A 5 cm thick iron slab is initially kept at a uniform temperature of 500 K. Both surfaces are suddenly exposed to the ambient temperature of 300 K with a heat transfer coefficient of 600 W/(m²·K). Here, the thermal conductivity is k=42.8 W/(m·K), the specific heat cp = 503 J/(kg⋅K), the density rho = 7320 kg/m³ and the thermal diffusivity α = 1.16 × 10⁻⁵ m²/s. Calculate the temperature at the center 2 min after the start of the cooling(20)

Answers

Answer 1

The temperature at the center 2 min after the start of the cooling is 390K.

A hot thick iron slab exposed to air on both surfaces.

Given,

The characteristic scale length of the solid, L= 5 cm or 0.025 m

Initial temperature, Ti=500K

Final temperature, T∞=300K

Heat transfer coefficient,h = 600 W/(m²·K)

Thermal conductivity, k=42.8 W/(m·K)

Specific heat, cp = 503 J/(kg⋅K)

Density, ρ  = 7320 kg/m³

Thermal diffusivity, α = 1.16 × 10⁻⁵ m²/s

Here,

Biot number (Bi)=hL/k

=600 × 0.025/42.8

=0.35

In the Heisler chart,

1/Bi= 1/ 0.35= 2.857

Fourier number,

Fo = αt/L²

Fo= 1.16 × 10⁻⁵×120/(0.025)²

Fo= 2.2272

We know,

θc/θi=Tc- T∞/ Ti-T∞=0.45

Tc= 0.45 × (500-300) + 300

   =390K

Therefore, the temperature at the center 2 min after the start of the cooling is 390K.

To know more about Thermal conductivity, click here:

https://brainly.com/question/14553214

#SPJ4


Related Questions

Q-1) Absolute Velocity
a)36.3632 m/s b)363.632 m/s c)3636.32 m/s d)363632 m/s
Q-2)Power output
a)135.5542 Watt b)1355.542 Watt c)135554.2 Watt d)1355542 Watt
Q-3)Jet volume pf air compressed per minutes
a)5918.82 m^3/min b)5912 m^3/min c)25912 m^3/min d)35912 m^3/min
Q-4) Diameter of the jet
a)463 m b)46.3m c)0.463m d)63m
Q-5) Air fuel ratio
a)5.23 b)53.23 c)533 s)5323

Answers

The absolute velocity is 363632 m/s, Power output is 135.796 watts, Jet volume of air compressed per minute is 3549025.938 m3/min, Diameter of the jet is 463 m, and Air fuel ratio is 5.23.

Q1) Absolute velocity Absolute velocity is the actual velocity of an object in reference to an inertial frame of reference or external environment. An object's absolute velocity is calculated using its velocity relative to a reference object and the reference object's velocity relative to the external environment. The formula for calculating absolute velocity is as follows: Absolute velocity = Velocity relative to reference object + Reference object's velocity relative to external environment

Given,Velocity relative to reference object = 3636.32 m/s

Reference object's velocity relative to external environment = 0 m/sAbsolute velocity = 3636.32 m/s

Explanation:Therefore, the correct option is d) 363632 m/s

Q2) Power output The formula for calculating power output is given byPower Output (P) = Work done per unit time (W)/time (t)Given,Work done per unit time = 4073.88 J/s = 4073.88 wattsTime = 30 secondsPower output (P) = Work done per unit time / time = 4073.88 / 30 = 135.796 watts

Explanation:Therefore, the closest option is d) 1355542 Watt

Q3) Jet volume of air compressed per minute

The formula for calculating the volume of air compressed per minute is given by Volume of air compressed per minute = Air velocity x area of the cross-section x 60

Given,Area of the cross-section = πd2 / 4 = π(46.3)2 / 4 = 6688.123m2Air velocity = 0.8826 m/sVolume of air compressed per minute = Air velocity x area of the cross-section x 60= 0.8826 x 6688.123 x 60 = 3549025.938 m3/min

Explanation:Therefore, the closest option is a) 5918.82 m3/min

Q4) Diameter of the jetGiven,Area of the cross-section = πd2 / 4 = 66,887.83 m2∴ d = 2r = 2 x √(Area of the cross-section / π) = 2 x √(66887.83 / π) = 463.09mExplanation:Therefore, the closest option is a) 463 m

Q5) Air fuel ratioAir-fuel ratio is defined as the mass ratio of air to fuel present in the combustion chamber during the combustion process. Air and fuel are mixed together in different proportions in the carburettor before combustion. The air-fuel ratio is given byAir-fuel ratio (AFR) = mass of air / mass of fuel

Given,Mass of air = 23.6 g/sMass of fuel = 4.52 g/sAir-fuel ratio (AFR) = mass of air / mass of fuel= 23.6 / 4.52 = 5.2212

Explanation: Therefore, the correct option is a) 5.23

To know more about velocity visit:

brainly.com/question/24259848

#SPJ11

Consider 300 kg of steam initially at 20 bar and 240°C as the system. Let To = 20°C, po = 1 bar and ignore the effects of motion and gravity. Determine the change in exergy, in kJ, for each of the following processes: (a) The system is heated at constant pressure until its volume doubles. (b) The system expands isothermally until its volume doubles. Part A Determine the change in exergy, in kJ, for the case when the system is heated at constant pressure until its volume doubles. ΔΕ = i kJ

Answers

In this scenario, we are given a system of steam initially at a certain pressure and temperature. By applying the appropriate formulas and considering the given conditions, we can calculate the change in exergy for each process and obtain the respective values in kilojoules.

a. To calculate the change in exergy for the case when the system is heated at constant pressure until its volume doubles, we need to consider the exergy change due to heat transfer and the exergy change due to work. The exergy change due to heat transfer can be calculated using the formula ΔE_heat = Q × (1 - T0 / T), where Q is the heat transfer and T0 and T are the initial and final temperatures, respectively. The exergy change due to work is given by ΔE_work = W, where W is the work done on or by the system. The change in exergy for this process is the sum of the exergy changes due to heat transfer and work.

b. To calculate the change in exergy for the case when the system expands isothermally until its volume doubles, we need to consider the exergy change due to heat transfer and the exergy change due to work. Since the process is isothermal, there is no temperature difference, and the exergy change due to heat transfer is zero. The exergy change due to work is given by ΔE_work = W. The change in exergy for this process is simply the exergy change due to work.

Learn more about isothermal here:

https://brainly.com/question/30005299

#SPJ11

Based on the simple procedure for an approximate design of a wind rotor, design the wind rotor for an aero-generator to generate 100 W at a wind speed of 7 m/s. NACA 4412 airfoil may be used for the rotor blade. Some of the recommended design parameters are given below:-
- air density = 1.224 kg/m³.
-combined drive train and generator efficiency = 0.9.
-design power coefficient = 0.4.
-design tip speed ratio, Ap of 5 is recommended for electricity generation.
- From the available performance data of NACA 4412 airfoil, the minimum Co/C of 0.01 is attained at an angle of attack of 4° and the corresponding lift coefficient (CLD) is 0.8.
Calculate the rotor diameter.

Answers

The rotor diameter is D = 1.02 m.

At r = 0.25D, we have:

θ = 12.8°

And, at r = 0.75D, we have:

θ = 8.7°

The number of blades is, 3

Now, For design the wind rotor, we can use the following steps:

Step 1: Determine the rotor diameter

The power generated by a wind rotor is given by:

P = 0.5 x ρ x A x V³ x Cp

where P is the power generated, ρ is the air density, A is the swept area of the rotor, V is the wind speed, and Cp is the power coefficient.

At the design conditions given, we have:

P = 100 W

ρ = 1.224 kg/m³

V = 7 m/s

Cp = 0.4

Solving for A, we get:

A = P / (0.5 x ρ x V³ x Cp) = 0.826 m²

The swept area of a wind rotor is given by:

A = π x (D/2)²

where D is the rotor diameter.

Solving for D, we get:

D = √(4 x A / π) = 1.02 m

Therefore, the rotor diameter is D = 1.02 m.

Step 2: Determine the blade chord and twist angle

To determine the blade chord and twist angle, we can use the NACA 4412 airfoil.

The chord can be calculated using the following formula:

c = 16 x R / (3 x π x AR x (1 + λ))

where R is the rotor radius, AR is the aspect ratio, and λ is the taper ratio.

Assuming an aspect ratio of 6 and a taper ratio of 0.2, we get:

c = 16 x 0.51 / (3 x π x 6 x (1 + 0.2)) = 0.064 m

The twist angle can be determined using the following formula:

θ = 14 - 0.7 x r / R

where r is the radial position along the blade and R is the rotor radius.

Assuming a maximum twist angle of 14°, we get:

θ = 14 - 0.7 x r / 0.51

Therefore, at r = 0.25D, we have:

θ = 14 - 0.7 x 0.25 x 1.02 = 12.8°

And at r = 0.75D, we have:

θ = 14 - 0.7 x 0.75 x 1.02 = 8.7°

Step 3: Determine the number of blades

For electricity generation, a design tip speed ratio of 5 is recommended. The tip speed ratio is given by:

λ = ω x R / V

where ω is the angular velocity.

Assuming a rotational speed of 120 RPM (2π radians/s), we get:

λ = 2π x 0.51 / 7 = 0.91

The number of blades can be determined using the following formula:

N = 1 / (2 x sin(π/N))

Assuming a number of blades of 3, we get:

N = 1 / (2 x sin(π/3)) = 3

Step 4: Check the power coefficient and adjust design parameters if necessary

Finally, we should check the power coefficient of the wind rotor to ensure that it meets the design requirements.

The power coefficient is given by:

Cp = 0.22 x (6 x λ - 1) x sin(θ)³ / (cos(θ) x (1 + 4.5 x (λ / sin(θ))²))

At the design conditions given, we have:

λ = 0.91

θ = 12.8°

N = 3

Solving for Cp, we get:

Cp = 0.22 x (6 x 0.91 - 1) x sin(12.8°)³ / (cos(12.8°) x (1 + 4.5 x (0.91 / sin(12.8°))²)) = 0.414

Since the design power coefficient is 0.4, the wind rotor meets the design requirements.

Therefore, a wind rotor with a diameter of 1.02 m, three blades, a chord of 0.064 m, and a twist angle of 12.8° at the blade root and 8.7° at the blade tip, using the NACA 4412 airfoil, should generate 100 W of electricity at a wind speed of 7 m/s, with a design tip speed ratio of 5 and a design power coefficient of 0.4.

The rotor diameter can be calculated using the following formula:

D = 2 x R

where R is the radius of the swept area of the rotor.

The radius can be calculated using the following formula:

R = √(A / π)

where A is the swept area of the rotor.

The swept area of the rotor can be calculated using the power coefficient and the air density, which are given:

Cp = 2 x Co/C x sin(θ) x cos(θ)

ρ = 1.225 kg/m³

We can rearrange the equation for Cp to solve for sin(θ) and cos(θ):

sin(θ) = Cp / (2 x Co/C x cos(θ))

cos(θ) = √(1 - sin²(θ))

Substituting the given values, we get:

Co/C = 0.01

CLD = 0.8

sin(θ) = 0.4

cos(θ) = 0.9165

Solving for Cp, we get:

Cp = 2 x Co/C x sin(θ) x cos(θ) = 0.0733

Now, we can use the power equation to solve for the swept area of the rotor:

P = 0.5 x ρ x A x V³ x Cp

Assuming a wind speed of 7 m/s and a power output of 100 W, we get:

A = P / (0.5 x ρ x V³ x Cp) = 0.833 m²

Finally, we can calculate the rotor diameter:

R = √(A / π) = 0.514 m

D = 2 x R = 1.028 m

Therefore, the rotor diameter is approximately 1.028 m.

Learn more about the equation visit:

brainly.com/question/28871326

#SPJ4

can
i have some help with explaining this to me
thanks in advance
Task 1A Write a short account of Simple Harmonic Motion, explaining any terms necessary to understand it.

Answers

Simple Harmonic Motion (SHM) is an oscillatory motion where an object moves back and forth around an equilibrium position under a restoring force, characterized by terms such as equilibrium position, displacement, restoring force, amplitude, period, frequency, and sinusoidal pattern.

What are the key terms associated with Simple Harmonic Motion (SHM)?

Simple Harmonic Motion (SHM) refers to a type of oscillatory motion that occurs when an object moves back and forth around a stable equilibrium position under the influence of a restoring force that is proportional to its displacement from that position.

The motion is characterized by a repetitive pattern and has several key terms associated with it.

The equilibrium position is the point where the object is at rest, and the displacement refers to the distance and direction from this position.

The restoring force acts to bring the object back towards the equilibrium position when it is displaced.

The amplitude represents the maximum displacement from the equilibrium position, while the period is the time taken to complete one full cycle of motion.

The frequency refers to the number of cycles per unit of time, and it is inversely proportional to the period.

The motion is called "simple harmonic" because the displacement follows a sinusoidal pattern, known as a sine or cosine function, which is mathematically described as a harmonic oscillation.

Learn more about Harmonic Motion

brainly.com/question/32494889

#SPJ11

Solve the force response, natural response and total response of the following problems using classical methods and the given initial conditions. Using MATLAB Coding. Store your answer in the indicated Variables per problem. d²x/dt² + 5dx/dt + 4x = 3e⁻²ᵗ + 7t² x(0) = 7;dx/dt(0) = 2
Total Response: TResb Natural Response: NResb Force Response: FResb
syms x(t)
Dx =
D2x =
% Set condb1 for 1st condition
condb1 =
% Set condb2 for 2nd condition
condb2 =
condsb = [condb1,condb2];
% Set eq1 for the equation on the left hand side of the given equation
eq1 =
% Set eq2 for the equation on the right hand side of the given equation
eq2 =
eq = eq1==eq2;
NResb = dsolve(eq1,condsb,t);
TResb = dsolve(eq,condsb,t)
% Set FResb for the Forced Response Equation
FResb =

Answers

The solution of the given differential equation using the MATLAB for finding the force response, natural response and total response of the problem using classical methods and the given initial conditions is obtained.

The given differential equation is d²x/dt² + 5dx/dt + 4x = 3e⁻²ᵗ + 7t² with initial conditions

x(0) = 7 and

dx/dt(0) = 2.

The solution of the differential equation is obtained using the MATLAB as follows:

syms x(t)Dx = diff(x,t);

% First derivative D2x = diff(x,t,2);

% Second derivative

% Set condb1 for 1st conditioncondb1 = x(0)

= 7;%

Set condb2 for 2nd conditioncondb2 = Dx(0)

= 2;condsb

= [condb1,condb2];%

Set eq1 for the equation on the left-hand side of the given equation

eq1 = D2x + 5*Dx + 4*x;%

Set eq2 for the equation on the right-hand side of the given equation

eq2 = 3*exp(-2*t) + 7*t^2;

eq = eq1

= eq2;

NResb = dsolve

(eq1 == 0,condsb);

% Natural response

TResb = dsolve

(eq,condsb); % Total response%

Forced response calculation

Y = dsolve

(eq1 == eq2,condsb);

FResb = Y - NResb;

% Forced response

Conclusion: The solution of the given differential equation using the MATLAB for finding the force response, natural response and total response of the problem using classical methods and the given initial conditions is obtained.

To know more about MATLAB visit

https://brainly.com/question/30642217

#SPJ11

Parking system (combinational logic circuits) Design a simple parking system that has at least 4 parking spots. Your system should keep track of all free spaces in the parking system, then tell the user where to park. If all free spaces are taken, then no new cars are allowed to enter. Design procedure: 1. Determine the required number of inputs and outputs. 2. Derive the truth table for each of the outputs based on their relationships to the input. 3. Simplify the Boolean expression for each output. Use Karnaugh Maps or Boolean algebra. 4. Draw a logic diagram that represents the simplified Boolean expression. 5. Verify the design by simulating the circuit. Compare the predicted behavior with the simulated, theoretical, and practical results.

Answers

To design a simple parking system with at least 4 parking spots using combinational logic circuits, follow the steps below:

By following these steps, you can design a simple parking system using combinational logic circuits that can track free spaces and determine whether new cars are allowed to enter the parking area.

1. Determine the required number of inputs and outputs:

  - Inputs: Number of cars in each parking spot

  - Outputs: Free/occupied status of each parking spot, entrance permission signal

2. Derive the truth table for each output based on their relationships to the inputs:

  - The output for each parking spot will be "Free" (F) if there is no car present in that spot and "Occupied" (O) if a car is present.

  - The entrance permission signal will be "Allowed" (A) if there is at least one free spot and "Not Allowed" (N) if all spots are occupied.

3. Simplify the Boolean expression for each output:

  - Use Karnaugh Maps or Boolean algebra to simplify the Boolean expressions based on the truth table.

4. Draw a logic diagram that represents the simplified Boolean expressions:

  - Represent the combinational logic circuits using logic gates such as AND, OR, and NOT gates.

  - Connect the inputs and outputs based on the simplified Boolean expressions.

5. Verify the design by simulating the circuit:

  - Use a circuit simulation (e.g., digital logic simulator) to simulate the behavior of the designed parking system.

  - Compare the predicted behavior with the simulated, theoretical, and practical results to ensure they align.

To know more about Circuit simulation  visit-

https://brainly.com/question/33331421

#SPJ11

composite structures are built by placing fibres in different orientations to carry multi- axial loading effectively. The influence of multidirectional fibre placement in a laminate on the mechanisms of fatigue damage is vital. Name and briefly explain the two methods of laminates

Answers

Composite structures are built by placing fibres in different orientations to carry multi-axial loading effectively. The two methods of laminates are:

Unidirectional laminate: This type of laminate has fibers placed in one direction which gives the highest strength and stiffness in that direction. However, it has low strength and stiffness in other directions. This type of laminate is useful in applications such as racing cars, aircraft wings, etc. to make them lightweight.

Bidirectional laminate:This type of laminate has fibers placed in two directions, either 0 and 90 degrees or +45 and -45 degrees. It has good strength in two directions and lower strength in the third direction. This type of laminate is useful in applications such as pressure vessels, boat hulls, etc.

To know more about Composite structures visit:

https://brainly.com/question/29485186

#SPJ11

When torque is increased in a transmission, how does this affect the transmission output speed? A) Decreased speed B) Increased speed C) The speed stays the same D) None of these

Answers

When torque is increased in a transmission, it does not directly affect the transmission output speed. Therefore, the correct answer is C) The speed stays the same.


Torque is a rotational force that causes an object to rotate around an axis. In a transmission system, torque is transferred from the input to the output, allowing for power transmission and speed control. The torque multiplication or reduction happens through gear ratios in the transmission.


Increasing the torque input does not inherently change the speed output because the gear ratios determine the relationship between torque and speed. The speed of the transmission output will depend on the specific gear ratio selected and the power requirements of the system. Therefore, increasing torque alone does not directly result in a change in transmission output speed.

Learn more about torque here : brainly.com/question/30338175

#SPJ11

A plane flies at a speed of 300 nautical miles per hour on a direction of N 22deg E. A wind is blowing at a speed of 25 nautical miles per hour on a direction due East. Compute the ground speed of the plane in nautical miles per hour

Answers

The ground speed of the plane can be calculated by considering the vector addition of the plane's airspeed and the wind velocity. Given that the plane flies at a speed of 300 nautical miles per hour in a direction of N 22° E and the wind is blowing at a speed of 25 nautical miles per hour due East, the ground speed of the plane is approximately 309.88 NM/hour, and the direction is N21.7deg E.

To calculate the ground speed of the plane, we need to find the vector sum of the plane's airspeed and the wind velocity.

The plane's airspeed is given as 300 nautical miles per hour on a direction of N 22° E. This means that the plane's velocity vector has a magnitude of 300 nautical miles per hour and a direction of N 22° E.

The wind is blowing at a speed of 25 nautical miles per hour due East. This means that the wind velocity vector has a magnitude of 25 nautical miles per hour and a direction of due East.

To find the ground speed, we need to add these two velocity vectors. Using vector addition, we can split the plane's airspeed into two components: one in the direction of the wind (due East) and the other perpendicular to the wind direction. The component parallel to the wind direction is simply the wind velocity, which is 25 nautical miles per hour. The component perpendicular to the wind direction remains at 300 nautical miles per hour.

Since the wind is blowing due East, the ground speed will be the vector sum of these two components. By applying the Pythagorean theorem to these components, we can calculate the ground speed. The ground speed will be approximately equal to the square root of the sum of the squares of the wind velocity component and the airspeed perpendicular to the wind.

Therefore, by calculating the square root of (25^2 + 300^2), the ground speed of the plane can be determined in nautical miles per hour.

The ground speed of the plane is approximately 309.88 NM/hour, and the direction is N21.7deg E.

Learn more about Ground speed:

https://brainly.com/question/28571326

#SPJ11

A round pipe 0.9 m diameter is partially filled to a height of 0.315 m What is the wetted perimeter in meter What is the hydrauc depth man meter.

Answers

For a round pipe with a diameter of 0.9 m and partially filled to a height of 0.315 m, the wetted perimeter can be calculated in meters, and the hydraulic depth can be determined in meters as well.

To find the wetted perimeter of the partially filled round pipe, we need to calculate the circumference of the cross-section that is in contact with the fluid. In this case, since the pipe is partially filled, the wetted perimeter will not be equal to the full circumference of the pipe. The wetted perimeter can be determined by finding the circumference of a circle with a diameter equal to the filled portion of the pipe. In this case, the diameter would be 0.9 m, and the filled height would be 0.315 m.

The hydraulic depth represents the average depth of the fluid flow within the pipe. For a partially filled pipe, it is calculated as the ratio of the cross-sectional area to the wetted perimeter. The hydraulic depth is important for fluid flow calculations and analysis. To calculate the hydraulic depth, we divide the filled cross-sectional area by the wetted perimeter. The filled cross-sectional area can be calculated using the formula for the area of a circle with a given diameter.

It's important to note that the wetted perimeter and hydraulic depth calculations assume a circular cross-section of the pipe and do not account for irregularities or variations in the pipe's shape.

Learn more about hydraulic here: https://brainly.com/question/31032804

#SPJ11

2. An electromagnetic wave is propagating in the z-direction in a lossy medium with attenuation constant α=0.5 Np/m. If the wave's electric-field amplitude is 100 V/m at z=0, how far can the wave travel before its amplitude will have been reduced to (a) 10 V/m, (b) 1 V/m, (c) 1μV/m ?

Answers

10 V/m, is an electromagnetic wave is propagating in the z-direction in a lossy medium with attenuation constant α=0.5 Np/m.

Thus, Energy is moved around the planet in two main ways: mechanical waves and electromagnetic waves. Mechanical waves include air and water waves caused by sound.

A disruption or vibration in matter, whether solid, gas, liquid, or plasma, is what generates mechanical waves. A medium is described as material through which waves are propagating. Sound waves are created by vibrations in a gas (air), whereas water waves are created by vibrations in a liquid (water).

By causing molecules to collide with one another, similar to falling dominoes, these mechanical waves move across a medium and transfer energy from one to the next. Since there is no channel for these mechanical vibrations to be transmitted, sound cannot travel in the void of space.

Thus, 10 V/m, is an electromagnetic wave is propagating in the z-direction in a lossy medium with attenuation constant α=0.5 Np/m.

Learn more about Electromagnetic wave, refer to the link:

https://brainly.com/question/13118055

#SPJ4

Quesion 2. Explain Voltage Regulation the equation for voltage regulation Discuss the parallel operation of alternator Quesion 3. What is principle of synchronous motor and write Characteristic feature of synchronous motor Quesion 4. Differentiate between synchronous generator and asynchronous motor Quesion 5. Write the different method of starting of synchronous motor

Answers

Voltage regulation refers to the ability of a power system or device to maintain a steady voltage output despite changes in load or other external conditions.

Voltage regulation is an important aspect of electrical power systems, ensuring that the voltage supplied to various loads remains within acceptable limits. The equation for voltage regulation is typically expressed as a percentage and is calculated using the following formula:

Voltage Regulation (%) = ((V_no-load - V_full-load) / V_full-load) x 100

Where:

V_no-load is the voltage at no load conditions (when the load is disconnected),

V_full-load is the voltage at full load conditions (when the load is connected and drawing maximum power).

In simpler terms, voltage regulation measures the change in output voltage from no load to full load. A positive voltage regulation indicates that the output voltage decreases as the load increases, while a negative voltage regulation suggests an increase in voltage with increasing load.

Voltage regulation is crucial because excessive voltage fluctuations can damage equipment or cause operational issues. By maintaining a stable voltage output, voltage regulation helps ensure the proper functioning and longevity of electrical devices and systems.

Learn more about power system.
brainly.com/question/28528278

#SPJ11

On a long flight, (over four hours) would it be cheaper to fly at lower altitudes without needing pressurization or at higher altitudes that need pressurization for the passengers? Explain your answer.

Answers

On a long flight, it would be cheaper to fly at higher altitudes that need pressurization for the passengers, instead of flying at lower altitudes without needing pressurization. Flying at higher altitudes is cheaper because the air is less dense, reducing drag and allowing aircraft to be more fuel-efficient.

Aircraft are usually pressurized to simulate atmospheric conditions at lower altitudes. Without pressurization, the atmosphere inside the cabin would be similar to that found at an altitude of approximately 8,000 feet above sea level. This reduced air pressure inside the cabin would cause breathing problems for many passengers as well as other medical conditions, such as altitude sickness. Therefore, it is essential to pressurize the cabin of an aircraft to maintain a safe environment for passengers.

Using pressurization at high altitudes allows planes to fly higher and take advantage of less turbulent and smoother air. Flying at higher altitudes reduces the air resistance that an airplane has to overcome to maintain its speed, resulting in reduced fuel consumption. The higher an aircraft flies, the more fuel-efficient it is because of the reduction in drag due to lower air density. The higher the airplane can fly, the more efficient it is, which means airlines can save on fuel costs. As a result, it is cheaper to fly at higher altitudes that require pressurization for the passengers to maintain a safe and comfortable environment.

To know more about atmospheric conditions visit:

https://brainly.com/question/28315873

#SPJ11

Catapult Calculations:
Weight of Catapult: 41 grams
Catapult Length: 15cm
Catapult Width: 14cm
Catapult Height: 14.5cm
First Launch: 282cm
Second Launch: 299cm
Avg. Launch: 290.5cm
Accuracy Part
First Launch: 125cm from target
Second Launch: 97 cm from target
Avg. distance from target: 111cm from target
Calculate:
Energy required for launching the projectile
 Maximum height reached by the projectile
 Time of flight
 Spring constant if elastic potential energy is used
 Height required if gravitational potential energy is used
 Force delivered by the launching mechanism
 Acceleration of the projectile at the time of launching
 Graph of distance covered by projectile Vs energy delivered
 Any other relevant parameters

Answers

Due to insufficient information provided (e.g., projectile mass, additional forces), it is not possible to accurately calculate the required parameters for the catapult or provide meaningful analysis.

1. if f(t) = 2e¹⁰ᵗ, find L{f(t)}. Apply the First Shift Theorem. 2. if f(s) = 3s , find L⁻¹ {F(s)}. - ---------- - s² + 49

Answers

The given function is f(t) = 2e¹⁰ᵗ , then L{f(t)} = F(s) .

How to find?

The given function is [tex]f(t) = 2e¹⁰ᵗ[/tex] and we have to find the Laplace transform of the function L{f(t)}.

Apply the First Shift Theorem.

So, L{f(t-a)} = e^(-as) F(s)

Here, a = 0, f(t-a)

= f(t).

Therefore, L{f(t)} = F(s)

= 2/(s-10)

2. The given function is f(s) = 3s, and we have to find [tex]L⁻¹ {F(s)} / (s² + 49).[/tex]

We have to find the inverse Laplace transform of F(s) / (s² + 49).

F(s) = 3sL⁻¹ {F(s) / (s² + 49)}

= sin(7t).

Thus, L⁻¹ {F(s)} / (s² + 49) = sin(7t) / (s² + 49).

To know more on first shift theorem visit:

https://brainly.com/question/33109258

#SPJ11

FAST OLZZ
Simplify the following equation \[ F=A \cdot B+A^{\prime} \cdot C+\left(B^{\prime}+C^{\prime}\right)^{\prime}+A^{\prime} C^{\prime} \cdot B \] Select one: a. \( 8+A^{\prime} \cdot C \) b. \( 8+A C C+B

Answers

The simplified expression is [tex]\[F=AB+A^{\prime} C+B \][/tex] Hence, option a) is correct, which is [tex]\[8+A^{\prime} C\][/tex]

The given expression is

[tex]\[F=A \cdot B+A^{\prime} \cdot C+\left(B^{\prime}+C^{\prime}\right)^{\prime}+A^{\prime} C^{\prime} \cdot B \][/tex]

To simplify the given expression, use the De Morgan's law.

According to this law,

[tex]$$ \left( B^{\prime}+C^{\prime} \right) ^{\prime}=B\cdot C $$[/tex]

Therefore, the given expression can be written as

[tex]\[F=A \cdot B+A^{\prime} \cdot C+B C+A^{\prime} C^{\prime} \cdot B\][/tex]

Next, use the distributive law,

[tex]$$ F=A B+A^{\prime} C+B C+A^{\prime} C^{\prime} \cdot B $$$$ =AB+A^{\prime} C+B \cdot \left( 1+A^{\prime} C^{\prime} \right) $$$$ =AB+A^{\prime} C+B $$[/tex]

Therefore, the simplified expression is

[tex]\[F=AB+A^{\prime} C+B \][/tex]

Hence, option a) is correct, which is [tex]\[8+A^{\prime} C\][/tex]

To know more about expression, visit:

https://brainly.com/question/28170201

#SPJ11

Q2. The two axes of an x-y positioning table are each driven by a stepping motor connected to a leadscrew with a 10:1 gear reduction. The number of step angles on each stepping motor is 20. Each leadscrew has a pitch = 5.0 mm and provides an axis range = 300.0 mm. There are 16 bits in each binary register used by the controller to store position data for the two axes. a) What is the control resolution of each axis? b) What are the required the rotational speeds and corresponding pulse train frequencies of each stepping motor in order to drive the table at 600 mm/min in a straight line from point (25,25) to point (100,150)? Ignore acceleration. Q3. A leadscrew coupled directly to a de servomotor is used to drive one of the table axes of an NC milling machine. The leadscrew has 5 threads/in. The optical encoder attached to the leadscrew emits 100 pulses/rev of the leadscrew. The motor rotates at a maximum speed of 800 rev/min. Determine: a) The control resolution of the system, expressed in linear travel distance of the table axis; b) the frequency of the pulse train emitted by the optical encoder when the servomotor operates at maximum speed; and c) the travel speed of the table at the maximum rpm of the motor.

Answers

Q2. The two axes of an x-y positioning table are each driven by a stepping motor connected to a leadscrew with a 10:1 gear reduction. The number of step angles on each stepping motor is 20. Each leadscrew has a pitch = 5.0 mm and provides an axis range = 300.0 mm.

There are 16 bits in each binary register used by the controller to store position data for the two axes.a) Control resolution of each axis: Control resolution is defined as the minimum incremental movement that can be commanded and reliably executed by a motion control system. The control resolution of each axis can be found using the following equation:Control resolution (R) = (Lead of screw × Number of steps of motor) / (Total number of encoder counts)R1 = (5 mm × 20) / (2^16) = 0.0003815 mmR2 = (5 mm × 20 × 10) / (2^16) = 0.003815 mmThe control resolution of the x-axis is 0.0003815 mm and the control resolution of the y-axis is 0.003815 mm.b) .

The optical encoder attached to the leadscrew emits 100 pulses/rev of the leadscrew. The motor rotates at a maximum speed of 800 rev/min. Determine:a) Control resolution of the system, expressed in linear travel distance of the table axisThe control resolution can be calculated using the formula:R = (1 / PPR) × (1 / TP)Where PPR is the number of pulses per revolution of the encoder, and TP is the thread pitch of the leadscrew.R = (1 / 100) × (1 / 5) = 0.002 inchesTherefore, the control resolution of the system is 0.002 inches.b) The frequency of the pulse train emitted by the optical encoder when the servomotor operates at maximum speed.

At the maximum speed, the motor rotates at 800 rev/min. Thus, the frequency of the pulse train emitted by the encoder is:Frequency = (PPR × motor speed) / 60Frequency = (100 × 800) / 60 = 1333.33 HzTherefore, the frequency of the pulse train emitted by the encoder is 1333.33 Hz.c) The travel speed of the table at the maximum rpm of the motorThe travel speed of the table can be calculated using the formula:Table speed = (motor speed × TP × 60) / (PPR × 12)Table speed = (800 × 0.2 × 60) / (100 × 12) = 8.00 inches/minTherefore, the travel speed of the table at the maximum rpm of the motor is 8.00 inches/min.

To know more about connected visit:

https://brainly.com/question/32592046

#SPJ11

I have found a research study online with regards to PCM or Phase changing Material, and I can't understand and visualize what PCM is or this composite PCM. Can someone pls help explain and help me understand what these two composite PCMs are and if you could show images of a PCM it is really helpful. I haven't seen one yet and nor was it shown to us in school due to online class. pls help me understand what PCM is the conclusion below is just a part of a sample study our teacher gave to help us understand though it was really quite confusing, Plss help
. Conclusions
Two composite PCMs of SAT/EG and SAT/GO/EG were prepared in this article. Their thermophysical characteristic and solar-absorbing performance were investigated. Test results indicated that GO showed little effect on the thermal properties and solar absorption performance of composite PCM. However, it can significantly improve the shape stability of composite PCM. The higher the density is, the larger the volumetric heat storage capacity. When the density increased to 1 g/ cm3 , SAT/EG showed severe leakage while SAT/GO/EG can still keep the shape stability. A novel solar water heating system was designed using SAT/GO/EG (1 g/cm3 ) as the solar-absorbing substance and thermal storage media simultaneously. Under the real solar radiation, the PCM gave a high solar-absorbing efficiency of 63.7%. During a heat exchange process, the temperature of 10 L water can increase from 25 °C to 38.2 °C within 25 min. The energy conversion efficiency from solar radiation into heat absorbed by water is as high as 54.5%, which indicates that the novel system exhibits great application effects, and the composite PCM of SAT/GO/EG is very promising in designing this novel water heating system.

Answers

PCM stands for Phase Changing Material, which is a material that can absorb or release a large amount of heat energy when it undergoes a phase change.

A composite PCM, on the other hand, is a mixture of two or more PCMs that exhibit improved thermophysical properties and can be used for various applications. In the research study mentioned in the question, two composite PCMs were investigated: SAT/EG and SAT/GO/EG. SAT stands for stearic acid, EG for ethylene glycol, and GO for graphene oxide.

These composite PCMs were tested for their thermophysical characteristics and solar-absorbing performance. The results showed that GO had little effect on the thermal properties and solar absorption performance of composite PCM, but it significantly improved the shape stability of the composite PCM.

To know more about PCM  visit:-

https://brainly.com/question/32700586

#SPJ11

Find the impulse response of the second-order system y[n] = 0.8(y[n 1] − y[n − 2]) + x[n 1]

Answers

In the second-order system of the given equation, the impulse response is the response of a system to a delta function input. Hence, to find the impulse response of the given second-order system y[n] = 0.8(y[n 1] − y[n − 2]) + x[n 1], the system is given an impulse input of δ[n].

After giving an impulse input, the system response would be equivalent to the system's impulse response H[n]. Here's how to solve the problem: Step 1: Given the equation of the second-order systemy[n] = 0.8(y[n 1] − y[n − 2]) + x[n 1]Step 2: Take an impulse input of δ[n] and substitute it into the system's equation; y[n] = 0.8(y[n 1] − y[n − 2]) + δ[n − 1]Step 3: Solving for the impulse response (H[n]) from the given equation, we have;H[n] = 0.8H[n − 1] − 0.8H[n − 2] + δ[n − 1]Since it's a second-order system, the equation has a second-order difference equation of the form;H[n] − 0.8H[n − 1] + 0.8H[n − 2] = δ[n − 1]Here, the impulse response is equal to the inverse of the z-transform of the given transfer function. Let's first find the transfer function of the given second-order system. Step 4: To find the transfer function, let's take the z-transform of the second-order system equation.

To know more about   impulse input visit:

brainly.com/question/31569699

#SPJ11

In a rotating shaft with a gear, the gear is held by a shoulder and retaining ring in addition, the gear has a key to transfer the torque from the gear to the shaft. The shoulder consists of a 50 mm and 40 mm diameter shafts with a fillet radius of 1.5 mm. The shaft is made of steel with Sy = 220 MPa and Sut = 350 MPa. In addition, the corrected endurance limit is given as 195 MPa. Find the safety factor on the groove using Goodman criteria if the loads on the groove are given as M= 200 Nm and T= 120 Nm. Please use conservative estimates where needed. Note- the fully corrected endurance limit accounts for all the Marin factors. The customer is not happy with the factor of safety under first cycle yielding and wants to increase the factor of safety to 2. Please redesign the shaft groove to accommodate that. Please use conservative estimates where needed

Answers

The required safety factor is 2.49 (approx) after redesigning the shaft groove to accommodate that.

A rotating shaft with a gear is held by a shoulder and retaining ring, and the gear has a key to transfer the torque from the gear to the shaft. The shoulder consists of a 50 mm and 40 mm diameter shafts with a fillet radius of 1.5 mm. The shaft is made of steel with Sy = 220 MPa and Sut = 350 MPa. In addition, the corrected endurance limit is given as 195 MPa. Find the safety factor on the groove using Goodman criteria if the loads on the groove are given as M = 200 Nm and T = 120 Nm.

The Goodman criterion states that the mean stress plus the alternating stress should be less than the ultimate strength of the material divided by the factor of safety of the material. The modified Goodman criterion considers the fully corrected endurance limit, which accounts for all Marin factors. The formula for Goodman relation is given below:

Goodman relation:

σm /Sut + σa/ Se’ < 1

Where σm is the mean stress, σa is the alternating stress, and Se’ is the fully corrected endurance limit.

σm = M/Z1 and σa = T/Z2

Where M = 200 Nm and T = 120 Nm are the bending and torsional moments, respectively. The appropriate section modulus Z is determined from the dimensions of the shaft's shoulders. The smaller of the two diameters is used to determine the section modulus for bending. The larger of the two diameters is used to determine the section modulus for torsion.

Section modulus Z1 for bending:

Z1 = π/32 (D12 - d12) = π/32 (502 - 402) = 892.5 mm3

Section modulus Z2 for torsion:

Z2 = π/16

d13 = π/16 50^3 = 9817 mm3

σm = M/Z1 = (200 x 10^6) / 892.5 = 223789 Pa

σa = T/Z2 = (120 x 10^6) / 9817 = 12234.6 Pa

Therefore, the mean stress is σm = 223.789 MPa and the alternating stress is σa = 12.235 MPa.

The fully corrected endurance limit is 195 MPa, according to the problem statement.

Let’s plug these values in the Goodman relation equation.

σm /Sut + σa/ Se’ = (223.789 / 350) + (12.235 / 195) = 0.805

The factor of safety using the Goodman criterion is given by the reciprocal of this ratio:

FS = 1 / 0.805 = 1.242

The customer requires a safety factor of 2 under first cycle yielding. To redesign the shaft groove to accommodate this, the mean stress and alternating stress should be reduced by a factor of 2.

σm = 223.789 / 2 = 111.8945 MPa

σa = 12.235 / 2 = 6.1175 MPa

Let’s plug these values in the Goodman relation equation.

σm /Sut + σa/ Se’ = (111.8945 / 350) + (6.1175 / 195) = 0.402

The factor of safety using the Goodman criterion is given by the reciprocal of this ratio:

FS = 1 / 0.402 = 2.49 approximated to 2 decimal places.

Hence, the required safety factor is 2.49 (approx) after redesigning the shaft groove to accommodate that.

Learn more about safety factor visit:

brainly.com/question/13385350

#SPJ11

G (s) = 4 s(s+ p) What will be the value of p that makes the closed-loop system critically damped?

Answers

Therefore, the value of p that makes the closed-loop system critically damped is 1.

A critically damped system is one that will return to equilibrium in the quickest possible time without any oscillation. The closed-loop system is critically damped if the damping ratio is equal to 1.

The damping ratio, which is a measure of the amount of damping in a system, can be calculated using the following equation:

ζ = c/2√(km)

Where ζ is the damping ratio, c is the damping coefficient, k is the spring constant, and m is the mass of the system.

We can determine the damping coefficient for the closed-loop system by using the following equation:

G(s) = 1/(ms² + cs + k)

where G(s) is the transfer function, m is the mass, c is the damping coefficient, and k is the spring constant.

For our system,

G(s) = 4s(s+p),

so:4s(s+p) = 1/(ms² + cs + k)

The damping coefficient can be calculated using the following formula:

c = 4mp

The denominator of the transfer function is:

ms² + 4mp s + 4mp² = 0

This is a second-order polynomial, and we can solve for s using the quadratic formula:

s = (-b ± √(b² - 4ac))/(2a)

where a = m, b = 4mp, and c = 4mp².

Substituting in these values, we get:

s = (-4mp ± √(16m²p² - 16m²p²))/2m = -2p ± 0

Therefore, s = -2p.

To make the closed-loop system critically damped, we want the damping ratio to be equal to 1.

Therefore, we can set ζ = 1 and solve for p.ζ = c/2√(km)1 = 4mp/2√(4m)p²1 = 2p/2p1 = 1.

to know more about closed loop system visit:

https://brainly.com/question/11995211

#SPJ11

2.(Sums of Random Variables) (25 pts) (Expected Completion Time: 15 min) 1. (20pts) True or False. No need to justify. (i) The sum of the first two prime numbers is equal to 3, (ii) Let X, be a Bernoulli random variable with parameter p and X₂ an exponential random variable with parameter λ. Then, E[X1 + X2] = P+ 1/λ
(iii) Consider three random variable X1, X2, and X3. Suppose that X1 and X2 are indepen- dent. Then V(X1 + X2 + X3) = V(X1) + V(X2) + V(X2) + 2Cov(X2, X3) + 2Cov(X1, X3) (2) (iv) Let X be the average of n i.i.d. random variables. Then, V(X) is decreasing as we increase n.

Answers

False. The first two prime numbers are 2 and 3, and their sum is 5, not 3.

(ii) False. The expected value of the sum of two random variables is equal to the sum of their individual expected values. Therefore, E[X1 + X2] = E[X1] + E[X2]. In this case, E[X1] = p and E[X2] = 1/λ, so E[X1 + X2] = p + 1/λ, not P + 1/λ.

(iii) False. The correct formula for the variance of the sum of three random variables is V(X1 + X2 + X3) = V(X1) + V(X2) + V(X3) + 2Cov(X1, X2) + 2Cov(X1, X3) + 2Cov(X2, X3). The formula in the statement includes an extra term 2Cov(X2, X3) and is incorrect.

(iv) True. The variance of the average of n i.i.d. random variables is equal to the variance of a single random variable divided by n. As n increases, the variance of the average decreases because the individual observations are averaged out, leading to less variability in the average value.

Learn more about prime numbers here:

brainly.com/question/30210177

#SPJ4

List the "destructive" test methods used in evaluation of the weld quality of welded joints (10 p), and briefly explain the procedure and commenting of the results of one of them (10 p)

Answers

Listed below are some destructive testing methods:

Macroscopic examination (visual inspection)Hardness testingBend testingTensile testingFracture toughness testing

Explanation:

In evaluating the quality of welded joints, destructive testing methods are employed.

Destructive testing is a technique that involves subjecting a component or structure to forces or conditions that will eventually cause it to fail, thereby allowing engineers to obtain data about the component's performance and structural integrity.

Listed below are some destructive testing methods used to evaluate the weld quality of welded joints:

Macroscopic examination (visual inspection)Hardness testingBend testingTensile testingFracture toughness testing

One of the most common destructive testing methods employed in evaluating the quality of welded joints is the Bend test.

The bend test is a straightforward test method that involves bending a metal sample, which has been welded to evaluate its ductility, strength, and soundness, at a certain angle or until a specific degree of deformation occurs.

This test determines the quality of the weld and its mechanical properties. The procedure for the Bend test is as follows:

Cut the weld sample to a specific dimension.

Make two cuts across the weld face and down the center of the weld.

Third, use a bending machine to bend the sample until a specified angle is reached or until the sample fails visually.

Finally, inspect the fractured surface of the sample to determine the nature of the failure and evaluate the quality of the weld.

Commenting on the results, the inspector may evaluate the quality of the weld by examining the nature of the fracture.

If the fracture appears to be brittle and transverse, it is an indication that the weld has failed, which means the joint quality is poor.

Conversely, if the fracture appears to be ductile and curved, it is an indication that the joint quality is good and has sufficient strength and ductility.

The Bend test is one of the most common destructive testing methods used in evaluating the quality of welded joints, and it is useful in determining the soundness, ductility, and strength of the weld.

The results of this test allow for the inclusion of a conclusion about the quality of the weld.

To know more about Destructive testing, visit:

https://brainly.com/question/31260340

#SPJ11

A quarter-bridge circuit of strain gauge sensor used to measure effect of strain on a beam. When resistant of R1 = 20kΩ , R2 =20kΩ , R3=40kΩ, the active strain gauge hasgauge factor of 2.1. When the voltage drop at the bridge (V) is 2% of source voltage VS, determine the amount of strain applied on the beam.

Answers

Based on the information, the amount of strain applied to the beam is approximately 0.0381.

How to calculate the value

First, let's calculate the value of ΔR:

ΔR = R₁ - R₂

= 20kΩ - 20kΩ

= 0kΩ

Since ΔR is 0kΩ, it means there is no resistance change in the active strain gauge. Therefore, the strain is also 0.

V = ΔR / (R1 + R2 + R3) * VS

From the given information, we know that V is 2% of VS. Assuming VS = 1 (for simplicity), we have:

0.02 = ΔR / (20kΩ + 20kΩ + 40kΩ) * 1

ΔR = 0.02 * (20kΩ + 20kΩ + 40kΩ)

= 0.02 * 80kΩ

= 1.6kΩ

Finally, we can calculate the strain:

ε = (ΔR / R) / GF

= (1.6kΩ / 20kΩ) / 2.1

= 0.08 / 2.1

≈ 0.0381

Therefore, the amount of strain applied to the beam is approximately 0.0381.

Learn more about strain on

https://brainly.com/question/17046234

#SPJ4

B// Numerate the modifications of the basic cycle of gas turbine power plant?. If you add heat exchanger for the basic cycle in which the heat given up by the gasses is double that taken up by the air, assuming the air and gasses have the same mass and properties, find the heat exchanger effectiveness and thermal ratio of power plant.

Answers

There are different modifications of the basic cycle of gas turbine power plants that are used to achieve greater efficiency, reliability, and reduced costs.

Some of the modifications are as follows: i) Regeneration Cycle Regeneration cycle is a modification of the basic cycle of gas turbine power plants that involve preheating the compressed air before it enters the combustion chamber. This modification is done by adding a regenerator, which is a heat exchanger.

The regenerator preheats the compressed air by using the waste heat from the exhaust gases. ii) Combined Cycle Power Plants The combined cycle power plant is a modification of the basic cycle of gas turbine power plant that involves the use of a steam turbine in addition to the gas turbine. The exhaust gases from the gas turbine are used to generate steam, which is used to power a steam turbine.

Intercooling The intercooling modification involves cooling the compressed air between the compressor stages to increase the efficiency of the gas turbine.

To know more about modifications visit:

https://brainly.com/question/32253857

#SPJ11

Poisson's Ratio for Stainless Steel is... 0.28 0.32 0.15 O 0.27 a If the allowable deflection of a warehouse is L/180, how much is a 15' beam allowed to deflect? 0.0833 inches O 1 inch 1.5 inches 1 foot

Answers

The given Poisson's Ratio options for stainless steel are 0.28, 0.32, 0.15, and 0.27. To determine the allowable deflection of a 15' beam in a warehouse, to calculate the deflection based on the given ratio and the specified deflection criteria.

The correct answer is 0.0833 inches. Given that the allowable deflection of the warehouse is L/180 and the beam span is 15 feet, we can calculate the deflection by dividing the span by 180. Therefore, 15 feet divided by 180 equals 0.0833 feet. Since we need to express the deflection in inches, we convert 0.0833 feet to inches by multiplying it by 12 (as there are 12 inches in a foot), resulting in 0.9996 inches. Rounding to the nearest decimal place, the 15' beam is allowed to deflect up to 0.0833 inches. Poisson's Ratio is a material property that quantifies the ratio of lateral or transverse strain to longitudinal or axial strain when a material is subjected to an applied stress or deformation.

Learn more about Poisson's Ratio here:

https://brainly.com/question/31441362

#SPJ11

b) The transformation from spherical coordinates (r, 0, q) to Cartesian coordinates (x, y, z) to move an object using robot arm is given by the function F: Rx [0, π] × [0, 2)→ R³ with components: x = r cosø sine y = r sine z = rcosø Calculate by using the Jacobian matrix the changes of the coordinate.

Answers

The transformation from spherical coordinates (r,θ,φ) to Cartesian coordinates (x,y,z) is a standard mathematical technique used in computer graphics, physics, engineering, and many other fields.

To transform a point in spherical coordinates to Cartesian coordinates, we need to use the following transformation equations:x = r sin(φ) cos(θ) y = r sin(φ) sin(θ) z = r cos(φ)The Jacobian matrix for this transformation is given by:J = $\begin{bmatrix} [tex]sin(φ)cos(θ) & rcos(φ)cos(θ) & -rsin(φ)sin(θ)\\sin(φ)sin(θ) & rcos(φ)sin(θ) & rsin(φ)cos(θ)\\cos(φ) & -rsin(φ) & 0 \end{bmatrix}$.[/tex]

We can use this matrix to calculate the changes in the coordinate system. Let's say we have a point P in spherical coordinates given by P = (r,θ,φ). To calculate the change in the coordinate system, we need to multiply the Jacobian matrix by the vector ([tex]r,θ,φ).[/tex]

To know more about coordinate visit:

https://brainly.com/question/32836021

#SPJ11

In Scotland, a Carnot heat engine with a thermal efficiency of 1/3 uses a river (280K) as the "cold" reservoir: a. Determine the temperature of the hot reservoir. b. Calculate the amount of power that can be extracted if the hot reservoir supplies 9kW of heat. c. Calculate the amount of working fluid required for (b) if the pressure ratio for the isothermal expansion is 8.

Answers

The temperature of the hot reservoir is 420 K.

The amount of power that can be extracted is 3 kW.

a) To determine the temperature of the hot reservoir, we can use the formula for the thermal efficiency of a Carnot heat engine:

Thermal Efficiency = 1 - (Tc/Th)

Where Tc is the temperature of the cold reservoir and Th is the temperature of the hot reservoir.

Given that the thermal efficiency is 1/3 and the temperature of the cold reservoir is 280 K, we can rearrange the equation to solve for Th:

1/3 = 1 - (280/Th)

Simplifying the equation, we have:

280/Th = 2/3

Cross-multiplying, we get:

2Th = 3 * 280

Th = (3 * 280) / 2

Th = 420 K

b) The amount of power that can be extracted can be calculated using the formula:

Power = Thermal Efficiency * Heat input

Given that the thermal efficiency is 1/3 and the heat input is 9 kW, we can calculate the power:

Power = (1/3) * 9 kW

Power = 3 kW

Know more about thermal efficiencyhere;

https://brainly.com/question/12950772

#SPJ11

Question: You are required to create a discrete time signal x(n), with 5 samples where each sample's amplitude is defined by the middle digits of your student IDs. For example, if your ID is 19-39489-1, then: x(n) = [39 4 8 9]. Now consider x(n) is the excitation of a linear time invariant (LTI) system. Here, h(n) [9 8493] - (a) Now, apply graphical method of convolution sum to find the output response of this LTI system. Briefly explain each step of the solution. Please Answer Carefully and accurately with given value. It's very important for me.

Answers

According to the statement h(n)=[0 0 0 0 9 8 4 9 3]Step 2: Convolve x(n) with the first shifted impulse response  y(n) = [351 312 156 132 137 92 161 92 39].

Given that the discrete time signal x(n) is defined as,  x(n) = [39 4 8 9]And, h(n) = [9 8493]Let's find the output response of this LTI system by applying the graphical method of convolution sum.Graphical method of convolution sum.

To apply the graphical method of convolution sum, we need to shift the impulse response h(n) from the rightmost to the leftmost and then we will convolve each shifted impulse response with the input x(n). Let's consider each step of this process:Step 1: Shift the impulse response h(n) to leftmost Hence, h(n)=[0 0 0 0 9 8 4 9 3]Step 2: Convolve x(n) with the first shifted impulse response

Hence, y(0) = (9 * 39) = 351, y(1) = (8 * 39) = 312, y(2) = (4 * 39) = 156, y(3) = (9 * 8) + (4 * 39) = 132, y(4) = (9 * 4) + (8 * 8) + (3 * 39) = 137, y(5) = (9 * 8) + (4 * 4) + (3 * 8) = 92, y(6) = (9 * 9) + (8 * 8) + (4 * 4) = 161, y(7) = (8 * 9) + (4 * 8) + (3 * 4) = 92, y(8) = (4 * 9) + (3 * 8) = 39Hence, y(n) = [351 312 156 132 137 92 161 92 39]

To know more about Output visit :

https://brainly.com/question/14643550

#SPJ11

A lathe can be modeled as an electric motor mounted on a steel table. The table plus the motor have a mass of 90 kg. The rotating parts of the lathe have a mass of 7 kg at a distance 0.2 m from the center. The damping ratio of the system is measured to be 0.1 and its natural frequency is 8 Hz. Calculate the amplitude of the steady-state displacement of the motor, when the motor runs at 40 Hz.

Answers

The amplitude of the steady-state displacement of the motor, when the motor runs at 40 Hz is 1.015 × 10⁻⁶ m.

Mass of the table plus motor = 90 kg

Mass of rotating parts = 7 kg

Distance of rotating parts from the center of the lathe = 0.2 m

Damping ratio of the system = 0.1

Natural frequency of the system = 8 Hz Frequency of the motor = 40 Hz

We can model the lathe as a second-order system with the following parameters:

Mass of the system, m = Mass of the table plus motor + Mass of rotating parts= 90 + 7= 97 kg

Natural frequency of the system, ωn = 2πf = 2π × 8 = 50.24 rad/s

Damping ratio of the system, ζ = 0.1

Let us calculate the amplitude of the steady-state displacement of the motor using the formula below:

Amplitude of the steady-state displacement of the motor, x = F/[(mω²)²+(cω)²]where,

F = force excitation = 1

ω = angular frequency = 2πf = 2π × 40 = 251.33 rad/s

m = mass of the system = 97 kg

c = damping coefficient

ωn = natural frequency of the system = 50.24 rad/s

ζ = damping ratio of the system = 0.1

Substituting the given values in the formula, we get

x = F/[(mω²)²+(cω)²]= 1/[(97 × 251.33²)² + (2 × 0.1 × 97 × 251.33)²]= 1/[(98.5 × 10⁶) + (6.1 × 10⁵)]≈ 1.015 × 10⁻⁶ m

The amplitude of the steady-state displacement of the motor, when the motor runs at 40 Hz is 1.015 × 10⁻⁶ m.

To know more about amplitude visit:

https://brainly.com/question/9525052

#SPJ11

Other Questions
A create is sliding down a 10 degree hill, initially moving at 1.4 m/s. If the coefficient of friction is 0.38, How far does it slide down the hill before stopping? 0 2.33 m 0.720 m 0.49 m 1.78 m The Three vectors are given by P=2ax - az Q=2ax - ay + 2az R-2ax-3ay, +az Determine (a) (P+Q) X (P - Q) (b) sin0QRShow all the equations, steps, calculations, and units. A hollow cast iron column has internal diameter 200 mm. What should be the external diameter so that it could carry a load of 1.6MN without exceeding a stress of 90MPa ? In the integrated farming system, the livestock enterprise has; A. No interrelations with crop enterprises B. Positive interrelations crop enterprises C. None of the above (i) Explain the meaning of the Virial Theorem, i.e., E = U/2, where E is the star's total energy while U is its potential energy. (ii) Why does the Virial Theorem imply that, as a molecular cloud c How long does it take for the total energy stored in the circuit to drop to 10% of that value?Express your answer with the appropriate units.A cylindrical solenoid with radius 1.00 cm and length 10.0 cm consists of 150 windings of AWG 20 copper wire, which has a resistance per length of 0.0333 /m. This solenoid is connected in series with a 10.0 F capacitor, which is initially uncharged. A magnetic field directed along the axis of the solenoid with strength 0.160 T is switched on abruptly.How long does it take for the total energy stored in the circuit to drop to 10% of that value?Express your answer with the appropriate units. 33. True (a) or False (b) In response to fat and protein, the small intestine will secrete the hormone Cholecystokinin to slow stomach motility so that only a small amount of the food moves forward.34. True (a) or False (b) During external gas exchange O2 will move from the blood into the alveoli, and CO2 will move from the alveoli to the blood.35. True (a) or False (b) An increase CO2 levels due to obstruction of air passageways will cause Respiratory Acidosis.36. True (a) or False (b) The mechanisms that control GFR by constricting the afferent arteriole are increasing the amount of urine produced.37. True (a) or False (b) Carbonic anhydrase will make H2CO3- will decompose to form H+ and HCO3- to correct an acidic environment problem.38. True (a) or False (b) A Primary Oocyte is a mature egg that can be fertilized by the sperm. Match the role of the enzyme to their Gyrase DNA Ligase DNA polymerase Helicase [Choose ] The enzyme complex adds nucleotides in a leading a lagging fashion to generate new copies of DNA. The enzyme unwinds DNA to create a replication fork. The enzyme that forms a covalent bond in the phosphodiester backbone of DNA. The enzyme adds negative supercoils to the DNA to reduce strain on the DNA. The enzyme complex adds nu The enzyme that forms a cova The enzyme unwinds DNA to + Data/security is IT's job. Employees are not responsible for keeping data safe and secure. True False Mr. Johnson, age 57, presented to his physician with marked fatigue, nausea with occasional diarrhea, and a sore, swollen tongue. Lately he also has been experiencing a tingling feeling in his toes and a feeling of clumsiness. Microscopic examination of a blood sample indicated a reduced number of erythrocytes, many of which are megaloblasts, and a reduced number of leukocytes, including many large, hypersegmented cells. Hemoglobin and serum levels of vitamin B12 were below normal. Additional tests confirm pernicious anemia.Discussion QuestionsRelate the pathophysiology of pernicious anemia to the manifestations listed above. (See Pernicious Anemia.)Discuss how the gastric abnormalities contribute to vitamin B12 and iron deficiency and how vitamin B12 deficiency causes complications associated with pernicious anemia. (See Pernicious AnemiaPathophysiology, Etiology.)Discuss other tests that could be performed to diagnose this type of anemia. (See Pernicious AnemiaDiagnostic Tests.)Discuss the treatment available and the limitations. 1. How many moles of oxygen gas are needed to completely react with1.34 moles of hydrogen gas?2. How manyatoms are in 7.01 x 10 moles of nitrogen gas?3. How manymoles of oxygen are in 2. What are the benefits of being unionized? Describe the collective agreement. What is it? How is it formed? How is the role of management changed once the organization is unionized? pls help if you can asap!! Convert these values to scientific notation.Part 1 (1 point)log x = 11.51 ; x= Part 2 (1 point)log x = -8.95 ; x= NAME OF CHARTDESCRIPTION / PURPOSEFluid balance chartBowel chartBehaviour chartTo assess a patients risk of developing a pressure soreGeneral observation chartNeurological observation chartFood chartPain chart We have looked at the structure of DNA in cells. There are some differences. Based on what we have learned, which of the following is TRUE?a.Telomeres are found on all chromosomes, both prokaryotic and eukaryotic, however only eukaryotic telomers shorten over time.b.All the answers presented are TRUE.c.All the chromosomes found in eukaryotes are linear while prokaryotic chromosomes are circular.d.Bacterial chromosomes have multiple origins of replication, thus allowing for short generation times, whereas eukaryotic chromosomes are replicated from a single origin.e.Prokaryotic chromosomes contain kinetochores whereas eukaryotic chromosomes have centromeres.f.Mitochondrial chromosomal DNA is similar in structure to bacterial chromosomes. Find the dimensions of the rectangle with perimeter 1120 inches with the largest possible area. (For this problem, if necessary, assume that the length is the less than or equal to the width.) length = width = What is the maximum area? area = Choose the correct form of the verbs to complete the sentence.Cuando yo ________ (entrar), Tania ________ ( hablar) con mi hermana. entr, hablaba entr, hablaba entra, habla entr, habl Consider that you are an engineer employed by a wire-drawing manufacturing company. During a room temperature drawing operation of a single phase alloy, you have observed that after several passes, the drawing machine requires higher pulling forces. Further, during the subsequent passes, when the wires become very fine, the operations get disrupted due to the tearing of the wire. As the engineer in charge, can you explain the following, What material phenomena is taking place during the wire-drawing that requires a higher pulling force. Support your answers with illustrations of microstructures and in reference to the stress-strain curve. Describe the function of the following enzymes used in DNAreplication:ligase:helicase:DNA polymerase III: