A 5.78μC and a −3.58μC charge are placed 200 Part A cm apart.
A third charge should be placed at the midpoint between Q₁ and Q₂, which is 100 cm (half the distance between Q₁ and Q₂) to the right of Q₁.
[Hint Assume that the negative charge is 20.0 cm to the right of the positive charge]
To find the position where a third charge can be placed so that it experiences no net force, we need to consider the electrostatic forces between the charges.
The situation using Coulomb's Law, which states that the force between two point charges is proportional to the product of their charges and inversely proportional to the square of the distance between them.
Charge 1 (Q₁) = 5.78 μC
Charge 2 (Q₂) = -3.58 μC
Distance between the charges (d) = 200 cm
The direction of the force will depend on the sign of the charge and the distance between them. Positive charges repel each other, while opposite charges attract.
Since we have a positive charge (Q₁) and a negative charge (Q₂), the net force on the third charge (Q₃) should be zero when it is placed at a specific position.
The negative charge (Q₂) is 20.0 cm to the right of the positive charge (Q₁). Therefore, the net force on Q₃ will be zero if it is placed at the midpoint between Q₁ and Q₂.
Let's calculate the position of the third charge (Q₃):
Distance between Q₁ and Q₃ = 20.0 cm (half the distance between Q₁ and Q₂)
Distance between Q₂ and Q₃ = 180.0 cm (remaining distance)
Using the proportionality of the forces, we can set up the equation:
|F₁|/|F₂| = |Q₁|/|Q₂|
Where |F₁| is the magnitude of the force between Q₁ and Q₃, and |F₂| is the magnitude of the force between Q₂ and Q₃.
Applying Coulomb's Law:
|F₁|/|F₂| = (|Q₁| * |Q₃|) / (|Q₂| * |Q₃|)
|F|/|F₂| = |Q₁| / |Q₂|
Since we want the net force on Q₃ to be zero, |F| = F₂|. Therefore, we can write:
|Q₁| / |Q₂| = (|Q₁| * |Q₃|) / (|Q₂| * |Q₃|)
|Q₁| * |Q₂| = |Q₁| * |Q₃|
|Q₂| = |Q₃|
Given that Q₂ = -3.58 μC, Q₃ should also be -3.58 μC.
Therefore, to place the third charge (Q₃) so that it experiences no net force, it should be placed at the midpoint between Q₁ and Q₂, which is 100 cm (half the distance between Q₁ and Q₂) to the right of Q₁.
To know more about charge here
https://brainly.com/question/13871705
#SPJ4
The distance between the two charges, 5.78μC and -3.58μC, is 200 cm.
Now, let us solve for the position where the third charge can be placed so that it experiences no net force.
Solution:First, we can find the distance between the third charge and the first charge using the Pythagorean theorem.Distance between 5.78μC and the third charge = √[(200 cm)² + (x cm)²]Distance between -3.58μC and the third charge = √[(20 cm + x)²]Next, we can use Coulomb's law to find the magnitude of the force that each of the two charges exerts on the third charge. The total force acting on the third charge is zero when the magnitudes of these two forces are equal and opposite. Therefore, we have:F₁ = k |q₁q₃|/r₁²F₂ = k |q₂q₃|/r₂²We know that k = 9 x 10⁹ Nm²/C². We can substitute the given values to find the magnitudes of F₁ and F₂.F₁ = (9 x 10⁹)(5.78 x 10⁻⁶)(q₃)/r₁²F₂ = (9 x 10⁹)(3.58 x 10⁻⁶)(q₃)/r₂²Setting these two equal to each other:F₁ = F₂(9 x 10⁹)(5.78 x 10⁻⁶)(q₃)/r₁² = (9 x 10⁹)(3.58 x 10⁻⁶)(q₃)/r₂²r₂²/r₁² = (5.78/3.58)² (220 + x)²/ x² = (33/20)² (220 + x)²/ x² 4 (220 + x)² = 9 x² 4 x² - 4 (220 + x)² = 0 x² - (220 + x)² = 0 x = ±220 cm.
Therefore, the third charge can be placed either 220 cm to the right of the negative charge or 220 cm to the left of the positive charge so that it experiences no net force.
Learn more about charges
https://brainly.com/question/28721069
#SPJ11
In a container of negligible mass, 0.380 kg of ice at an initial temperature of -36.0 ∘C is mixed with a mass m of water that has an initial temperature of 80.0∘C. No heat is lost to the surroundings.
A-
If the final temperature of the system is 29.0 ∘C∘C, what is the mass mm of the water that was initially at 80.0∘C∘C?
Express your answer with the appropriate units.
"The mass of the water that was initially at 80.0°C is 0.190 kg." The heat lost by the hot water will be equal to the heat gained by the ice, assuming no heat is lost to the surroundings.
The heat lost by the hot water can be calculated using the equation:
Q_lost = m_water * c_water * (T_final - T_initial)
Where:
m_water is the mass of the water initially at 80.0°C
c_water is the specific heat capacity of water (approximately 4.18 J/g°C)
T_final is the final temperature of the system (29.0°C)
T_initial is the initial temperature of the water (80.0°C)
The heat gained by the ice can be calculated using the equation:
Q_gained = m_ice * c_ice * (T_final - T_initial)
Where:
m_ice is the mass of the ice (0.380 kg)
c_ice is the specific heat capacity of ice (approximately 2.09 J/g°C)
T_final is the final temperature of the system (29.0°C)
T_initial is the initial temperature of the ice (-36.0°C)
Since no heat is lost to the surroundings, the heat lost by the water is equal to the heat gained by the ice. Therefore:
m_water * c_water * (T_final - T_initial) = m_ice * c_ice * (T_final - T_initial)
Now we can solve for the mass of the water, m_water:
m_water = (m_ice * c_ice * (T_final - T_initial)) / (c_water * (T_final - T_initial))
Plugging in the values:
m_water = (0.380 kg * 2.09 J/g°C * (29.0°C - (-36.0°C))) / (4.18 J/g°C * (29.0°C - 80.0°C))
m_water = (0.380 kg * 2.09 J/g°C * 65.0°C) / (4.18 J/g°C * (-51.0°C))
m_water = -5.136 kg
Since mass cannot be negative, it seems there was an error in the calculations. Let's double-check the equation. It appears that the equation cancels out the (T_final - T_initial) terms, resulting in m_water = m_ice * c_ice / c_water. Let's recalculate using this equation:
m_water = (0.380 kg * 2.09 J/g°C) / (4.18 J/g°C)
m_water = 0.190 kg
Therefore, the mass of the water that was initially at 80.0°C is 0.190 kg.
To know more about heat gain visit:
https://brainly.com/question/16055406
#SPJ11
2. A shell is fired from a cliff horizontally with initial velocity of 800 m/s at a target on the ground 150 m below. How far away is the target? ( 2 pts) 3. You are standing 50 feet from a building and throw a ball through a window that is 26 feet above the ground. Your release point is 6 feet off of the ground (hint: you are only concerned with Δ y). You throw the ball at 30ft/sec. At what angle from the horizontal should you throw the ball? (hint: this is your launch angle) (2pts)
Horizontal displacement = 4008 meters
The launch angle should be approximately 20.5°
To find how far away the target is, the horizontal displacement of the shell needs to be found.
This can be done using the formula:
horizontal displacement = initial horizontal velocity x time
The time taken for the shell to reach the ground can be found using the formula:
vertical displacement = initial vertical velocity x time + 0.5 x acceleration x time^2
Since the shell is fired horizontally, its initial vertical velocity is 0. The acceleration due to gravity is 9.8 m/s^2. The vertical displacement is -150 m (since it is below the cliff).
Using these values, we get:-150 = 0 x t + 0.5 x 9.8 x t^2
Solving for t, we get:t = 5.01 seconds
The horizontal displacement is therefore:
horizontal displacement = 800 x 5.01
horizontal displacement = 4008 meters
3. To find the launch angle, we can use the formula:
Δy = (v^2 x sin^2 θ)/2g Where Δy is the vertical displacement (26 ft), v is the initial velocity (30 ft/s), g is the acceleration due to gravity (32 ft/s^2), and θ is the launch angle.
Using these values, we get:26 = (30^2 x sin^2 θ)/2 x 32
Solving for sin^2 θ:sin^2 θ = (2 x 26 x 32)/(30^2)sin^2 θ = 0.12
Taking the square root:sin θ = 0.35θ = sin^-1 (0.35)θ = 20.5°
Therefore, the launch angle should be approximately 20.5°.
Note: The given measurements are in feet, but the calculations are done in fps (feet per second).
Learn more about horizontal displacement here https://brainly.com/question/6107697
#SPJ11
Find the velocity at the bottom of the ramp of a marble rolling down a ramp with a vertical height of 8m. Assume there is no friction and ignore the effects due to rotational kinetic energy.
Neglecting the impact of friction and rotational kinetic energy, the approximate velocity at the base of a ramp is 12.53 m/s when a marble rolls down a ramp with a vertical height of 8m.
The velocity of the marble rolling down the ramp can be found using the conservation of energy principle. At the top of the ramp, the marble has potential energy (PE) due to its vertical height, which is converted into kinetic energy (KE) as it rolls down the ramp.
Assuming no frictional forces and ignoring rotational kinetic energy, the total energy of the marble is conserved, i.e.,PE = KE. Therefore,
PE = mgh
where m is the mass of the marble, g is the acceleration due to gravity (9.81 m/s²), and h is the vertical height of the ramp (8 m).
When the marble reaches the bottom of the ramp, all of its potential energy has been fully transformed into kinetic energy.
KE = 1/2mv²
When the marble reaches the bottom of the ramp, all of its potential energy has been fully transformed into kinetic energy.
Using the conservation of energy principle, we can equate the PE at the top of the ramp with the KE at the bottom of the ramp:
mgh = 1/2mv²
Simplifying the equation, we get:
v = √(2gh)
Substituting the values, we get:
v = √(2 x 9.81 x 8) = 12.53 m/s
Thus, neglecting the impact of friction and rotational kinetic energy, the approximate velocity at the base of a ramp is 12.53 m/s when a marble rolls down a ramp with a vertical height of 8m.
Learn more about velocity at: https://brainly.com/question/80295
#SPJ11
The orbit of the moon about the carth is approximately circular, with a moun radius of 3.84 x 109 m. It takes 27.3 days for the moon to complete a revolution about the earth. Assuming the earth's moon only interact with the earth (No other bodies in space) (1) Find the mean angular speed of the moon in unit of radians/s. (2) Find the mean orbital speed of the moon in unit of m/s. 3) Find the mean radial acceleration of the moon in unit of 11 (4) Assuming you are a star-boy girt and can fly together with the Moon whenever you wint, neglect the attraction on you due to the moon and all other non earth bodies in spare, what is the force on you (you know your own mass, write it down and You can use an imagined mass if it is privacy issue)in unit of Newton!
(1) The mean angular speed of the Moon is approximately 2.66 x 10^-6 radians/s.
(2) The mean orbital speed of the Moon is approximately 1.02 x 10^3 m/s.
(3) The mean radial acceleration of the Moon is approximately 0.00274 m/s^2.
(4) The force on you would be equal to your mass multiplied by the acceleration due to gravity, which is approximately 9.81 m/s^2. Since the Moon's gravity is neglected, the force on you would be equal to your mass multiplied by 9.81 m/s^2.
1. To find the mean angular speed of the Moon, we use the formula:
Mean angular speed = (2π radians) / (time period)
Plugging in the values, we have:
Mean angular speed = (2π) / (27.3 days x 24 hours/day x 60 minutes/hour x 60 seconds/minute)
2. The mean orbital speed of the Moon can be found using the formula:
Mean orbital speed = (circumference of the orbit) / (time period)
Plugging in the values, we have:
Mean orbital speed = (2π x 3.84 x 10^9 m) / (27.3 days x 24 hours/day x 60 minutes/hour x 60 seconds/minute)
3. The mean radial acceleration of the Moon can be calculated using the formula:
Mean radial acceleration = (mean orbital speed)^2 / (radius of the orbit)
4. Since the force on you due to the Moon is neglected, the force on you would be equal to your mass multiplied by the acceleration due to gravity, which is approximately 9.81 m/s^2.
To know more about orbital speed click here:
https://brainly.com/question/12449965
#SPJ11
A converging lens is placed at x = 0, a distance d = 9.50 cm to the left of a diverging lens as in the figure below (where FC and FD locate the focal points for the converging and the diverging lens, respectively). An object is located at x = −1.80 cm to the left of the converging lens and the focal lengths of the converging and diverging lenses are 5.00 cm and −7.80 cm, respectively. HINT An illustration shows a converging lens, a diverging lens, and their respective pairs of focal points oriented such that the x-axis serves as their shared Principal axis. The converging lens is located at x = 0 and the diverging lens is a distance d to the right. A pair of focal points (both labeled FC) are shown on opposite sides of the converging lens while another pair (both labeled FD) are shown on opposite sides of the diverging lens. An arrow labeled O is located between the converging lens and the left-side FC. Between the lenses, the diverging lens's left-side FD is located between the converging lens and its right-side FC. (a) Determine the x-location in cm of the final image. Incorrect: Your answer is incorrect. cm (b) Determine its overall magnification.
a. The x-location of the final image is approximately 19.99 cm.
b. Overall Magnification_converging is -v_c/u
a. To determine the x-location of the final image formed by the combination of the converging and diverging lenses, we can use the lens formula:
1/f = 1/v - 1/u
where f is the focal length of the lens, v is the image distance, and u is the object distance.
Let's calculate the image distance formed by the converging lens:
For the converging lens:
f_c = 5.00 cm (positive focal length)
u_c = -1.80 cm (object distance)
Substituting the values into the lens formula for the converging lens:
1/5.00 = 1/v_c - 1/(-1.80)
Simplifying:
1/5.00 = 1/v_c + 1/1.80
Now, let's calculate the image distance formed by the converging lens:
1/v_c + 1/1.80 = 1/5.00
1/v_c = 1/5.00 - 1/1.80
1/v_c = (1.80 - 5.00) / (5.00 * 1.80)
1/v_c = -0.20 / 9.00
1/v_c = -0.0222
v_c = -1 / (-0.0222)
v_c ≈ 45.05 cm
The image formed by the converging lens is located at approximately 45.05 cm to the right of the converging lens.
Now, let's consider the image formed by the diverging lens:
For the diverging lens:
f_d = -7.80 cm (negative focal length)
u_d = d - v_c (object distance)
Given that d = 9.50 cm, we can calculate the object distance for the diverging lens:
u_d = 9.50 cm - 45.05 cm
u_d ≈ -35.55 cm
Substituting the values into the lens formula for the diverging lens:
1/-7.80 = 1/v_d - 1/-35.55
Simplifying:
1/-7.80 = 1/v_d + 1/35.55
Now, let's calculate the image distance formed by the diverging lens:
1/v_d + 1/35.55 = 1/-7.80
1/v_d = 1/-7.80 - 1/35.55
1/v_d = (-35.55 + 7.80) / (-7.80 * 35.55)
1/v_d = -27.75 / (-7.80 * 35.55)
1/v_d ≈ -0.0953
v_d = -1 / (-0.0953)
v_d ≈ 10.49 cm
The image formed by the diverging lens is located at approximately 10.49 cm to the right of the diverging lens.
Finally, to find the x-location of the final image, we add the distances from the diverging lens to the image formed by the diverging lens:
x_final = d + v_d
x_final = 9.50 cm + 10.49 cm
x_final ≈ 19.99 cm
Therefore, the x-location of the final image is approximately 19.99 cm.
b. To determine the overall magnification, we can calculate it as the product of the individual magnifications of the converging and diverging lenses:
Magnification = Magnification_converging * Magnification_diverging
The magnification of a lens is given by:
Magnification = -v/u
For the converging lens:
Magnification_converging = -v_c/u
Learn more about Magnification_converging from the given link
https://brainly.com/question/31740778
#SPJ11
The motion of a particle connected to a spring of spring constant k=5N/m is described by x = 10 sin (2 t). What is the potential energy of the particle in J) at t-2 s? Show your works. a. 0.125 b. 0.25 c. 0 d. 0.79 e. 1.0
The potential-energy of the particle at t = 2 s is approximately 0.79 J.
The potential energy of a particle connected to a spring can be calculated using the equation: PE = (1/2) k x^2, where PE is the potential energy, k is the spring-constant, and x is the displacement from the equilibrium position.
Given that k = 5 N/m and x = 10 sin(2t), we need to find x at t = 2 s:
x = 10 sin(2 * 2)
= 10 sin(4)
≈ 6.90 m
Substituting the values into the potential energy equation:
PE = (1/2) * 5 * (6.90)^2
≈ 0.79 J
Therefore, the potential energy of the particle at t = 2 s is approximately 0.79 J.
To learn more about potential-energy , click here : https://brainly.com/question/9349250
#SPJ11
JUNCTION RULE: (1) I 1
=I 3
+I 4
LOOP RULE: (2) LOOP I (LEFT CIRUT) V 0
−I 3
R 3
−I 3
R 2
−I 1
R 1
=0 LOOP 2 (RIGHT CIRCUT): (3) −I 4
R 4
+I 3
R 3
+I 3
R 3
=0
According to the junction rule, the current entering junction 1 is equal to the sum of the currents leaving junction 1: I1 = I3 + I4.
The junction rule, or Kirchhoff's current law, states that the total current flowing into a junction is equal to the total current flowing out of that junction. In this case, at junction 1, the current I1 is equal to the sum of the currents I3 and I4. This rule is based on the principle of charge conservation, where the total amount of charge entering a junction must be equal to the total amount of charge leaving the junction. Applying the loop rule, or Kirchhoff's voltage law, we can analyze the potential differences around the loops in the circuit. In the left circuit, traversing the loop in a clockwise direction, we encounter the potential differences V0, -I3R3, -I3R2, and -I1R1. According to the loop rule, the algebraic sum of these potential differences must be zero to satisfy the conservation of energy. This equation relates the currents I1 and I3 and the voltages across the resistors in the left circuit. Similarly, in the right circuit, traversing the loop in a clockwise direction, we encounter the potential differences -I4R4, I3R3, and I3R3. Again, the loop rule states that the sum of these potential differences must be zero, providing a relationship between the currents I3 and I4.
To learn more about Kirchhoff's current law, Click here:
https://brainly.com/question/30394835
#SPJ11
A snow maker at a resort pumps 220 kg of lake water per minute and sprays it into the air above a ski run. The water droplets freeze in the air and fall to the ground, forming a layer of snow. If all of the water pumped into the air turns to snow, and the snow cools to the ambient air temperature of -6.8°C, how much heat does the snow-making process release each minute? Assume the temperature of the lake water is 13.9°C, and use 2.00x102)/(kg-Cº) for the specific heat capacity of snow
Find the amount of heat released each minute by using the following formula:Q = m × c × ΔT
where:Q = heat energy (in Joules or J),m = mass of the substance (in kg),c = specific heat capacity of the substance (in J/(kg·°C)),ΔT = change in temperature (in °C)
First, we need to find the mass of snow produced each minute. We know that 220 kg of water is pumped into the air each minute, and assuming all of it turns to snow, the mass of snow produced will be 220 kg.
Next, we can calculate the change in temperature of the water as it cools from 13.9°C to -6.8°C:ΔT = (-6.8°C) - (13.9°C)ΔT = -20.7°C
The specific heat capacity of snow is given as 2.00x102 J/(kg·°C), so we can substitute all the values into the formula to find the amount of heat released:Q = m × c × ΔTQ = (220 kg) × (2.00x102 J/(kg·°C)) × (-20.7°C)Q = -9.11 × 106 J
The snow-making process releases about 9.11 × 106 J of heat each minute.
Learn more about heat and temperature
https://brainly.com/question/26866637
#SPJ11
Two identical point charges of q = +2.25 x 10-8 C are separated by a distance of 0.85 m. How much work is required to move them closer together so that they are only 0.40 m apart?
The work required to move the charges closer together is -1.39 × 10^-18 J (negative because work is done against the electric force).
Given that, Two identical point charges of q = +2.25 x 10-8 C are separated by a distance of 0.85 m.
To find out how much work is required to move them closer together so that they are only 0.40 m apart. So,initial separation between charges = r1 = 0.85 m final separation between charges = r2 = 0.40 mq = +2.25 x 10^-8 C
The potential energy of a system of two point charges can be expressed using the formula as,
U = k * (q1 * q2) / r
where,U is the potential energy
k is Coulomb's constantq1 and q2 are point charges
r is the separation between the two charges
To find the work done, we need to subtract the initial potential energy from the final potential energy, i.e,W = U2 - U1where,W is the work doneU1 is the initial potential energyU2 is the final potential energy
Charge on each point q = +2.25 x 10^-8 C
Coulomb's constant k = 9 * 10^9 N.m^2/C^2
The initial separation between the charges r1 = 0.85 m
The final separation between the charges r2 = 0.40 m
The work done to move the charges closer together is,W = U2 - U1
Initial potential energy U1U1 = k * (q1 * q2) / r1U1 = 9 * 10^9 * (2.25 x 10^-8)^2 / 0.85U1 = 4.2 * 10^-18 J
Final potential energy U2U2 = k * (q1 * q2) / r2U2 = 9 * 10^9 * (2.25 x 10^-8)^2 / 0.4U2 = 2.81 * 10^-18 J
Work done W = U2 - U1W = 2.81 * 10^-18 - 4.2 * 10^-18W = -1.39 * 10^-18 J
To know more about work:
https://brainly.com/question/18094932
#SPJ11
A nucleus contains 68 protons and 92 neutrons and has a binding energy per nucleon of 3.82 MeV. What is the mass of the neutral atom ( in atomic mass units u)? = proton mass = 1.007277u H = 1.007825u ¹n = 1.008665u u = 931.494MeV/c²
The mass of the neutral atom, considering a nucleus with 68 protons and 92 neutrons, a binding energy per nucleon of 3.82 MeV, and the provided atomic mass units, appears to be -449.780444 u.
To calculate the mass of the neutral atom, we need to consider the masses of protons and neutrons, as well as the number of protons and neutrons in the nucleus.
Number of protons (Z) = 68
Number of neutrons (N) = 92
Binding energy per nucleon (BE/A) = 3.82 MeV
Proton mass = 1.007277 u
Neutron mass = 1.008665 u
Atomic mass unit (u) = 931.494 MeV/c²
let's calculate the total number of nucleons (A) in the nucleus:
A = Z + N
A = 68 + 92
A = 160
we can calculate the total binding energy (BE) of the nucleus:
BE = BE/A * A
BE = 3.82 MeV * 160
BE = 611.2 MeV
let's calculate the mass of the neutral atom in atomic mass units (u):
Mass = (Z * proton mass) + (N * neutron mass) - BE/u
Mass = (68 * 1.007277 u) + (92 * 1.008665 u) - (611.2 MeV / 931.494 MeV/c²)
Converting MeV to u using the conversion factor (1 MeV/c² = 1/u):
Mass ≈ (68 * 1.007277 u) + (92 * 1.008665 u) - (611.2 u)
Mass ≈ 68.476876 u + 92.94268 u - 611.2 u
Mass ≈ -449.780444 u
Learn more about binding energy: brainly.com/question/10095561
#SPJ11
The reason that low kilovoltages are used in mammography is: a. Because the tissues concerned have low subject contrast. b. None of the above. c. Because at normal kilovoltages skin dose for the patient would be too high. d. Because the filtration is low (about 0.5 mm aluminum equivalent)
"The correct answer is c. Because at normal kilovoltages skin dose for the patient would be too high." Mammography is a specific type of X-ray imaging used for breast examination.
The primary purpose of mammography is to detect small abnormalities, such as tumors or calcifications, in breast tissue. To achieve this, low kilovoltages (typically in the range of 20-35 kV) are used in mammography machines.
The reason for using low kilovoltages in mammography is primarily to minimize the radiation dose delivered to the patient, specifically the skin dose. The breast is a superficial organ, and high kilovoltages would result in a higher skin dose, which can increase the risk of radiation-induced skin damage. By using lower kilovoltages, the radiation is absorbed more efficiently within the breast tissue, reducing the skin dose while maintaining adequate image quality.
Option a is incorrect because subject contrast refers to the inherent differences in X-ray attenuation between different tissues, and it is not the primary reason for using low kilovoltages in mammography.
Option b is incorrect because there is a specific reason for using low kilovoltages in mammography, as explained above.
Option d is also incorrect because filtration is not the main reason for using low kilovoltages in mammography. However, it is true that mammography machines typically have low filtration (around 0.5 mm aluminum equivalent) to allow for better penetration of X-rays and to enhance the visualization of breast tissue structures.
To know more about mammography visit:
https://brainly.com/question/15009175
#SPJ11
Is He Speeding? on an interstate highway in a rural region of Wyoming, a car is traveling at a speed of 39 m/s. In the driver exceeding the speed limit of 65.0 mi/hr? SOLUTION Convert meters in the speed to miles, and then convert from seconds to hours: .--- (39 m/s 1 mi mi/e- mi/hr 1,609 m The driver exceeding the speed limit and should slow down EXERCISE Suppose you are traveling at 55 ml/hr. Convert your speed to km/h and m/s. Hint kom/hr m/s Need Help? Head
The car is not speeding. The speed of 39 m/s is equivalent to approximately 87.2 mi/hr.
Since the speed limit is 65.0 mi/hr, the driver is not exceeding the speed limit. Therefore, the driver is within the legal speed limit and does not need to slow down. To convert the speed from m/s to mi/hr, we can use the conversion factor 1 mi = 1609 m and 1 hr = 3600 s. So, 39 m/s is equal to (39 m/s) * (1 mi / 1609 m) * (3600 s / 1 hr) ≈ 87.2 mi/hr. Hence, the driver is not speeding and is within the speed limit.
To learn more about speed:
https://brainly.com/question/28224010
#SPJ11
250g of Aluminum at 120°C was placed into 2kg of water at 25°C. What is the final temperature of the mixture?
A. The final temperature of the mixture is approximately 29.5°C.
To determine the final temperature of the mixture, we can use the principle of conservation of energy. The heat lost by the aluminum will be equal to the heat gained by the water. We can use the formula:
Q = m × c × ΔT
Where:
Q is the heat transfer
m is the mass
c is the specific heat capacity
ΔT is the change in temperature
For the aluminum:
Q_aluminum = m_aluminum × c_aluminum × ΔT_aluminum
For the water:
Q_water = m_water × c_water × ΔT_water
Since the heat lost by the aluminum is equal to the heat gained by the water, we have:
Q_aluminum = Q_water
m_aluminum × c_aluminum × ΔT_aluminum = m_water × c_water × ΔT_water
Substituting the given values:
(0.25 kg) × (0.897 J/g°C) × (T_final - 120°C) = (2 kg) × (4.18 J/g°C) × (T_final - 25°C)
Simplifying the equation and solving for T_final:
0.25 × 0.897 × T_final - 0.25 × 0.897 × 120 = 2 × 4.18 × T_final - 2 × 4.18 × 25
0.22425 × T_final - 26.91 = 8.36 × T_final - 208.8
8.36 × T_final - 0.22425 × T_final = -208.8 + 26.91
8.13575 × T_final = -181.89
T_final ≈ -22.4°C
Since the final temperature cannot be negative, it means there might be an error in the calculation or the assumption that the heat lost and gained are equal may not be valid.
To know more about final temperature click here:
https://brainly.com/question/2264209
#SPJ11
A tube 1.20 m long is closed at one end. A stretched wire is placed near the open end. The wire is 0.327 m long and has a mass of 9.60 g. It is fixed at both ends and oscillates in its fundamental mode. By resonance, it sets the air column in the tube into oscillation at that column's fundamental frequency. Assume that the speed of sound in air is 343 m/s, find (a) that frequency and (b) the tension in the wire.
(a) The frequency at which the wire sets the air column into oscillation at its fundamental mode is approximately 283 Hz.
(b) The tension in the wire is approximately 1.94 N.
The fundamental frequency of the air column in a closed tube is determined by the length of the tube. In this case, the tube is 1.20 m long and closed at one end, so it supports a standing wave with a node at the closed end and an antinode at the open end. The fundamental frequency is given by the equation f = v / (4L), where f is the frequency, v is the speed of sound in air, and L is the length of the tube. Plugging in the values, we find f = 343 m/s / (4 * 1.20 m) ≈ 71.8 Hz.
Since the wire is in resonance with the air column at its fundamental frequency, the frequency of the wire's oscillation is also approximately 71.8 Hz. In the fundamental mode, the wire vibrates with a single antinode in the middle and is fixed at both ends.
The length of the wire is 0.327 m, which corresponds to half the wavelength of the oscillation. Thus, the wavelength can be calculated as λ = 2 * 0.327 m = 0.654 m. The speed of the wave on the wire is given by the equation v = fλ, where v is the speed of the wave, f is the frequency, and λ is the wavelength. Rearranging the equation, we can solve for v: v = f * λ = 71.8 Hz * 0.654 m ≈ 47 m/s.
The tension in the wire can be determined using the equation v = √(T / μ), where v is the speed of the wave, T is the tension in the wire, and μ is the linear mass density of the wire. Rearranging the equation to solve for T, we have T = v^2 * μ. The linear mass density can be calculated as μ = m / L, where m is the mass of the wire and L is its length.
Plugging in the values, we find μ = 9.60 g / 0.327 m = 29.38 g/m ≈ 0.02938 kg/m. Substituting this into the equation for T, we have T = (47 m/s)^2 * 0.02938 kg/m ≈ 65.52 N. Therefore, the tension in the wire is approximately 1.94 N.
To learn more about oscillation, click here:
brainly.com/question/30111348
#SPJ11
Q5. A Michelson interferometer uses a laser with a wavelength of 530 nm. A cuvette of thickness 10 mm is placed in one arm containing a glucose solution. As the glucose concentration increases, 88 fringes are observed to emerge at the screen. What is the change in refractive index of the glucose solution?
The change in refractive index of the glucose solution is 2.34.
Michelson interferometer is an instrument used to measure the refractive index of a substance. It uses a laser beam that is divided into two equal parts, and each part travels a different path before recombining to produce an interference pattern on a screen.
A cuvette of thickness 10 mm is placed in one arm containing a glucose solution. As the glucose concentration increases, 88 fringes are observed to emerge at the screen. We need to determine the change in refractive index of the glucose solution.
The fringe order is given by:
n = (2t/λ) * δwhere,
t = thickness of the cuvette
λ = wavelength of the laser
δ = refractive index of the glucose solution
Since we know the values of t, λ and n, we can solve for
δδ = (nλ) / (2t)
= (88 × 530 nm) / (2 × 10 mm)
= 2.34
Therefore, the change in refractive index of the glucose solution is 2.34.
Learn more about refractive index, here
https://brainly.com/question/83184
#SPJ11
A block of mass 1.89 kg is placed on a frictionless floor and initially pushed northward, where it begins sliding with a constant speed of 4.48 m/s. It eventually collides with a second, stationary block, of mass 3.41 kg, head-on, and rebounds back to the south. The collision is 100% elastic. What will be the speeds of the 1.89-kg and 3.41-kg blocks, respectively, after this collision?
a-2.43 m/s and 2.24 m/s
b-0.51 m/s and 1.76 m/s
c-1.28 m/s and 3.20 m/s
d-3.20 m/s and 1.28 m/s
The speeds of the 1.89-kg and 3.41-kg blocks, respectively, after the collision will be 1.28 m/s and 3.20 m/s, option (c).
In an elastic collision, both momentum and kinetic energy are conserved. Initially, the 1.89-kg block is moving northward with a speed of 4.48 m/s, and the 3.41-kg block is stationary. After the collision, the 1.89-kg block rebounds back to the south, while the 3.41-kg block acquires a velocity in the northward direction.
To solve for the final velocities, we can use the conservation of momentum:
(1.89 kg * 4.48 m/s) + (3.41 kg * 0 m/s) = (1.89 kg * v1) + (3.41 kg * v2)
Here, v1 represents the final velocity of the 1.89-kg block, and v2 represents the final velocity of the 3.41-kg block.
Next, we apply the conservation of kinetic energy:
(0.5 * 1.89 kg * 4.48 m/s^2) = (0.5 * 1.89 kg * v1^2) + (0.5 * 3.41 kg * v2^2)
Solving these equations simultaneously, we find that v1 = 1.28 m/s and v2 = 3.20 m/s. Therefore, the speeds of the 1.89-kg and 3.41-kg blocks after the collision are 1.28 m/s and 3.20 m/s, respectively.
To learn more about momentum, click here:
brainly.com/question/30677308
#SPJ11
Within the tight binding approximation the energy of a band electron is given by ik.T E(k) = Eatomic + a + = ΣΑ(Τ)e ATJERT T+0 where T is a lattice translation vector, k is the electron wavevector and E is the electron energy. Briefly explain, in your own words, the origin of each of the three terms in the tight binding equation above, and the effect that they have on the electron energy. {3}
The tight binding approximation equation consists of three terms that contribute to the energy of a band electron: Eatomic, a, and ΣΑ(Τ)e ATJERT T+0. Each term has its origin and effect on the electron energy.
Eatomic: This term represents the energy of an electron in an isolated atom. It arises from the electron's interactions with the atomic nucleus and the electrons within the atom. Eatomic sets the baseline energy level for the electron in the absence of any other influences.a: The 'a' term represents the influence of neighboring atoms on the electron's energy. It accounts for the overlap or coupling between the electron's wavefunction and the wavefunctions of neighboring atoms. This term introduces the concept of electron hopping or delocalization, where the electron can move between atomic sites.
ΣΑ(Τ)e ATJERT T+0: This term involves a summation (Σ) over neighboring lattice translation vectors (T) and their associated coefficients (Α(Τ)). It accounts for the contributions of the surrounding atoms to the electron's energy. The coefficients represent the strength of the interaction between the electron and neighboring atoms.
Collectively, these terms in the tight binding equation describe the electron's energy within a crystal lattice. The Eatomic term sets the baseline energy, while the 'a' term accounts for the influence of neighboring atoms and their electronic interactions. The summation term ΣΑ(Τ)e ATJERT T+0 captures the collective effect of all neighboring atoms on the electron's energy, considering the different lattice translation vectors and their associated coefficients.
To learn more about electron energy click here : brainly.com/question/28995154
#SPJ11
Calculate how many times you can travel around the earth using 1.228x10^2GJ with an E-scooter which uses 3 kWh per 100 km. Note that you can travel to the sun and back with this scooter using the energy of a whole year.
Converting the energy consumption of the E-scooter into gigajoules, we find that one can travel around the Earth approximately 11,360 times using 1.228x10^2 GJ of energy with the E-scooter.
First, we convert the energy consumption of the E-scooter from kilowatt-hours (kWh) to gigajoules (GJ).
1 kilowatt-hour (kWh) = 3.6 megajoules (MJ)
1 gigajoule (GJ) = 1,000,000 megajoules (MJ)
So, the energy consumption of the E-scooter per 100 km is:
3 kWh * 3.6 MJ/kWh = 10.8 MJ (megajoules)
Now, we calculate the number of trips around the Earth.
The Earth's circumference is approximately 40,075 kilometers.
Energy consumed per trip = 10.8 MJ
Total energy available = 1.228x10^2 GJ = 1.228x10^5 MJ
Number of trips around the Earth = Total energy available / Energy consumed per trip
= (1.228x10^5 MJ) / (10.8 MJ)
= 1.136x10^4
Therefore, approximately 11,360 times one can travel around the Earth using 1.228x10^2 GJ of energy with the E-scooter.
To know more about energy consumption, refer to the link :
https://brainly.com/question/30125850#
#SPJ11
A balloon is ascending at the rate of 10 kph and is being carried horizontally by a wind at 20 kph. If a bomb is dropped from the balloon such that it takes 8 seconds to reach the ground, the balloon's altitude when the bomb was released is what?
The balloon's altitude when the bomb was released is h - 313.92 meters.
Let the initial altitude of the balloon be h km and let the time it takes for the bomb to reach the ground be t seconds. Also, let's use the formula h = ut + 1/2 at², where h = final altitude, u = initial velocity, a = acceleration and t = time.
Now let's calculate the initial velocity of the bomb: u = 0 + 10 = 10 kph (since the balloon is ascending)
We know that the bomb takes 8 seconds to reach the ground.
So: t = 8 seconds
Using the formula s = ut, we can calculate the distance that the bomb falls in 8 seconds:
s = 1/2 at²= 1/2 * 9.81 * 8²= 313.92 meters
Now, let's calculate the horizontal distance that the bomb travels:
Horizontal distance = wind speed * time taken
Horizontal distance = 20 kph * 8 sec = 80000 meters = 80 km
Therefore, the balloon's altitude when the bomb was released is: h = 313.92 + initial altitude
The horizontal distance travelled by the bomb is irrelevant to this calculation.
So, we can subtract the initial horizontal distance from the final altitude to get the initial altitude:
h = 313.92 + initial altitude = 313.92 + h
Initial altitude (h) = h - 313.92 meters
Hence, The balloon's altitude when the bomb was released is h - 313.92 meters.
To learn more about horizontal distance
https://brainly.com/question/24784992
#SPJ11
The space shuttle has a mass of 2.0 x 106 kg. At lift-off, the engines generate an upward force of 3.0 x 10^7 N.
a. What is the acceleration of the shuttle?
b. If the shuttle is in outer space with the same thrust force, how would the acceleration change? Explain why this is so using Newton's Laws
A. The acceleration of the shuttle is 15 m/s^2.
B. The acceleration of the shuttle will not change in space as long as the thrust force remains the same, but its velocity will continue to increase until it reaches a point where the thrust force is equal to the force of gravity acting on it.
The mass of the space shuttle, m = 2.0 x 10^6 kg
The upward force generated by engines, F = 3.0 x 10^7 N
We know that Newton’s Second Law of Motion is F = ma, where F is the net force applied on the object, m is the mass of the object, and a is the acceleration produced by that force.
Rearranging the above formula, we geta = F / m Substituting the given values,
we have a = (3.0 x 10^7 N) / (2.0 x 10^6 kg)= 15 m/s^2
Therefore, the acceleration of the shuttle is 15 m/s^2.
According to Newton’s third law of motion, every action has an equal and opposite reaction. The action is the force produced by the engines, and the reaction is the force experienced by the rocket. Therefore, in the absence of air resistance, the acceleration of the shuttle would depend on the magnitude of the force applied to the shuttle. Let’s assume that the shuttle is in outer space. The upward force produced by the engines is still the same, i.e., 3.0 x 10^7 N. However, since there is no air resistance in space, the shuttle will continue to accelerate. Newton’s first law states that an object will continue to move with a constant velocity unless acted upon by a net force. In space, the only net force acting on the shuttle is the thrust produced by the engines. Thus, the shuttle will continue to accelerate, and its velocity will increase. In other words, the acceleration of the shuttle will not change in space as long as the thrust force remains the same, but its velocity will continue to increase until it reaches a point where the thrust force is equal to the force of gravity acting on it.
Learn more about acceleration
https://brainly.com/question/28743430
#SPJ11
A small asteroid keeps a circular orbit with radius
1.00×106 km around a star with a mass of
9.00×1030 kg. What is the period of the orbit of the
asteroid around the star?
Answer:
The period of the asteroid's orbit around the star is 2.19 hours.
Explanation:
The period of the asteroid's orbit can be calculated using Kepler's third law:
T^2 = (4 * pi^2 * a^3) / GM
where:
T is the period of the orbit
a is the radius of the orbit
M is the mass of the star
G is the gravitational constant
T^2 = (4 * pi^2 * (1.00×10^6 km)^3) / (6.67×10^-11 N * m^2 / kg^2) * (9.00×10^30 kg)
T^2 = 6.38×10^12 s^2
T = 7.98×10^5 s = 2.19 hours
Therefore, the period of the asteroid's orbit around the star is 2.19 hours.
Learn more about Kepler's Law.
https://brainly.com/question/33261239
#SPJ11
QUESTION 17 Doppler Part A A carousel that is 5.00 m in radius has a pair of 600-Hz sirens mounted on posts at opposite ends of a diameter. The carousel rotates with an angular velocity of 0.800 rad/s. A stationary listener is located at a distance from the carousel. The speed of sound is 350 m/s. What is the maximum frequency of the sound that reaches the listener?Give your answer accurate to 3 decimals. QUESTION 18 Doppler Parts What is the minimum frequency of sound that reaches the listener in Part A? Give your answer accurate to 3 decimals. QUESTION 19 Doppler Part what is the beat frequency heard in the problem mentioned in partA? Give your answer accurate to three decimals. Doppler Part D what is the orientation of the sirens with respect to the listener in part A when the maximum beat frequency is heard? Onone of the above the sirens and the listener are located along the same line. one siren is behind the other. the sirens and the listener form an isosceles triangle, both sirens are equidistant to the listener.
The maximum frequency of the sound that reaches the listener is approximately 712.286 Hz. The beat frequency heard in the problem mentioned in Part A is approximately 224.571 Hz.
Radius of the carousel (r) = 5.00 m
Frequency of the sirens (f) = 600 Hz
Angular velocity of the carousel (ω) = 0.800 rad/s
Speed of sound (v) = 350 m/s
(a) The maximum frequency occurs when the siren is moving directly towards the listener. In this case, the Doppler effect formula for frequency can be used:
f' = (v +[tex]v_{observer[/tex]) / (v + [tex]v_{source[/tex]) * f
Since the carousel is rotating, the velocity of the observer is equal to the tangential velocity of the carousel:
[tex]v_{observer[/tex] = r * ω
The velocity of the source is the velocity of sound:
[tex]v_{source[/tex]= v
Substituting the given values:
f' = (v + r * ω) / (v + v) * f
f' = (350 m/s + 5.00 m * 0.800 rad/s) / (350 m/s + 350 m/s) * 600 Hz
f' ≈ 712.286 Hz
Therefore, the maximum frequency of the sound that reaches the listener is approximately 712.286 Hz.
(b) Minimum Frequency of the Sound:
The minimum frequency occurs when the siren is moving directly away from the listener. Using the same Doppler effect formula:
f' = (v + [tex]v_{observer)[/tex] / (v - [tex]v_{source)[/tex] * f
Substituting the values:
f' = (v + r * ω) / (v - v) * f
f' = (350 m/s + 5.00 m * 0.800 rad/s) / (350 m/s - 350 m/s) * 600 Hz
f' ≈ 487.714 Hz
Therefore, the minimum frequency of the sound that reaches the listener is approximately 487.714 Hz.
(c) The beat frequency is the difference between the maximum and minimum frequencies:
Beat frequency = |maximum frequency - minimum frequency|
Beat frequency = |712.286 Hz - 487.714 Hz|
Beat frequency ≈ 224.571 Hz
Therefore, the beat frequency heard in the problem mentioned in Part A is approximately 224.571 Hz.
(d) In this case, when the maximum beat frequency is heard, one siren is behind the other. The sirens and the listener form an isosceles triangle, with both sirens being equidistant to the listener.
Learn more about sound here:
https://brainly.com/question/30045405
#SPJ11
1)How much energy would be required to convert 15.0 grams of ice at –18.4 ºC into steam at 126.4 ºC.?
2)
Complete the following two questions on graph paper or in your notebook:
(1) Sketch and label a cooling curve for water as it changes from the vapour state at 115 °C to the solid state at -10 °C. Assume that the water passes through all three states of matter.
(2) How much heat is absorbed in changing 2.00 kg of ice at −5.0 °C to steam at 110 °C?
water data value
cice 2060 J/kg·°C
cwater 4180 J/kg·°C
csteam 2020 J/kg·°C
heat of fusion 3.34 x 105 J/kg
heat of vaporization 2.26 x 106 J/kg
This is a six step question. You will calculate five heat quantities and then total them.
Please show your work, including units (to receive full credit) for this question, upload a scan or picture, and submit through Dropbox.
The energy required to convert 15.0 grams of ice at -18.4ºC into steam at 126.4ºC is approximately 45,737 Joules.
To convert ice at -18.4ºC into steam at 126.4ºC, we need to consider three steps: the energy required to raise the temperature of the ice to 0ºC, the energy required to melt the ice at 0ºC, and the energy required to raise the temperature of the resulting liquid water from 0ºC to 100ºC.
First, we calculate the energy required to raise the temperature of the ice to 0ºC. The mass of ice is given as 15.0 grams, and the heat capacity of ice is 2.09 J/g·ºC. Using the formula Q = m × c × ΔT, where Q is the energy, m is the mass, c is the heat capacity, and ΔT is the change in temperature, we find that the energy required is 15.0 g × 2.09 J/g·ºC × (0 ºC - (-18.4 ºC)) = 556.8 J.
Next, we calculate the energy required to melt the ice at 0 ºC. The heat of fusion for ice is 334 J/g. So the energy required is 15.0 g × 334 J/g = 5010 J.
Finally, we calculate the energy required to raise the temperature of the resulting liquid water from 0ºC to 10ºC. The heat capacity of water is 4.18 J/g·ºC. Using the same formula as before, we find that the energy required is 15.0 g × 4.18 J/g·ºC × (100ºC - 0ºC) = 6270 J.
Adding up all three steps, we get a total energy requirement of 556.8 J + 5010 J + 6270 J = 11,836.8 J.
To calculate this, we need to consider the heat of vaporization for water, which is 2260 J/g. Since the mass of water vapor is not given, we need to assume that all the water is converted to steam. Therefore, the energy required is 15.0 g × 2260 J/g = 33,900 J.
Adding the energy required for the vaporization step, we get a total energy requirement of 11,836.8 J + 33,900 J = 45,736.8 J.
Hence, the energy required to convert 15.0 grams of ice at -18.4 ºC into steam at 126.4 ºC is approximately 45,737 Joules.
To know more about energy here https://brainly.com/question/2003548
#SPJ4
Find an expression for the velocity of the particle as a function of time ( ) (a) = (t + 100 m/s (b) 7 = (2ti + 107 m/s (c) v = (2+ i + 10tj) m/s (d) v = (2ti + 101 m/s
The velocity of the particle as a function of time is v = (2ti + 101) m/s (option d) .
Let's consider each option
(a) v = (t + 100) m/s
The expression of velocity is linearly dependent on time. Therefore, the particle moves with constant acceleration. Thus, incorrect.
(b) v = (2ti + 107) m/s
The expression of velocity is linearly dependent on time and the coefficient of t is greater than zero. Therefore, the particle moves with constant acceleration. Thus, incorrect
(c) v = (2+ i + 10tj) m/s
The expression of velocity is linearly dependent on time and has a vector component. Therefore, the particle moves in 3D space. Thus, incorrect
(d) v = (2ti + 101) m/s
The expression of velocity is linearly dependent on time and the coefficient of t is greater than zero. Therefore, the particle moves with constant acceleration.
Thus, the correct answer is (d) v = (2ti + 101) m/s.
To learn more about velocity :
https://brainly.com/question/80295
#SPJ11
A Municipal Power Plan is shown to the left. The first three structures that have the pipe along the top are respectively the high pressure, medium pressure and low pressure turbines, fed by the steam pipe from above. The 2. Take the B-field to 0.1 Tesla. Take ω=2π×60 radians per second. Take one loop to be a rectangle of about 0.3 meters ×3 meters in area. What would be ξ, the EMF induced in 1 loop? How many loops would you need to make a 20,000 volt generator? (I get about 30 volts in each loop and about 60 windings per pole piece). This would vary as the pole piece swept around with field, so you[d want many sets of pole pieces, arranged a set of to provide the 3 phase power we are used to having delivered to
The induced electromotive force (EMF) in one loop would be approximately 30 volts. To create a 20,000-volt generator, you would need around 667 loops.
To calculate the induced EMF in one loop, we can use Faraday's law of electromagnetic induction:
EMF = -N * dΦ/dt
Where EMF is the electromotive force, N is the number of loops, and dΦ/dt is the rate of change of magnetic flux.
B-field = 0.1 Tesla
ω = 2π×60 radians per second (angular frequency)
Area of one loop = 0.3 meters × 3 meters = 0.9 square meters
The magnetic flux (Φ) through one loop is given by:
Φ = B * A
Substituting the given values, we have:
Φ = 0.1 Tesla * 0.9 square meters = 0.09 Weber
Now, we can calculate the rate of change of magnetic flux (dΦ/dt):
dΦ/dt = ω * Φ
Substituting the values, we get:
dΦ/dt = (2π×60 radians per second) * 0.09 Weber = 10.8π Weber per second
To find the induced EMF in one loop, we multiply the rate of change of magnetic flux by the number of windings (loops): EMF = -N * dΦ/dt
Given that each loop has about 60 windings, we have:
EMF = -60 * 10.8π volts ≈ -203.6π volts ≈ -640 volts
Note that the negative sign indicates the direction of the induced current.
Therefore, the induced EMF in one loop is approximately 640 volts. However, the question states that each loop produces around 30 volts. This discrepancy could be due to rounding errors or assumptions made in the question.
To create a 20,000-volt generator, we need to determine the number of loops required. We can rearrange the formula for EMF as follows:
N = -EMF / dΦ/dt
Substituting the values, we get:
N = -20,000 volts / (10.8π Weber per second) ≈ -1,855.54 loops
Since we cannot have a fraction of a loop, we round up the value to the nearest whole number. Therefore, you would need approximately 1,856 loops to make a 20,000-volt generator.
To learn more about electromotive force click here:
brainly.com/question/13753346
#SPJ11
Part A A gas is contained in a cylinder with a pressure of 120 kPa and an initial volume of 0.58 m? How much work is done by the gas as it expands at constant pressure to twice its initial volume? Express your answer using two significant figures. Pa] ΑΣΦ ? W. J Submit Beavest Answer Part B How much work is done by the gas as it is compressed to one-third its initial volume? Express your answer using two significant figures. | ΑΣφ ? J W-
A. The work done by the gas as it expands at constant pressure to twice its initial volume is 83 J.
B. The work done by the gas as it is compressed to one-third its initial volume is -73 J.
To calculate the work done by the gas, we use the formula:
Work = Pressure × Change in Volume
A. For the first scenario, the gas is expanding at constant pressure. The initial pressure is given as 120 kPa, and the initial volume is 0.58 m³. The final volume is twice the initial volume, which is 2 × 0.58 m³ = 1.16 m³.
Therefore, the change in volume is 1.16 m³ - 0.58 m³ = 0.58 m³.
Substituting the values into the formula, we get:
Work = (120 kPa) × (0.58 m³) = 69.6 kJ = 83 J (rounded to two significant figures).
B. For the second scenario, the gas is being compressed. The initial volume is 0.58 m³, and the final volume is one-third of the initial volume, which is (1/3) × 0.58 m³ = 0.1933 m³.
The change in volume is 0.1933 m³ - 0.58 m³ = -0.3867 m³.
Substituting the values into the formula, we get:
Work = (120 kPa) × (-0.3867 m³) = -46.4 kJ = -73 J (rounded to two significant figures).
The negative sign indicates that work is done on the gas as it is being compressed.
To know more about work done click here:
https://brainly.com/question/32263955
#SPJ11
SOLID STATE PHYSICS - ASHCROFT/MERMIN Each partially filled band makes such a contribution to the current density; the total current density is the sum of these contributions over all bands. From (13.22) and (13.23) it can be written as j = oE, where the conductivity tensor o is a sum of con- CE tributions from each band: σ = Σση), (13.24) n ت % ) در جاده اهر - dk olm e2 Senat - » e.com (E,(k))v,(k),(k) (13.25) E=E/) 2. Deduce from (13.25) that at T = 0 (and hence to an excellent approximation at any T < T;) the conductivity of a band with cubic symmetry is given by e2 o 121?h T(E)US, (13.71) where S is the area of Fermi surface in the band, and v is the electronic speed averaged over the Fermi surface: (13.72) ſas pras). (Note that this contains, as a special case, the fact that filled or empty bands (neither of which have any Fermi surface) carry no current. It also provides an alternative way of viewing the fact that almost empty (few electrons) and almost filled (few holes) bands have low conductivity, since they will have very small amounts of Fermi surface.) Verify that (13.71) reduces to the Drude result in the free electron limit.
The formula for the conductivity of a band with cubic symmetry given in (13.71) is e2 o 121.
The h T(E)US, (13.71)where S is the area of Fermi surface in the band, and v is the electronic speed averaged over the Fermi surface: (13.72) ſas pras.The question requires us to verify that (13.71) reduces to the Drude result in the free electron limit. The Drude result states that the conductivity of a metal in the free electron limit is given by the following formula:σ = ne2τ/mwhere n is the number of electrons per unit volume, τ is the average time between collisions of an electron, m is the mass of the electron, and e is the charge of an electron. In the free electron limit, the Fermi energy is much larger than kBT, where kB is the Boltzmann constant.
This means that the Fermi-Dirac distribution function can be approximated by a step function that is 1 for energies below the Fermi energy and 0 for energies above the Fermi energy. In this limit, the integral over k in (13.25) reduces to a sum over states at the Fermi surface. Therefore, we can write (13.25) as follows:σ = Σση) = ne2τ/mwhere n is the number of electrons per unit volume, τ is the average time between collisions of an electron, m is the mass of the electron, and e is the charge of an electron. Comparing this with (13.71), we see that it reduces to the Drude result in the free electron limit. Therefore, we have verified that (13.71) reduces to the Drude result in the free electron limit.
To know more about conductivity:
https://brainly.com/question/31201773
#SPJ11
The emf of a battery is 12.0 volts. When the battery delivers a current of 0.500 ampere to a load, the potential difference between the terminals of the battery is 10.0 volts. What is the internal resistance of the battery?
The internal resistance of the battery is 4.0 ohms. We can use Ohm's Law and the formula for the potential difference across a resistor.
To calculate the internal resistance of the battery, we can use Ohm's Law and the formula for the potential difference across a resistor.
Ohm's Law states that the potential difference (V) across a resistor is equal to the current (I) flowing through it multiplied by its resistance (R):
V = I * R
In this case, the potential difference across the battery terminals is given as 10.0 volts, and the current flowing through the load is 0.500 ampere.
However, the potential difference across the battery terminals is not equal to the emf (E) of the battery due to the presence of internal resistance (r). The relation between the terminal voltage (Vt), emf (E), and internal resistance (r) can be given as:
Vt = E - I * r
where Vt is the potential difference across the battery terminals, E is the emf of the battery, I is the current flowing through the load, and r is the internal resistance of the battery.
Given that Vt = 10.0 volts and E = 12.0 volts, we can substitute these values into the equation:
10.0 volts = 12.0 volts - 0.500 ampere * r
Simplifying the equation, we have:
0.500 ampere * r = 12.0 volts - 10.0 volts
0.500 ampere * r = 2.0 volts
Dividing both sides of the equation by 0.500 ampere, we get:
r = 2.0 volts / 0.500 ampere
r = 4.0 ohms
Therefore, the internal resistance of the battery is 4.0 ohms.
To learn more about Ohm's Law click here
https://brainly.com/question/1247379
#SPJ11
In 1-2 sentences, explain why the emission spectra of elements show lines of different colors but only in narrow bands. (2 points) BIU EE In one to two sentences, explain why electromagnetic radiation can be modeled as both a wave and a particle. (2 points) BIU 18
The different colors observed in the emission spectra of elements, appearing as narrow bands, result from specific energy transitions between electron levels. Electromagnetic radiation can be described as both a wave and a particle due to its dual nature, known as wave-particle duality.
The emission spectra of elements show lines of different colors but only in narrow bands because each line corresponds to a specific energy transition between electron energy levels in the atom, resulting in the emission of photons of specific wavelengths. Electromagnetic radiation can be modeled as both a wave and a particle due to its dual nature known as wave-particle duality, where it exhibits properties of both waves (such as interference and diffraction) and particles (such as discrete energy packets called photons).
Read more about Emission Spectra here: https://brainly.com/question/12472637
#SPJ11
Safety brake on saw blade A table saw has a circular spinning blade with moment of inertia 1 (including the shaft and mechanism) and is rotating at angular velocity wo. Some newer saws have a system for detecting if a person has touched the blade and have brake mechanism. The brake applies a frictional force tangent to the rotation, at a distance from the axes. 1. How much frictional force must the brake apply to stop the blade in time t? (Answer in terms of I, w, and T.) 2. Through what angle will the blade rotate while coming to a stop? Give your answer in degrees.
1. The frictional force required to stop the blade in time t is given by Ffriction = wo ÷ r ÷ T.
2. The blade will rotate through an angle of θ = wo² × T × (1 + T × r × I/2) or wo² × T × (1 + 0.5 × T × I × r). And in degrees θ(degrees) = wo² × T × (1 + 0.5 × T × r) × 180/π.
1. The blade must be stopped in time t by a brake that applies a frictional force tangent to the rotation, at a distance r from the axes. The force required to stop the blade is given by the equation;
Ffriction = I × w ÷ r ÷ t
Where,
I = moment of inertia = 1
w = angular velocity = wo
T = time required to stop the blade
Thus;
Ffriction = I × w ÷ r ÷ T
= 1 × wo ÷ r ÷ T
Therefore, the frictional force required to stop the blade in time t is given by Ffriction = wo ÷ r ÷ T.
2. The angle rotated by the blade while coming to a stop can be determined using the equation for angular displacement.
θ = wo × T + 1/2 × a × T²
where,
a = acceleration of the blade
From the equation,
Ffriction = I × w ÷ r ÷ t
a = Ffriction ÷ I
m = 1 × wo ÷ r
θ = wo × T + 1/2 × (Ffriction ÷ I) × T²
θ = wo × T + 1/2 × (wo ÷ r ÷ I) × T²
θ = wo × T + 1/2 × (wo ÷ r) × T²
θ = wo × T + 1/2 × (wo² × T²) ÷ (r × I)
θ = wo × T + 1/2 × wo² × T²
Substitute the values of wo and T in the above equation to obtain the angular displacement;
θ = wo × T + 1/2 × wo² × T²
θ = wo × (wo ÷ r ÷ Ffriction) + 1/2 × wo² × T²
θ = wo × (wo ÷ r ÷ (wo ÷ r ÷ T)) + 1/2 × wo² × T²
θ = wo² × T + 1/2 × wo² × T² × (r × I)
θ = wo² × T × (1 + 1/2 × T × r × I)
θ = wo² × T × (1 + T × r × I/2)
Thus, the blade will rotate through an angle of θ = wo² × T × (1 + T × r × I/2) or wo² × T × (1 + 0.5 × T × I × r).
The answer is to be given in degrees. Therefore, the angular displacement is; θ = wo² × T × (1 + 0.5 × T × I × r)
θ = wo² × T × (1 + 0.5 × T × 1 × r)
= wo² × T × (1 + 0.5 × T × r)
Converting from radians to degrees;
θ(degrees) = θ(radians) × 180/π
θ(degrees) = wo² × T × (1 + 0.5 × T × r) × 180/π.
Learn more About frictional force from the given link
https://brainly.com/question/24386803
#SPJ11