Answer:
Explanation:
A) Vair = 1.3 L
B) Volume is not reasonable
Explanation:
A)
Assume
m to be total mass of the man
mp be the mass of the man that pulled out of the water
m1 be the mass above the water with the empty lung
m2 be the mass above the water with full lung
wp be the weight that the buoyant force opposes as a result of the air.
Va be the volume of air inside man's lungs
Fb be the buoyant force due to the air in the lung
given;
m = 78.5 kg
m1 = 3.2% × 78.5 = 2.5 kg
m2 = 4.85% × 78.5 = 3.8kg
But, mp = m2- m1
mp = 3.8 - 2.5
mp = 1.3kg
So using
Archimedes principle, the relation for formula for buoyant force as;
Fb = (m_displaced water)g = (ρ_water × V_air × g)
Where ρ_water is density of water = 1000 kg/m³
Thus;
Fb = wp = 1.3× 9.81
Fb = 12.7N
But
Fb = (ρ_water × V_air × g)
So
Vair = Fb/(ρ_water × × g)
Vair = 12.7/(1000 × 9.81)
V_air = 1.3 × 10^(-3) m³
convert to litres
1 m³ = 1000 L
Thus;
V_air = 1.3× 10^(-3) × 1000
V_air = 1.3 L
But since the average lung capacity of an adult human being is about 6-7litres of air.
Thus, the calculated lung volume is not reasonable
Explanation:
Question 5 of 25
Which of the following means that a mirror is convex?
A. +d;
B. -d;
O C. +f
O D. -f
The sign that represents a convex mirror is +f (option C). Details about convex mirror can be found below.
What is a convex mirror?A convex mirror is that which is curved or bowed outward like the outside of a bowl or sphere or circle.
The focal length is the distance at which a lens or mirror is in focus. The focal length (f) is usually positive (+) for a convex mirror.
Therefore, the sign that represents a convex mirror is +f.
Learn more about convex mirror at: https://brainly.com/question/3627454
#SPJ1
Which of the following exhibit the Tyndall Effect?
A flashlight beam through air in a room.
A laser beam through salt water.
Car headlights on a foggy night.
A laser beam through a soda drink.
Answer:
Probably all but (a)
The Tyndall Effect is caused by dispersion of the incident light by the individual molecules in the liquid.
Salt water and a foggy night will cause dispersion of the incident light.
A soda drink may also cause this dispersion, but and not sure.
IMPORTANT ANSWER ALL 3 PLEASE!
Answer:
4. Liters
5. Celsius
6. Grams
Which one of the following lists gives the correct order of the electromagnetic spectrum from low to high frequencies?
A) radio waves, infrared, microwaves, ultraviolet, visible, x-rays, gamma rays
B) radio waves, ultraviolet, x-rays, microwaves, infrared, visible, gamma rays
C) radio waves, microwaves, infrared, visible, ultraviolet, x-rays, gamma rays
D) radio waves, microwaves, visible, x-rays, infrared, ultraviolet, gamma rays
E) radio waves, infrared, x-rays, microwaves, ultraviolet, visible, gamma rays
Answer:
C) radio waves, microwaves, infrared, visible, ultraviolet, x-rays, gamma rays
Explanation:
radio waves have lowest energy , lowest frequency and highest wavelength
gamma rays have highest energy , highest frequency and least wavelength
Answer: C
Explanation:
An astronaut is traveling in a space vehicle that has a speed of 0.480c relative to Earth. The astronaut measures his pulse rate at 78.5 per minute. Signals generated by the astronaut's pulse are radioed to Earth when the vehicle is moving perpendicularly to a line that connects the vehicle with an Earth observer. (Due to vehicle's path there will be no Doppler shift in the signal.)
(a) What pulse rate does the Earth-based observer measure? beats/min
(b) What would be the pulse rate if the speed of the space vehicle were increased to 0.940c?
beats/min
Explanation:
The heart rate of the astronaut is 78.5 beats per minute, which means that the time between heart beats is 0.0127 min. This will be the time t measured by the moving observer. The time t' measured by the stationary Earth-based observer is given by
[tex]t' = \dfrac{t}{\sqrt{1 - \left(\dfrac{v^2}{c^2}\right)}}[/tex]
a) If the astronaut is moving at 0.480c, the time t' is
[tex]t' = \dfrac{0.0127\:\text{min}}{\sqrt{1 - \left(\dfrac{0.2304c^2}{c^2}\right)}}[/tex]
[tex]\:\:\:\:=0.0145\:\text{min}[/tex]
This means that time between his heart beats as measured by Earth-based observer is 0.0145 min, which is equivalent to 69.1 beats per minute.
b) At v = 0.940c, the time t' is
[tex]t' = \dfrac{0.0127\:\text{min}}{\sqrt{1 - \left(\dfrac{0.8836c^2}{c^2}\right)}}[/tex]
[tex]\:\:\:\:=0.0372\:\text{min}[/tex]
So at this speed, the astronaut's heart rate is 1/(0.0372 min) or 26.9 beats per minute.
A convex spherical mirror has a radius of curvature of magnitude36.0cm.
(a) Determine the position of the virtual image and the magnification for object distances of25.0cm. Indicate the location of the image with the sign of your answer.
image location =cm
magnification =
(b) Determine the position of the virtual image and the magnification for object distances of47.0cm. Indicate the location of the image with the sign of your answer.
image location =cm
magnification =
(c) Are the images in parts (a) and (b) upright or inverted?
The image in part (a) is---Select---uprightinverted
The image in part (b) is---Select---uprightinverted
Answer:
Explanation:
a )
focal length of convex spherical mirror
f = 36/2 cm = 18 cm
object distance u = - 25 cm
mirror formula
[tex]\frac{1}{v} + \frac{1}{u} = \frac{1}{f}[/tex]
[tex]\frac{1}{v} + \frac{1}{- 25} = \frac{1}{18}[/tex]
[tex]\frac{1}{v} = \frac{1}{25} + \frac{1}{18}[/tex]
v = 6.28 cm .
It is positive hence the image will be erect / upright and formed on the back of the mirror.
For object distance of 47 cm
u = - 47 cm
Putting the values in the mirror formula
[tex]\frac{1}{v} + \frac{1}{- 47} = \frac{1}{18}[/tex]
[tex]\frac{1}{v} = \frac{1}{ 47} + \frac{1}{18}[/tex]
v = 13 cm
It is positive hence the image will be erect / upright and formed on the back of the mirror.
A block of mass M rests on a block of mass M1 which is on a tabletop. A light string passes over a frictionless peg and connects the blocks. The coefficient of kinetic friction between the blocks and between M1 and the tabletop is the same. A force F pulls the upper block to the left and the lower block to the right. The blocks are moving at a constant speed.
Determine the mass of the upper block. (Express your answer to three significant figures.)
Answer:
M = F/3μ g - M₁/3
Explanation:
To solve this exercise we must use the equilibrium conditions translations
∑ F = 0
In the attachment we can see a free body diagram of each block
Block M (upper)
X axis
fr₁ + F₂ -F = 0
F = fr₁ + F₂ (1)
axis
N₁-W = 0
N₁ = Mg
the friction force has the formula
fr₁ = μ N₁
F = μ Mg + F₂
bottom block
X axis
F₂ - fr₁ - fr₂ = 0
F₂ = fr₁ + fr₂
Y axis
N - W₁ -W = 0
N = g (M + M₁)
we substitute
F₂ = μ Mg + μ (M + M1) g
F₂ = μ g (2M + M₁)
we substitute in 1
F = μ M g + μ g (2M + M₁)
F = μ g (3M + M₁)
we look for mass M
M = (F - μ g M₁)/ 3μ g
M = F/3μ g - M₁/3
the exercise does not have numerical data
A charged particle moving through a magnetic field at right angles to the field with a speed of 25.7 m/s experiences a magnetic force of 2.98 10-4 N. Determine the magnetic force on an identical particle when it travels through the same magnetic field with a speed of 4.64 m/s at an angle of 29.2° relative to the magnetic field.
Answer:
The magnetic force would be:
[tex]F\approx 2.625\,\,10^{-5}\,\,N[/tex]
Explanation:
Recall that the magnetic force on a charged particle (of charge q) moving with velocity (v) in a magnetic field B, is given by the vector product:
F = q v x B
(where the bold represents vectors)
the vector product involves the sine of the angle ([tex]\theta[/tex]) between the vectors, so we can write the relationship between the magnitudes of these quantities as:
[tex]F=q\,v\,B\,sin(\theta)[/tex]
Therefore replacing the known quantities for the first case:
[tex]F=q\,v\,B\,sin(\theta)\\2.98\,\,10^{-4} \,\,N=q\,(25.7\,\,m/s)\,B\,sin(90^o)\\2.98\,\,10^{-4} \,\,N=q\,(25.7\,\,m/s)\,B\\q\,\,B=\frac{2.98\,\,10^{-4} }{25.7} \,\frac{N\,\,s}{m}[/tex]
Now, for the second case, we can find the force by using this expression for the product of the particle's charge times the magnetic field, and the new velocity and angle:
[tex]F=q\,v\,B\,sin(\theta)\\F=q\,(4.64\,\,m/s)\,B\,sin(29.2^o)\\F=q\,B(4.64\,\,m/s)\,\,sin(29.2^o)\\F=\frac{2.98\,\,10^{-4} }{25.7} \,(4.64\,\,m/s)\,\,sin(29.2^o)\\F\approx 2.625\,\,10^{-5}\,\,N[/tex]
Sammy is 5 feet and 5.3 inches tall. What is Sammy's height in inches?
Answer:
[tex]\boxed{\sf 65.3 \ inches}[/tex]
Explanation:
1 foot = 12 inches
Sammy is 5 feet tall.
5 feet = ? inches
Multiply the feet value by 12 to find in inches.
5 × 12
= 60
Add 5.3 inches to 60 inches.
60 + 5.3
= 65.3
An average sleeping person metabolizes at a rate of about 80 W by digesting food or burning fat. Typically, 20% of this energy goes into bodily functions, such as cell repair, pumping blood, and other uses of mechanical energy, while the rest goes to heat. Most people get rid of all this excess heat by transferring it (by conduction and the flow of blood) to the surface of the body, where it is radiated away. The normal internal temperature of the body (where the metabolism takes place) is 37∘C37 ∘ C, and the skin is typically 7C∘7C ∘ cooler. By how much does the person’s entropy change per second due to this heat transfer?
Answer:
-4.7 x 10^-3 J/K-s
Explanation:
The Power generated by metabolizing food = 80 W
The watt W is equivalent to the Joules per sec J/s
therefor power = 80 J/s
20% of this energy is not used for heating, amount available for heating is
==> H = 80% of 80 = 0.8 x 80 = 64 J/s
The inner body temperature = 37 °C = 273 + 37 = 310 K
The entropy of this inner body ΔS = ΔH/T
ΔS = 64/310 = 0.2065 J/K-s
The skin temperature is cooler than the inner body by 7 °C
Temperature of the skin = 37 - 7 = 30 °C = 273 + 30 = 303 K
The entropy of the skin = ΔS = ΔH/T
ΔS = 64/303 = 0.2112 J/K-s
change in entropy of the person's body = (entropy of hot region: inner body) - (entropy of cooler region: skin)
==> 0.2065 - 0.2112 = -4.7 x 10^-3 J/K-s
If you stood on a planet having a mass four times higher than Earth's mass, and a radius two times 70) lon longer than Earth's radius, you would weigh:________
A) four times more than you do on Earth.
B) two times less than you do on Earth.
C) the same as you do on Earth
D) two times more than you do on Earth.
CHECK COMPLETE QUESTION BELOW
you stood on a planet having a mass four times that of earth mass and a radius two times of earth radius , you would weigh?
A) four times more than you do on Earth.
B) two times less than you do on Earth.
C) the same as you do on Earth
D) two times more than you do on Earth
Answer:
OPTION C is correct
The same as you do on Earth
Explanation :
According to law of gravitation :
F=GMm/R^2......(a)
F= mg.....(b)
M= mass of earth
m = mass of the person
R = radius of the earth
From law of motion
Put equation b into equation a
mg=GMm/R^2
g=GMm/R^2
g=GM/R^2
We know from question a planet having a mass four times that of earth mass and a radius two times of earth radius if we substitute we have
m= 4M
r=(2R)^2=4R^2
g= G4M/4R^2
Then, 4in the denominator will cancel out the numerator we have
g= GM/R^2
Therefore, g remain the same
A mother and her young child want to play on a seesaw at a playground. The child sits on the end of one side of the seesaw. Where should the mother sit to balance the seesaw?(1 point) at the opposite side of the seesaw on the end at the opposite side of the seesaw towards the middle on the same side of the seesaw towards the middle on the same end as her child
Answer:middle
Explanation:
Because it will make the seasaw balanced
A 120-V rms voltage at 60.0 Hz is applied across an inductor, a capacitor, and a resistor in series. If the peak current in this circuit is 0.8484 A, what is the impedance of this circuit?
A) 200 Ω
B) 141 Ω
C) 20.4 Ω
D) 120 Ω
E) 100 Ω
Answer:A 200
Explanation:
Vp=1.41*Vrms
Vp=169.7 v
Z=Vp/Ip
Z=169.7/.8484
Z=200.03 ohm
Luz, who is skydiving, is traveling at terminal velocity with her body parallel to the ground. She then changes her body position to feet first toward the ground. What happens to her motion? She will continue to fall at the same terminal velocity because gravity has not changed. She will slow down because the air resistance will increase and be greater than gravity. She will speed up because air resistance will decrease and be less than gravity. She will begin to fall in free fall because she will have no air resistance acting on her.
Answer:
Option C - she will speed up because air resistance has reduced and be less than gravity
Explanation:
We are told that Luz is skydiving with terminal velocity and her body parallel to the ground. Now, at this point she will be experiencing a gravitational force acting downwards, and also air resistance as a result of the drag force on her body
Since the downward gravitational force on Luz is constant, she will fall with a net force of;
F_net = F_g - F_d
where;
F_net is the net force on Luz acting downwards
F_g is the gravitational force on Luz
F_d is the drag force on Luz
The drag force on her body is proportional to the surface area of attack.
We are now told that Luz changes her body position to feet first toward the ground. This means that the surface area of attack is reduced because the feet will consume less space than the frontal part of her body. Thus, the drag force will be lesser then before she changed her body position due to reduced air resistance on her body.
Now, from earlier, we saw that;
F_net = F_g - F_d
So, the lesser F_d is, the higher F_net becomes.
Thus, she will speed up because air resistance has reduced and be less than gravity.
Answer:
C
Explanation:
EDGE 2020
Reading glasses with a power of 1.50 diopters make reading a book comfortable for you when you wear them 1.8 cmcm from your eye. Part A If you hold the book 28.0 cmcm from your eye, what is your nearpoint distance
Answer:
The near point is [tex]n =44.8 \ cm[/tex]
Explanation:
From the question we are told that
The power is [tex]P = 1.50[/tex]
The distance from the eye is [tex]k = 1.8 \ cm[/tex]
The distance of the book from the eye is [tex]z = -28 \ cm[/tex]
Generally the focal length of the glasses is
[tex]f = \frac{1}{P}[/tex]
=> [tex]f = \frac{1}{1.50 }[/tex]
=> [tex]f = 0.667 \ m[/tex]
=> [tex]f = 66.7 \ cm[/tex]
The object distance is evaluated as
[tex]u = z + k[/tex]
=> [tex]u = -28 + 1.8[/tex]
=> [tex]u = -26.2 \ cm[/tex]
The image distance is evaluated from lens formula as
[tex]\frac{1}{v} = \frac{1}{f} + \frac{1}{u}[/tex]
=> [tex]\frac{1}{v} = \frac{1}{66.7} + \frac{1}{-26.2}[/tex]
=> [tex]v=- \frac{1}{0.0232}[/tex]
=> [tex]v=- 43 \ cm[/tex]
The near point is evaluated as
[tex]n = -v + k[/tex]
=> [tex]n =-(-43) + 1.8[/tex]
=> [tex]n =44.8 \ cm[/tex]
What is temperature?
O A. The force exerted on an area
B. A measure of mass per unit volume
O C. The net energy transferred between two objects
OD. A measure of the movement of atoms or molecules within an
object
Answer:
The net energy transferred between two objects
Explanation:
The physical property of matter that expresses hot or cold is called temperature. It demonstrates the thermal energy. A thermometer is used to measure temperature. It defines the rate to which the chemical reaction occurs. It tells about the thermal radiation emitted from an object.
The correct option that defines temperature is option C.
Answer:
A measure of the movement of atoms or molecules within an object
Explanation:
Process of elimination
If there is no slipping, a frictional force must exist between the wheels and the ground. In what direction does the frictional force from the ground on the wheels act
Answer:
tire advances to the right, the friction force must be directed to the left, that is, opposing the possible movement of the tire.
Explanation:
For the movement of the wheel to be composed of a rotating part and a translational part, it is necessary that there be a static friction force between the floor and the tire.
As the tire advances to the right, the friction force must be directed to the left, that is, opposing the possible movement of the tire.
At what minimum angle will you get total internal reflection of light traveling in diamond and reflected from ethanol? °
Answer:
34°
Using the relation
θᶜ = sin^-1(n₂/n₁),
where n1= the refractive index of light is propagating from a medium
And n2 = refractive index of medium into which light is entering
So we know that
refractive index of diamond at 589nm = 2.41= n₁
refractive index of ethanol at 589nm and 20°C = 1.36= n₂
Thus. θᶜ = sin^-1(1.361/2.417) = 0.58radians = 34°
Explanation:
We've seen that for thermal radiation, the energy is of the form AVT4, where A is a universal constant, V is volume, and T is temperature. 1) The heat capacity CV also is proportional to a power of T, Tx. What is x
Answer:
this raise the temperature is x = 3
Explanation:
Heat capacity is the relationship between heat and temperature change
C = Q / ΔT
if the heat in the system is given by the change in energy and we carry this differential formulas
[tex]c_{v}[/tex] = dE / dT
In this problem we are told that the energy of thermal radiation is
E = A V T⁴
Let's look for the specific heat
c_{v} = AV 4 T³
the power to which this raise the temperature is x = 3
An electron moves through a uniform electric field E = (2.60i + 5.90j) V/m and a uniform magnetic field B= 0.400k in m/s^2.) T.
Required:
a. Determine the acceleration of the electron when it has a velocity v= 8.0i m/s.
b. What If? For the electron moving along the x-axis in the fields in part (a), what speed (in m/s) would result in the electron also experiencing an acceleration directed along the x-axis?
A) The acceleration of the electron along the x -axis is ; 4.57 * 10⁻¹¹ m /s²
B) The speed that would result in the electron experiencing an acceleration along the x-axis is 4.57 * 10⁻¹¹ * time m/s
Given Data :
Electric field ( E ) = ( 2.60i + 5.90j ) V/m
Magnetic field ( B ) = 0.400 k T
Velocity ( v ) = 8.0i m/s
A) Determine the acceleration of the electronApplying Lorentz force
F = q ( E + ( v * B ) )
= 1.6 * 10⁻¹⁹ ( 2.60 i + 5.90 j + ( 8.0 i * 0.4 k ) ) N
= 1.6 * 10⁻¹⁹ ( 2.60 i + 5.90 j + ( 3.2 ( -j ) ) N
= 1.6 * 10⁻¹⁹ ( 2.60 i + 2.70 j ) N
Ax = 4.57 * 10⁻¹¹ m /s²
B) The speed of the electron moving along the x-axisAx = Fx / Mc
= ( 1.6 * 10⁻¹⁹ * 2.60 ) / 9.1 * 10⁻³¹
= ( 4.16 * 10⁻¹⁹ ) / 9.1 * 10⁻³¹
= 0.457 * 10¹²
= 4.57 * 10⁻¹¹ m /s²
Therefore The speed that would result in the electron experiencing an acceleration along the x-axis is 4.57 * 10⁻¹¹ * time
Learn more about acceleration of an electron: https://brainly.com/question/15585270
48. A patient presents with a thrombosis in
the popliteal vein. This thrombosis most likely
causes reduction of blood flow in which of the
following veins?
Answer:
the interation blood veins
Explanation:
Match the following properties to the type of wave.
Answer:
hi there
Explanation:
1 - III
2- 1
3-1
HOPE IT HELP YOU
PLz mark me as a BRAINLIST
Explanation:
1 . 3
2. 1
3. 2
I hope it is helpful to you.
write any two physical hazard occuring in the late choldhood
Answer:
Hazards during late childhood
Health Problems: Chronic health ailments like T.B., Pneumonia etc will hinder the child's motor abilities.Accidents: School age children are more adventurous in nature, they run fast, play hard, ride bicycles and scooters and engage in a variety of sports.A loop of wire is at the edge of a region of space containing a uniform magnetic field B. The plane of the loop is perpendicular to the magnetic field. Now the loop is pulled out of this region in such a way that the area A of the coil inside the magnetic field region is decreasing at the constant rate c. That is, dA/dt=−c, with c>0.Required:a. The induced emf in the loop is measuredto be V. What is the magnitude B of the magnetic field that the loop was in?b. For the case of a square loop of sidelength L being pulled out of the magneticfield with constant speed v, What is the rate of change of area c= -dA/dt
Answer:
The question is not clear enough. So i have attached a copy of the correct question.
A) B = V/c
B) c = Lv
Explanation:
A) we know that formula for magnetic flux is;
Φ = BA
Where B is magnetic field and A is area
Now,
Let's differentiate with B being a constant;
dΦ/dt = B•dA/dt
From faradays law, the EMF induced is given as;
E = -dΦ/dt
However, we want to express it in terms of V and E.M.F is also known as potential difference or Voltage.
Thus, V = -dΦ/dt
Thus, we can now say that;
-V = B•dA/dt
Now from the question, we are told that dA/dt = - c
Thus;
-V = B•-c
So, V = Bc
Thus, B = V/c
B) according to Faraday's Law or Lorentz Force Law, an electromotive force, emf, will be induced between the two ends of the sidelength:
Thus;
E =LvB or can be written as; V = LvB
Where;
V is EMF
L is length of bar
v is velocity
From the first solution, we saw that;
V = Bc
Thus, equating both of the equations, we have;
Bc = LvB
B will cancel out to give;
c = Lv
Explanation:
A belt is run over two drums. The larger drum has weight 4 lbs and a radius of gyration of 1.25 inches while the smaller drum has weight 2.7 lbs and a radius of gyration of 0.75 inches. The tension from the smaller drum is held constant at 6 lbs. If it is known that the speed of the belt is 11 ft/s after 0.16 s, what is the tension between the drums?
Answer:
269 lb
Explanation:
We first find the tangential acceleration, a on the drums
a = Δv/Δt since the speed of the belt is 11 ft/s after 0.16 s, Δv = 11 ft/s and Δt = 0.16 s
a = Δv/Δt = 11 ft/s ÷ 0.16 s = 68.75 ft/s²
Since torque τ = Tk = Iα where I = moment of inertia of larger drum = Mk² where m = mass of larger drum = 4 lbs, k = radius of gyration of larger drum = 1.25 inches, T = tension due to larger drum and α = angular acceleration of larger drum.
So, T = Iα/k = Mk²α/k = Mαk = Ma (since a = αk )
T = 4 lbs × 68.75 ft/s² = 275 lb
The tension due to the smaller drum is T' = 6 lb .
So the net tension in the belt is T'' = T - T' = 275 lb - 6 lb = 269 lb
If the x-position of a particle is measured with an uncertainty of 1.00×10-10 m, then what is the uncertainty of the momentum in this same direction? (Useful constant: h-bar = 1.05×10-34 Js.)
Answer:
The uncertainty in momentum is 5.25x 10^25Jsm
Explanation:
We know that
h bar = h/2π
So
1.05x 10^34=h/2pπ
h=1.05x 10^ 34(2π)=6.597x 10^-34Js
dp=(6.597x10^-34/4pπ)/(1x10^-10)
=5.25x10^-25 Jsm
A 750 gram grinding wheel 25.0 cm in diameter is in the shape of a uniform solid disk. (we can ignore the small hole at the center). when it is in use, it turns at a consant 220 rpm about an axle perpendicular to its face through its center. When the power switch is turned off, you observe that the wheel stops in 45.0 s with constant angular acceleration due to friction at the axle. What torque does friction exert while this wheel is slowing down?
Answer:
Torque = 0.012 N.m
Explanation:
We are given;
Mass of wheel;m = 750 g = 0.75 kg
Radius of wheel;r = 25 cm = 0.25 m
Final angular velocity; ω_f = 0
Initial angular velocity; ω_i = 220 rpm
Time taken;t = 45 seconds
Converting 220 rpm to rad/s we have;
220 × 2π/60 = 22π/3 rad/s
Equation of rotational motion is;
ω_f = ω_i + αt
Where α is angular acceleration
Making α the subject, we have;
α = (ω_f - ω_i)/t
α = (0 - 22π/3)/45
α = -0.512 rad/s²
The formula for the Moment of inertia is given as;
I = ½mr²
I = (1/2) × 0.75 × 0.25²
I = 0.0234375 kg.m²
Formula for torque is;
Torque = Iα
For α, we will take the absolute value as the negative sign denotes decrease in acceleration.
Thus;
Torque = 0.0234375 × 0.512
Torque = 0.012 N.m
A man on top of a tall building 60m high projects a body vertically upwards with an initial velocity of 20m/s
(1) find the maximum height above the ground reached by the body.
(2) the velocity with which the body hits the ground.
Answer:
1) 65 m
2) 40 m/s downward
Explanation:
Using for both questions the kinematic equation
v² = u² + 2as
and ignoring air resistance.
1) h = 60 + √(20²/(2(9.8))) = 64.51753...
2) v = √(20² + 2(9.8)(60)) = 39.69886...
Seismic attenuation and how spherical spreading affect amplitude, can anyone explain this please!
Answer:
Hey there!
This can be a confusing topic, so it's totally fine if you get confused...
First, Seismic Attenuation is how seismic waves lose energy as they expand and spread.
Secondly, when distance increases, amplitude decreases. This is because the distance (spherical spreading would mean radius) is inversely proportional to amplitude.
Let me know if this helps :)
Please help!
Much appreciated!
Answer:
F = 2.7×10¯⁶ N.
Explanation:
From the question given:
F = (9×10⁹ Nm/C²) (3.2×10¯⁹ C × 9.6×10¯⁹ C) /(0.32)²
Thus we can obtain the value value of F by carrying the operation as follow:
F = (9×10⁹) (3.2×10¯⁹ × 9.6×10¯⁹) /(0.32)²
F = 2.7648×10¯⁷ / 0.1024
F = 2.7×10¯⁶ N.
Therefore, the value of F is 2.7×10¯⁶ N.