS THE LENGTH AC With practical illustrations, discuss the assertion that The development of social norms, values and the issue of culture provide the framework for human relations at the organizational level. HELP! WILL GIVE BRAINLIEST! The school aims to raise a minimum of $5,250 after paying for all the expenses. If the school collects $50 per guest and chooses a venue that can seat not more than 150 guests, what is the minimum number of children that must attend the event? PLEASE HELP!!!!! In which type of linear perspective does an artist generate complete views by using lines that converge horizontally, as well as vertically? A. one-point perspective B. two-point perspective C. three-point perspective D. four-point perspective E. zero-point perspective Which statement accurately analyzes how federalism has changed overtime in the United States two angles of a triangle measure 32 degrees and 62 degrees what is the measure of the third angle? A) 76 degrees B) 86 degrees C) 94 degrees D) 96 degrees To promote the growth of vegetation, Aborigines __________. A. used fire to do controlled burns B. developed new types of fertilizer C. practiced animism D. let sheep graze only in certain areasPLEASE HELP A student was given the following diagram and asked to prove that ac=xc. What would be the reason for the second step in the proof? A circle with radius of \greenD{2\,\text{cm}}2cmstart color #1fab54, 2, start text, c, m, end text, end color #1fab54 sits inside a \blueD{11\,\text{cm} \times 12\,\text{cm}}11cm12cmstart color #11accd, 11, start text, c, m, end text, times, 12, start text, c, m, end text, end color #11accd rectangle. What is the area of the shaded region? Round your final answer to the nearest hundredth. Calcula el volumen, en centmetros cbicos, de una habitacin que tiene 5 m de largo, 4 m de ancho y 2.5 m de alto. BRAINLIEST!!!! Suppose 40 bikes stand near a playground. Some of them are bicycles, some of them are tricycles, and two of them have four wheels. John counts all the wheels and gets 100, in total. How many tricycles are there? A Production Facility has produced 515,000 products and would like to allocate these products to their customers. Given the following requested customer demand, calculate how much of the EXCESS product should be sent to Customer 1. Customer 1 Demand 115,000 Customer 2 Demand 110,000 Customer 3 Demand - 95,000 Customer 4 Demand - 170,000 Customer 5 Demande 10.000 A. 2.300 B. 400.000 C. 25.000 D. 3,450 E. 15.000 in basketball ____is the infraction committed when a player picks up their dribble, then attempts to dribble the ball again down the court.A. Double Dribble B. TravelingC. Moving Pick Read the following paragraph to infer what happened between the events. A. Jane and her father went fishing. They fished all day. B. Later, they returned home, tired and hungry. Mother could read the disappointment on their faces. What do you think happened between Event A and Event B? The half-wave rectifier below is operating at a frequency of 60 Hz, and the rms value of the transformer output voltage is 6.3 V. (a) What is the value of the dc output voltage VO if the diode voltage drop is 1 V? (b) What is the minimum value of C required to maintain the ripple voltage to less than 0.25 V if R = 0.5? Mr. Avogadro started with 5.14x1022 atoms of Pa-234. Ten days later Mr. Avogadro calculated the original sample had only 6.43 X 1021 atoms of Pa-234. What s the half life of Pa-234?