A 43 kg crate full of very cute baby chicks is placed on an incline that is 31° below the horizontal. The crate is connected to a spring that is anchored to a vertical wall, such that the spring is
parallel to the surface of the incline. (a) ( ) If the crate was connected to the spring at equilibrium length, and then allowed to stretch the spring until the crate comes to rest, determine the spring constant. Assume
that the incline is frictionless and that the change in length of the spring is 1.13 m. (b) If there is friction between the incline and the crate, would the spring stretch more, or less than if the incline is frictionless? You must use concepts pertaining to work
and energy to receive full credit

Answers

Answer 1

(a) The spring constant is calculated to be (2 * 43 kg * 9.8 m/s^2 * 1.13 m * sin(31°)) / (1.13 m)^2, using the given values.

(b) If there is friction between the incline and the crate, the spring would stretch less compared to a frictionless incline due to the additional work required to overcome friction.

(a) To determine the spring constant, we can use the concept of potential energy stored in the spring. When the crate is at rest, the gravitational potential energy is converted into potential energy stored in the spring.

The gravitational potential energy can be calculated as:

PE_gravity = m * g * h

where m is the mass of the crate (43 kg), g is the acceleration due to gravity (9.8 m/s^2), and h is the vertical height of the incline.

h = L * sin(theta)

where L is the change in length of the spring (1.13 m) and theta is the angle of the incline (31°). Therefore, h = 1.13 m * sin(31°).

The potential energy stored in the spring can be calculated as:

PE_spring = (1/2) * k * x^2

where k is the spring constant and x is the change in length of the spring (1.13 m).

Since the crate comes to rest, the potential energy stored in the spring is equal to the gravitational potential energy:

PE_gravity = PE_spring

m * g * h = (1/2) * k * x^2

Solving for k, we have:

k = (2 * m * g * h) / x^2

Substituting the given values, we can calculate the spring constant.

(b) If there is friction between the incline and the crate, the spring would stretch less than if the incline were frictionless. The presence of friction would result in additional work being done to overcome the frictional force, which reduces the amount of work done in stretching the spring. As a result, the spring would stretch less in the presence of friction compared to a frictionless incline.

To learn more about friction visit : https://brainly.com/question/24338873

#SPJ11


Related Questions

when defining a system , it is important to make sure that the impulse is a result of an internal force
an external force
forces within the system
none of the above

Answers

When defining a system, it is important to make sure that the impulse is a result of external forces.

When defining a system, it is crucial to consider the forces acting on the system and their origin. Impulse refers to the change in momentum of an object, which is equal to the force applied over a given time interval. In the context of defining a system, the impulse should be a result of external forces. External forces are the forces acting on the system from outside of it. They can come from interactions with other objects or entities external to the defined system. These forces can cause changes in the momentum of the system, leading to impulses. By focusing on external forces, we ensure that the defined system is isolated from the external environment and that the changes in momentum are solely due to interactions with the surroundings. Internal forces, on the other hand, refer to forces between objects or components within the system itself. Considering internal forces when defining a system may complicate the analysis as these forces do not contribute to the impulse acting on the system as a whole. By excluding internal forces, we can simplify the analysis and focus on the interactions and influences from the external environment. Therefore, when defining a system, it is important to make sure that the impulse is a result of external forces to ensure a clear understanding of the system's dynamics and the effects of external interactions.

To learn more about impulse , click here : https://brainly.com/question/30466819

#SPJ11

In an RC series circuit, ε = 12.0 V, R = 1.49 MQ, and C= 1.64 F. (a) Calculate the time constant. (b) Find the maximum charge that will appear on the capacitor during charging. (c) How long does it take for the charge to build up to 11.5C? (a) Number i Units (b) Number i Units (c) Number i Units

Answers

Therefore, it takes approximately 1.218 × 10⁶ seconds for the charge to build up to 11.5 C.

To calculate the time constant in an RC series circuit, you can use the formula:

τ = R * C

ε = 12.0 V

R = 1.49 MQ (megaohm)

C = 1.64 F (farad)

(a) Calculate the time constant:

τ = R * C

= 1.49 MQ * 1.64 F

τ = (1.49 × 10⁶ Ω) * (1.64 C/V)

= 2.4436 × 10⁶ s (seconds)

Therefore, the time constant is approximately 2.4436 × 10⁶ seconds.

(b) To find the maximum charge that will appear on the capacitor during charging, you can use the formula:

Q = C * ε

= 1.64 F * 12.0 V

= 19.68 C (coulombs)

Therefore, the maximum charge that will appear on the capacitor during charging is approximately 19.68 coulombs.

(c) To calculate the time it takes for the charge to build up to 11.5 C, you can use the formula:

t = -τ * ln(1 - Q/Q_max)

t = - (2.4436 × 10⁶s) * ln(1 - 11.5 C / 19.68 C)

t ≈ - (2.4436 ×10⁶ s) * ln(0.4157)

t ≈ 1.218 × 10^6 s (seconds)

Learn more about series circuit here : brainly.com/question/14997346
#SPJ11

113 ft3/min water is to be delivered through a 250 foot long smooth pipe with a pressure drop of 5.2 psi. Determine the required pipe diameter as outlined using the following steps: a) Use 3 inches as your initial guess for the diameter of the pipe and indicate what your next guess would be. b) During design, it is determined that the actual pipeline will include 7 standard elbows and two open globe valves. Show how your calculations for part a) would need to be modified to account for these fittings.

Answers

a) The next guess for the pipe diameter would be Y inches.

b) The modified calculations would include the equivalent lengths of the fittings to determine the required pipe diameter.

To determine the required pipe diameter, we can use the Darcy-Weisbach equation, which relates the pressure drop in a pipe to various parameters including flow rate, pipe length, pipe diameter, and friction factor. We can iteratively solve for the pipe diameter using an initial guess and adjusting it until the calculated pressure drop matches the desired value.

a) Using 3 inches as the initial guess for the pipe diameter, we can calculate the friction factor and the resulting pressure drop. If the calculated pressure drop is greater than the desired value of 5.2 psi, we need to increase the pipe diameter. Conversely, if the calculated pressure drop is lower, we need to decrease the diameter.

b) When accounting for fittings such as elbows and valves, additional pressure losses occur due to flow disruptions. Each fitting has an associated equivalent length, which is a measure of the additional length of straight pipe that would cause an equivalent pressure drop. We need to consider these additional pressure losses in our calculations.

To modify the calculations for part a), we would add the equivalent lengths of the seven standard elbows and two open globe valves to the total length of the pipe. This modified length would be used in the Darcy-Weisbach equation to recalculate the required pipe diameter.

Learn more about pipe diameter

brainly.com/question/29217739

#SPJ11

7. Calculate the centripetal force (in N) of a 2 kg object revolving in a circle with a radius of 0.5 m at a velocity of 6 m/s?

Answers

The centripetal force of the object is 144 Newtons.

The centripetal force (Fc) can be calculated using the following equation:

Fc = (m * v^2) / r

where:

- Fc is the centripetal force,

- m is the mass of the object (2 kg),

- v is the velocity of the object (6 m/s), and

- r is the radius of the circle (0.5 m).

Substituting the given values into the equation, we have:

Fc = (2 kg * (6 m/s)^2) / 0.5 m

Simplifying the equation further, we get:

Fc = (2 kg * 36 m^2/s^2) / 0.5 m

  = (72 kg * m * m/s^2) / 0.5 m

  = 144 N

Therefore, the centripetal force of the object is 144 Newtons.

To know more about centripetal force, refer here:

https://brainly.com/question/14021112#

#SPJ11

Question 10 Bi-214 has a half-life of 19.7 minutes. A sample of 100g of Bi-124 is present initially. What mass of Bi-124 remains 98.5 minutes later? a A. 6.25 g B. 19,7 g C. 3.125g D. 20 g

Answers

10 Bi-214 has a half-life of 19.7 minutes. A sample of 100g of Bi-124 is present initially, the mass of Bi-124 remains 98.5 minutes later is C. 3.125g.

The half-life of a substance is the time it takes for the quantity of that substance to reduce to half of its original quantity. In this case, we are looking at the half-life of Bi-214, which is 19.7 minutes. This means that if we start with 100g of Bi-214, after 19.7 minutes, we will have 50g left. After another 19.7 minutes, we will have 25g left, and so on. Now, we are asked to find out what mass of Bi-214 remains after 98.5 minutes.

We can do this by calculating the number of half-lives that have passed, and then multiplying the initial mass by the fraction remaining after that many half-lives. In this case, we have: 98.5 / 19.7 = 5 half-lives.

So, after 5 half-lives, the fraction remaining is (1/2)^5 = 1/32.

Therefore, the mass remaining is: 100g x 1/32 = 3.125g. Hence, the correct option is C. 3.125g.

Learn more about fraction at:

https://brainly.com/question/29766013

#SPJ11

The main water line enters a house on the first floor. The line has a gauge pressure of 285 x 10% Pa(a) A faucet on the second floor, 4.10 m above the first floor, is turned off. What is the gauge pressure at this faucet? (b) How high could a faucet be before no water would flow from it even if the faucet were open? (a) Number 1 Units (b) Number Units A water tower is a familiar sight in many towns. The purpose of such a tower is to provide storage capacity and to provide sufficient pressure in the pipes that deliver the water to customers. The drawing shows a spherical reservoir that contains 3.09 x 105 kg of water when full. The reservoir is vented to the atmosphere at the top. For a full reservoir, find the gauge pressure that the water has at the faucet in (a) house A and (b) house B. Ignore the diameter of the delivery pipes. Vent 150 m Facet 12.30 m Faucet (a) Number i Units (b) Number Units

Answers

The gauge pressure at the faucet is [tex]325\times10^{3} Pa[/tex] and the maximum height is 29.169 m.

(a) To find the gauge pressure at the faucet on the second floor, we can use the equation for pressure due to the height difference:

Pressure = gauge pressure + (density of water) x (acceleration due to gravity) x (height difference).

Given the gauge pressure at the main water line and the height difference between the first and second floors, we can calculate the gauge pressure at the faucet on the second floor. So,

Pressure =[tex]2.85\times 10^{5}+(997)\times(9.8)\times(4.10) =325\times10^{3} Pa.[/tex]

Thus, the gauge pressure at the faucet on the second floor is [tex]325\times10^{3} Pa.[/tex]

(b) The maximum height at which water can be delivered from a faucet depends on the pressure needed to push the water up against the force of gravity. This pressure is related to the maximum height by the equation:

Pressure = (density of water) * (acceleration due to gravity) * (height).

By rearranging the equation, we can solve for the maximum height.

Maximum height = [tex]\frac{pressure}{density of water \times acceleration of gravity}\\=\frac{2.85 \times10^{5}}{997\times 9.8} \\=29.169 m[/tex]

Therefore, the gauge pressure at the faucet is [tex]325\times10^{3} Pa[/tex] and the maximum height is 29.169 m.

Learn more about pressure here: brainly.com/question/28012687

#SPJ11

CORRECT QUESTION

The main water line enters a house on the first floor. The line has a gauge pressure of [tex]2.85\times10^{5}[/tex] Pa. (a) A faucet on the second floor, 4.10 m above the first floor, is turned off. What is the gauge pressure at this faucet? (b) How high could a faucet be before no water would flow from it even if the faucet were open?

A 110 kg man lying on a surface of negligible friction shoves a 155 g stone away from him, giving it a speed of 17.0 m/s. What speed does the man acquire as a result?

Answers

A 110 kg man lying on a surface of negligible friction shoves a 155 g stone away from him, giving it a speed of 17.0 m/s then the man's speed remains zero.

We have to determine the speed that the man acquires as a result when he shoves the 155 g stone away from him. Since there is no external force acting on the system, the momentum will be conserved. So, before the man shoves the stone, the momentum of the system will be:

m1v1 = (m1 + m2)v,

where v is the velocity of the man and m1 and m2 are the masses of the man and stone respectively. After shoving the stone, the system momentum becomes:(m1)(v1) = (m1 + m2)v where v is the final velocity of the system. Since momentum is conserved:m1v1 = (m1 + m2)v Hence, the speed that the man acquires as a result when he shoves the 155 g stone away from him is given by v = (m1v1) / (m1 + m2)= (110 kg)(0 m/s) / (110 kg + 0.155 kg)= 0 m/s

Therefore, the man's speed remains zero.

To learn more about friction visit

https://brainly.com/question/28356847

#SPJ11

A long non-conducting cylinder has a charge density p = ar, where a = 6.19 C/m² and r is in meters. Concentric around it is a hollow metallic cylindrical shell. L ... 11.28 cm 23 cm 30.4 cmWhat is the surface charge density inside the hollow cylinder?
Answer in units of C/m^2.
Cannot get this one. And I know the answer is not 6.56 x 10^-3

Answers

To find the surface charge density inside the hollow metallic cylindrical shell surrounding the non-conducting cylinder, we need to consider the electric field inside the shell and its relation to the charge density.

Let's denote the radius of the non-conducting cylinder as R.

Inside a hollow metallic cylindrical shell, the electric field is zero. This means that the electric field due to the non-conducting cylinder is canceled out by the induced charges on the inner surface of the shell.

To find the surface charge density inside the hollow cylinder, we can equate the electric field inside the hollow cylinder to zero:

Electric field inside hollow cylinder = 0

Using Gauss's law, the electric field inside the cylinder can be expressed as:

E = (p * r) / (2 * ε₀),

where p is the charge density, r is the distance from the center, and ε₀ is the permittivity of free space.

Setting E to zero, we can solve for the surface charge density (σ) inside the hollow cylinder:

(p * r) / (2 * ε₀) = 0

Since the equation is set to zero, we can conclude that the surface charge density inside the hollow cylinder is zero.Therefore, the correct answer is 0 C/m².

To learn more about surface charge density click here.

brainly.com/question/17438818

#SPJ11

If the charge is -33_ μC, the speed is 1500_m/s, the strength of the magnetic field is 1_T, and the angle is 150∘, then find the force (magnitude and direction) on the charge. 2. magnitude A. 0.01548_N D. 0.02896_N B. 0.02475 N E. 0.03607 N C. 0.02817_N F. 0.02976_N 3. direction A. Left B. Into the paper C. Right D. Out of the paper

Answers

Given the charge, speed, magnetic field strength, and angle, we can calculate the force on the charge using the equation F = q * v * B * sin(θ). The magnitude of the force is 0.02896 N, and the direction is out of the paper.

The equation to calculate the force (F) on a moving charge in a magnetic field is given by F = q * v * B * sin(θ), where q is the charge, v is the velocity, B is the magnetic field strength, and θ is the angle between the velocity and the magnetic field.

Given:

Charge (q) = -33 μC = -33 × 10^-6 C

Speed (v) = 1500 m/s

Magnetic field strength (B) = 1 T

Angle (θ) = 150°

First, we need to convert the charge from microcoulombs to coulombs:

q = -33 × 10^-6 C

Now we can substitute the given values into the equation to calculate the force:

F = q * v * B * sin(θ)

 = (-33 × 10^-6 C) * (1500 m/s) * (1 T) * sin(150°)

 ≈ 0.02896 N

Therefore, the magnitude of the force on the charge is approximately 0.02896 N.

To determine the direction of the force, we need to consider the right-hand rule. When the charge moves with a velocity (v) at an angle of 150° to the magnetic field (B) pointing into the paper, the force will be directed out of the paper.

Hence, the direction of the force on the charge is out of the paper.

To learn more about charge click here brainly.com/question/13871705

#SPJ11

MA2: A-5 uC charge travels from left to right through a magnetic field pointed out of the board. What is the direction and magnitude of the force acting on the charge, if it travels at 200 m/s and the field is 7 x 10-5 T? Sketch the scenario.

Answers

Given:

Charge q = +5 µC = 5 × 10⁻⁶ C

Velocity of charge, v = 200 m/s

Magnetic field strength, B = 7 × 10⁻⁵ T

Answer: The direction of the force acting on the charge is upwards and the magnitude of the force is 7 × 10⁻⁷ N.

To determine:

The direction and magnitude of the force acting on the charge.

Sketch the scenario using right-hand rule. The force acting on a moving charged particle in a magnetic field can be determined using the equation;

F = qvBsinθ

Where, q is the charge of the

is the velocity of the particle

B is the magnetic field strength

θ is the angle between the velocity of the particle and the magnetic field strength

In this problem, the magnetic field is pointing out of the board. The direction of the magnetic field is perpendicular to the direction of the velocity of the charge. Therefore, the angle between the velocity of the charge and the magnetic field strength is 90°.

sin90° = 1

Putting the values of q, v, B, and sinθ in the above equation,

F= 5 × 10⁻⁶ × 200 × 7 × 10⁻⁵ × 1

= 7 × 10⁻⁷ N

The direction of the force acting on the charge can be determined using the right-hand rule. The thumb, forefinger, and the middle finger should be placed perpendicular to each other in such a way that the forefinger points in the direction of the magnetic field, the thumb points in the direction of the velocity of the charged particle, and the middle finger will give the direction of the force acting on the charged particle.

As per the right-hand rule, the direction of the force is upwards. Therefore, the direction of the force acting on the charge is upwards and the magnitude of the force is 7 × 10⁻⁷ N.

Learn more about magnitude of force here

https://brainly.com/question/30015989

#SPJ11

Consider a one-dimensional monatomic lattice. The interaction between nearest- neighbours is represented by a spring with a spring constant 3. Next-nearest neighbours are also connected with springs but with a spring constant {. Determine the dispersion relation w(k) for this lattice. (

Answers

w(k) = √(3 * cos^2(ka) + β * cos^2(2ka)). This is the dispersion relation for a one-dimensional monatomic lattice with nearest-neighbor and next-nearest-neighbor interactions.

The dispersion relation for a one-dimensional monatomic lattice with nearest-neighbor and next-nearest-neighbor interactions is given by:

w(k) = √(3 * cos^2(ka) + β * cos^2(2ka))

where k is the wavevector, a is the lattice constant, and β is the spring constant for next-nearest-neighbor interactions.

To derive this expression, we start with the Hamiltonian for the lattice:

H = ∑_i (1/2) m * (∂u_i / ∂t)^2 - ∑_i ∑_j (K_ij * u_i * u_j)

where m is the mass of the atom, u_i is the displacement of the atom at site i, K_ij is the spring constant between atoms i and j, and the sum is over all atoms in the lattice.

We can then write the Hamiltonian in terms of the Fourier components of the displacement:

H = ∑_k (1/2) m * k^2 * |u_k|^2 - ∑_k ∑_q (K * cos(ka) * u_k * u_{-k} + β * cos(2ka) * u_k * u_{-2k})

where k is the wavevector, and the sum is over all wavevectors in the first Brillouin zone.

We can then diagonalize the Hamiltonian to find the dispersion relation:

w(k) = √(3 * cos^2(ka) + β * cos^2(2ka))

This is the dispersion relation for a one-dimensional monatomic lattice with nearest-neighbor and next-nearest-neighbor interactions.

To learn more about dispersion relation click here

https://brainly.com/question/33357413

#SPJ11

3. [-/5 Points] DETAILS SERCP11 15.3.P.026. A helium nucleus of mass m 6.64 x 10-27 kg and charge q= 3.20 x 10-19 C is in a constant electric field of magnitude E4.00 x 10-7 N/C pointing in the positive x-direction. Neglecting other forces, calculate the nucleus' acceleration and its displacement after 1.70 s if it starts from rest. (Indicate the direction with the sign of your answer.) HINT (a) the nucleus acceleration (in m/s) 1.93x1011 x Your answer cannot be understood or graded. More Information m/s² MY NOTES Find the acceleration using the relation between electric field and electric force, combined with Newton's second law. Then find the displacement using kinematics Click the hint button again to remove this hint. (b) its displacement (in m) 1.64x10 11 x Your answer cannot be understood or graded. More Information m ASK YOUR TEACHER PRACTICE ANOTHER

Answers

Therefore, the nucleus experiences an acceleration of 1.93 × 10¹¹ m/s² in the positive x-direction, and its displacement after 1.70 s is 1.64 × 10¹¹m in the positive x-direction.

To solve this problem, we'll use the following formulas:

(a) Acceleration (a):

The electric force (F(e)) experienced by the helium nucleus can be calculated using the formula:

F(e) = q × E

where q is the charge of the nucleus and E is the magnitude of the electric field.

The force ((F)e) acting on the nucleus is related to its acceleration (a) through Newton's second law:

F(e) = m × a

where m is the mass of the nucleus.

Setting these two equations equal to each other, we can solve for the acceleration (a):

q × E = m × a

a = (q × E) / m

(b) Displacement (d):

To find the displacement, we can use the kinematic equation:

d = (1/2) × a × t²

where t is the time interval.

Given:

m = 6.64 × 10²⁷ kg

q = 3.20 × 10¹⁹ C

E = 4.00 ×10⁻⁷ N/C

t = 1.70 s

(a) Acceleration (a):

a = (q × E) / m

= (3.20 × 10¹⁹ C ×4.00 × 10⁻⁷ N/C) / (6.64 × 10⁻²⁷ kg)

= 1.93 ×10¹¹ m/s² (in the positive x-direction)

(b) Displacement (d):

d = (1/2) × a × t²

= (1/2) × (1.93 × 10¹¹ m/s²) ×(1.70 s)²

= 1.64 × 10¹¹ m (in the positive x-direction)

Therefore, the nucleus experiences an acceleration of 1.93 × 10¹¹ m/s² in the positive x-direction, and its displacement after 1.70 s is 1.64 × 10¹¹m in the positive x-direction.

To know more about helium nucleus:

https://brainly.com/question/13153367

#SPJ4

How long would it take for 4*10^20 atoms to decay to 1*10^19
atoms if their half life was 14.7 years?

Answers

It would take around 17.71 years for 4 × 10²⁰ atoms to decay to 1 × 10¹⁹ atoms if their half-life was 14.7 years.

Radioactive decay is a process in which the unstable atomic nuclei emit alpha, beta, and gamma rays and particles to attain a more stable state. Half-life is the time required for half of the radioactive material to decay.

The given information isNumber of atoms present initially, N₀ = 4 × 10²⁰

Number of atoms present finally, N = 1 × 10¹⁹

Half-life of the element, t₁/₂ = 14.7 years

To find the time required for the decay of atoms, we need to use the decay formula.N = N₀ (1/2)^(t/t₁/₂)

Here, N₀ is the initial number of atoms, and N is the number of atoms after time t.

Since we have to find the time required for the decay of atoms, rearrange the above formula to get t = t₁/₂ × log(N₀/N)

Substitute the given values, N₀ = 4 × 10²⁰N = 1 × 10¹⁹t₁/₂ = 14.7 years

So, t = 14.7 × log(4 × 10²⁰/1 × 10¹⁹)≈ 14.7 × 1.204 = 17.71 years (approx.)

Therefore, it would take around 17.71 years for 4 × 10²⁰ atoms to decay to 1 × 10¹⁹ atoms if their half-life was 14.7 years.

Learn more about half-life at: https://brainly.com/question/1160651

#SPJ11

Q/C S A glider of mass m is free to slide along a horizontal air track. It is pushed against a launcher at one end of the track. Model the launcher as a light spring of force constant k compressed by a distance x. The glider is released from rest. (c) Is more work done on a cart with a large or a small mass?

Answers

More work is done on a cart with a small mass. This relationship arises from the work-energy principle, which states that the work done on an object is equal to the change in its kinetic energy.

To understand why more work is done on a cart with a small mass, let's consider the work-energy principle. According to this principle, the work done on an object is equal to the change in its kinetic energy.

In this scenario, when the glider is released from rest, the compressed spring exerts a force on the glider, accelerating it along the air track. The work done by the spring force is given by the formula:

Work = (1/2) kx²

where k is the force constant of the spring and x is the distance the spring is compressed.

Now, the change in kinetic energy of the glider can be calculated using the formula:

ΔKE = (1/2) mv²

where m is the mass of the glider and v is its final velocity.

From the work-energy principle, we can equate the work done by the spring force to the change in kinetic energy:

(1/2) kx² = (1/2) mv²

Since the initial velocity of the glider is zero, the final velocity v is equal to the square root of (2kx²/m).

Now, let's consider the situation where we have two gliders with different masses, m₁ and m₂, and the same spring constant k and compression x. Using the above equation, we can see that the final velocity of the glider is inversely proportional to the square root of its mass:

v ∝ 1/√m

As a result, a glider with a smaller mass will have a larger final velocity compared to a glider with a larger mass. This indicates that more work is done on the cart with a smaller mass since it achieves a greater change in kinetic energy.

More work is done on a cart with a small mass compared to a cart with a large mass. This is because, in the given scenario, the final velocity of the glider is inversely proportional to the square root of its mass. Therefore, a glider with a smaller mass will experience a larger change in kinetic energy and, consequently, more work will be done on it.

This relationship arises from the work-energy principle, which states that the work done on an object is equal to the change in its kinetic energy. Understanding this concept helps in analyzing the energy transfer and mechanical behavior of objects in systems involving springs and masses.

To know more about kinetic energy ,visit:

https://brainly.com/question/8101588

#SPJ11

How high would the level be in an alcohol barometer at normal atmospheric pressure? Give solution with three significant numbers.

Answers

The height of the liquid column in an alcohol barometer at normal atmospheric pressure would be 13.0 meters

In an alcohol barometer, the height of the liquid column is determined by the balance between atmospheric pressure and the pressure exerted by the column of liquid.

The height of the liquid column can be calculated using the equation:

h = P / (ρ * g)

where h is the height of the liquid column, P is the atmospheric pressure, ρ is the density of the liquid, and g is the acceleration due to gravity.

For alcohol barometers, the liquid used is typically ethanol. The density of ethanol is approximately 0.789 g/cm³ or 789 kg/m³.

The atmospheric pressure at sea level is approximately 101,325 Pa.

Substituting the values into the equation, we have:

h = 101,325 Pa / (789 kg/m³ * 9.8 m/s²)

Calculating the expression gives us:

h ≈ 13.0 m

Therefore, the height of the liquid column in an alcohol barometer at normal atmospheric pressure would be approximately 13.0 meters.

Learn more about barometer from the given link

https://brainly.com/question/3083348

#SPJ11

A certain circuit breaker trips when the rms current is 12,6 A. What is the corresponding peak current? A

Answers

The corresponding peak current is 17.80 A.

The peak current (I_peak) can be calculated using the relationship between peak current and root mean square (rms) current in an AC circuit.

In an AC circuit, the rms current is related to the peak current by the formula:

I_rms = I_peak / sqrt(2)

Rearranging the formula to solve for the peak current:

I_peak = I_rms * sqrt(2)

Given that the rms current (I_rms) is 12.6 A, we can substitute this value into the formula:

I_peak = 12.6 A * sqrt(2)

Using a calculator, we can evaluate the expression:

I_peak ≈ 17.80 A

Therefore, the corresponding peak current is approximately 17.80 A.

To know more about peak current refer here: https://brainly.com/question/31870573#

#SPJ11

1- Electromagnetic spectrum (complete), 2- Properties of waves, 3- Properties of particles, 4- Where does the classical model fail? 5- Express the wave-particle duality nature, 6- Express (in equation form): - particle properties of waves, -wave properties of particles; 7- Express the uncertainty principle (in equation forms); 8- Bohr's postulates, 9- Where did the Bohr model fail? 10- Wave function: - what is it? - what does it describe? - what information can we find using it 11- The requirements that a wave function must fulfill?? 12- Schrodinger equation,

Answers

The electromagnetic spectrum refers to the range of all possible electromagnetic waves, including radio waves, microwaves, infrared, visible light, ultraviolet, X-rays, and gamma rays.Waves possess properties such as wavelength, frequency, amplitude, and speed, and they can exhibit phenomena like interference, diffraction, and polarization.Particles have properties like mass, charge, and spin, and they can exhibit behaviors such as particle-wave duality and quantum effects.

The classical model fails to explain certain phenomena observed at the atomic and subatomic levels, such as the quantization of energy and the wave-particle duality nature of particles.

The wave-particle duality nature expresses that particles can exhibit both wave-like and particle-like properties, depending on how they are observed or measured.

The wave-particle duality is expressed through equations like the de Broglie wavelength (λ = h / p) that relates the wavelength of a particle to its momentum, and the Einstein's energy-mass equivalence (E = mc²) which shows the relationship between energy and mass.

The uncertainty principle, formulated by Werner Heisenberg, states that the simultaneous precise measurement of certain pairs of physical properties, such as position and momentum, is impossible. It is mathematically expressed as Δx * Δp ≥ h/2, where Δx represents the uncertainty in position and Δp represents the uncertainty in momentum.

Bohr's postulates were proposed by Niels Bohr to explain the behavior of electrons in atoms. They include concepts like stationary orbits, quantization of electron energy, and the emission or absorption of energy during transitions between energy levels.

The Bohr model fails to explain more complex atoms and molecules and does not account for the wave-like behavior of particles.

The wave function is a fundamental concept in quantum mechanics. It is a mathematical function that describes the quantum state of a particle or a system of particles. It provides information about the probability distribution of a particle's position, momentum, energy, and other observable quantities.

A wave function must fulfill certain requirements, such as being continuous, single-valued, and square integrable. It must also satisfy normalization conditions to ensure that the probability of finding the particle is equal to 1.

The Schrödinger equation is a central equation in quantum mechanics that describes the time evolution of a particle's wave function. It relates the energy of the particle to its wave function and provides a mathematical framework for calculating various properties and behaviors of quantum systems.

Learn more about Electromagnetic spectrum:

https://brainly.com/question/23727978

#SPJ11

Your mass is 61.4 kg, and the sled s mass is 10.1 kg. You start at rest, and then you jump off the sled, after which the empty sled is traveling at a speed of 5.27 m/s. What will be your speed on the ice after jumping off? O 1.13 m/s 0.87 m/s 0.61 m/s 1.39 m/s Your mass is 72.7 kg, and the sled s mass is 18.1 kg. The sled is moving by itself on the ice at 3.43 m/s. You parachute vertically down onto the sled, and land gently. What is the sled s velocity with you now on it? 0.68 m/s O 0.20 m/s 1.02 m/s 0.85 m/s OOO0

Answers

1. When you jump off the sled, your speed on the ice will be 0.87 m/s.

2. When you parachute onto the sled, the sled's velocity will be 0.68 m/s.

When you jump off the sled, your momentum will be conserved. The momentum of the sled will increase by the same amount as your momentum decreases.

This means that the sled will start moving in the opposite direction, with a speed that is equal to your speed on the ice, but in the opposite direction.

We can calculate your speed on the ice using the following equation:

v = (m1 * v1 + m2 * v2) / (m1 + m2)

Where:

v is the final velocity of the sled

m1 is your mass (61.4 kg)

v1 is your initial velocity (0 m/s)

m2 is the mass of the sled (10.1 kg)

v2 is the final velocity of the sled (5.27 m/s)

Plugging in these values, we get:

v = (61.4 kg * 0 m/s + 10.1 kg * 5.27 m/s) / (61.4 kg + 10.1 kg)

= 0.87 m/s

When you parachute onto the sled, your momentum will be added to the momentum of the sled. This will cause the sled to slow down. The amount of slowing down will depend on the ratio of your mass to the mass of the sled.

We can calculate the sled's velocity after you parachute onto it using the following equation:

v = (m1 * v1 + m2 * v2) / (m1 + m2)

Where:

v is the final velocity of the sled

m1 is your mass (72.7 kg)

v1 is your initial velocity (0 m/s)

m2 is the mass of the sled (18.1 kg)

v2 is the initial velocity of the sled (3.43 m/s)

Plugging in these values, we get:

v = (72.7 kg * 0 m/s + 18.1 kg * 3.43 m/s) / (72.7 kg + 18.1 kg)

= 0.68 m/s

To learn more about velocity click here: brainly.com/question/30559316

#SPJ11

Given the following simple circuit having 10.06 volts and a current of 2.52 amps, calculate the resistance in units of ohms. 1 Amp of current - 1 coulomb of charge 1 Volt - 1 Joule/Coulomb 1 Ohm - 1 Volt/1 Amp Report you numerical answer in the box below using two decimal places.

Answers

The resistance of the circuit is approximately 3.98 ohms. The resistance of the circuit can be calculated by dividing the voltage (10.06 volts) by the current (2.52 amps).

To calculate the resistance of the circuit, we can use Ohm's Law, which states that resistance (R) is equal to the ratio of voltage (V) to current (I), or R = V/I.

The formula for calculating resistance is R = V/I, where R is the resistance, V is the voltage, and I is the current. In this case, the voltage is given as 10.06 volts and the current is given as 2.52 amps.

Substituting the given values into the formula, we have R = 10.06 volts / 2.52 amps.

Performing the division, we get R ≈ 3.98 ohms.

To learn more about ohms law-

brainly.com/question/23579474

#SPJ11

Consider a volume current density () in a conducting system where the charge density p() does not change with time. Determine V.J(7). Explain your answer.

Answers

The volume current density for a conducting system where the charge density p() does not change with time is given by J(t) = J0exp(i * 7t), where J0 is the maximum current density and t is the time.

However, we want to determine V.J(7), which means we need to find the value of the current density J at a particular point V in the system. Therefore, we need more information about the system to be able to calculate J(7) at that point V.

Learn more about charge density: https://brainly.com/question/14306160

#SPJ11

Question 2 - Pump and Pipelines (x^2 means the square of x) It is planned to pump water to a reservoir, through a pipe system with 22.6mm diameter. The curve of the pump is: H = -5 Q^2 - 16Q + 40 where H is the hydraulic head in meters, and Q is the discharge in litres per second. Consider the friction factor as f= 0.0171. Find out the following: a) Plot the curve: head (H) vs. flow rate (Q) of the pump, using the given graph sheet H = 30 Q^2 - 6Q + 15 5 marks b) By using a graphical method, find the operating point of the pump, if the head loss along the pipe is given as HL = 30Q^2 - 6 Q + 15 where HL is the head loss in meters and Q is the discharge in litres per second. 5 marks c) Compute the required power in watts. 5 marks d) As the pumping progresses the water in the reservoir starts to rise, indicate by showing how the delivery would be affected using a table. 5 marks • If the water level at the source goes down, Show how this would affect the delivery and how may this affect the pump efficiency? 5 marks Total 25 Marks

Answers

Head (H) vs. flow rate (Q) of the pump using the given graph sheet H = 30 Q² - 6Q + 15. The equation given is H = 30Q² - 6Q + 15, so required power in watts is 2994.45 W.

The graph is plotted below:b) By using a graphical method, find the operating point of the pump if the head loss along the pipe is given as HL = 30Q² - 6 Q + 15 where HL is the head loss in meters and Q is the discharge in litres per second.To find the operating point of the pump, the equation is: H (pump curve) - HL (system curve) = HN, where HN is the net hydraulic head. We can plot the system curve using the given data:HL = 30Q² - 6Q + 15We can calculate the net hydraulic head (HN) by subtracting the system curve from the pump curve for different flow rates (Q). The operating point is where the pump curve intersects the system curve.

The net hydraulic head is given by:HN = H - HLThe graph of the system curve is as follows:When we plot both the system curve and the pump curve on the same graph, we get:The intersection of the two curves gives the operating point of the pump.The operating point of the pump is 0.0385 L/s and 7.9 meters.c) Compute the required power in watts.To calculate the required power in watts, we can use the following equation:P = ρ Q HN g,where P is the power, ρ is the density of the fluid, Q is the flow rate, HN is the net hydraulic head and g is the acceleration due to gravity.Substituting the values, we get:

P = (1000 kg/m³) x (0.0385 L/s) x (7.9 m) x (9.81 m/s²)

P = 2994.45 W.

The required power in watts is 2994.45 W.

Learn more about flow rate:

https://brainly.com/question/26872397

#SPJ11

A thin rod has a length of 0.233 m and rotates in a circle on a frictionless tabletop. The axis is perpendicular to the length of the rod at one of its ends. The rod has an angular velocity of 0.464 rad/s and a moment of inertia of 1.25 x 10-3 kg·m2. A bug standing on the axis decides to crawl out to the other end of the rod. When the bug (whose mass is 5 x 10-3 kg) gets where it's going, what is the change in the angular velocity of the rod?

Answers

The change in the angular-velocity of the rod when the bug crawls from one end to the other is Δω = -0.271 rad/s and itcan be calculated using the principle of conservation of angular momentum.

The angular momentum of the system remains constant unless an external torque acts on it.In this case, when the bug moves from the axis to the other end of the rod, it changes the distribution of mass along the rod, resulting in a change in the moment of inertia. As a result, the angular velocity of the rod will change.

To calculate the change in angular velocity, we can use the equation:

Δω = (ΔI) / I

where Δω is the change in angular velocity, ΔI is the change in moment of inertia, and I is the initial moment of inertia of the rod.

The initial moment of inertia of the rod is given as 1.25 x 10^-3 kg·m^2, and when the bug reaches the other end, the moment of inertia changes. The moment of inertia of a thin rod about an axis perpendicular to its length is given by the equation:

I = (1/3) * m * L^2

where m is the mass of the rod and L is the length of the rod.

By substituting the given values into the equation, we can calculate the new moment of inertia. Then, we can calculate the change in angular velocity by dividing the change in moment of inertia by the initial moment of inertia.

The change in angular velocity of the rod is calculated to be Δω = -0.271 rad/s.

To learn more about angular-velocity , click here : https://brainly.com/question/31501255

#SPJ11

(10%) Problem 2: The image shows a rocket sled, In the top image all four forward thrusters are engaged, creating a total forward thrust of magnitude 47, where T =519 N. In the bottom image, in addition to the four forward thrusters, one reverse thruster is engaged, creating a reverse thrust of magnitude 7. In both cases a backward force (friction and air drag) of magnitude f = 20 Nacts on the sled. 7 What is the ratio of the greater acceleration to the lesser acceleration?

Answers

The ratio of the greater acceleration to the lesser acceleration is approximately 0.985.

In the top image where all four forward thrusters are engaged, the total forward thrust exerted on the sled is 519 N. The backward force due to friction and air drag is 20 N. Using Newton's second law, we can calculate the acceleration in this case:

Forward thrust - Backward force = Mass * Acceleration

519 N - 20 N = Mass * Acceleration₁

In the bottom image, in addition to the four forward thrusters, one reverse thruster is engaged, creating a reverse thrust of magnitude 7 N. The backward force of friction and air drag remains the same at 20 N. The total forward thrust can be calculated as:

Total forward thrust = Forward thrust - Reverse thrust

Total forward thrust = 519 N - 7 N = 512 N

Again, using Newton's second law, we can calculate the acceleration this case:

Total forward thrust - Backward force = Mass * Acceleration

512 N - 20 N = Mass * Acceleration₂

To find the ratio of the greater acceleration (Acceleration₂) to the lesser acceleration (Acceleration₁), we can divide the equations:

(Acceleration₂) / (Acceleration₁) = (512 N - 20 N) / (519 N - 20 N)

Simplifying the expression, we get:

(Acceleration₂) / (Acceleration₁) = 492 N / 499 N

(Acceleration₂) / (Acceleration₁) ≈ 0.985

To learn more about magnitude -

brainly.com/question/32755502

#SPJ11

Two parallel 3.0-cm-diameter flat aluminum electrodes are spaced 0.50 mm apart. The
electrodes are connected to a 50 V battery.
What is the capacitance?

Answers

The capacitance of the system with the given parameters is approximately 1.25 nanofarads (nF).

To calculate the capacitance of the system, we can use the formula:

Capacitance (C) = (ε₀ * Area) / distance

where ε₀ represents the permittivity of free space, Area is the area of one electrode, and distance is the separation between the electrodes.

The diameter of the aluminum electrodes is 3.0 cm, we can calculate the radius (r) by halving the diameter, which gives us r = 1.5 cm or 0.015 m.

The area of one electrode can be determined using the formula for the area of a circle:

Area = π * (radius)^2

By substituting the radius value, we get Area = π * (0.015 m)^2 = 7.07 x 10^(-4) m^2.

The separation between the electrodes is given as 0.50 mm, which is equivalent to 0.0005 m.

Now, substituting the values into the capacitance formula:

Capacitance (C) = (ε₀ * Area) / distance

The permittivity of free space (ε₀) is approximately 8.85 x 10^(-12) F/m.

By plugging in the values, we have:

Capacitance (C) = (8.85 x 10^(-12) F/m * 7.07 x 10^(-4) m^2) / 0.0005 m

= 1.25 x 10^(-9) F

Therefore, the capacitance of the system with the given parameters is approximately 1.25 nanofarads (nF).

learn more about "capacitance ":- https://brainly.com/question/16998502

#SPJ11

A particle of mass m is trapped in a two dimensional box with sides L, and Ly. Within the box the potential is zero, while outside the box the potential is infinite, i.e V=0 for 0 < x < Lz,0 L, y < 0, y > Ly Using separation of variables, solve the 2 dimensional Schrodinger equation for normalized wave function and the possible energy of this particle.

Answers

The Schrodinger equation for a particle confined in a two-dimensional box with potential energy zero inside and infinite outside is solved using separation of variables.

The normalized wave function and possible energy levels are obtained.

The Schrödinger equation for a free particle can be written as Hψ = Eψ, where H is the Hamiltonian operator, ψ is the wave function, and E is the energy eigenvalue. For a particle confined in a potential well, the wave function is zero outside the well and its energy is quantized.

In this problem, we consider a two-dimensional box with sides L and Ly, where the potential is zero inside the box and infinite outside. The wave function for this system can be written as a product of functions of x and y, i.e., ψ(x,y) = X(x)Y(y). Substituting this into the Schrödinger equation and rearranging the terms, we get two separate equations, one for X(x) and the other for Y(y).

The solution for X(x) is a sinusoidal wave function with wavelength λ = 2L/nx, where nx is an integer. Similarly, the solution for Y(y) is also a sinusoidal wave function with wavelength λ = 2Ly/ny, where ny is an integer. The overall wave function ψ(x,y) is obtained by multiplying the solutions for X(x) and Y(y), and normalizing it. .

Therefore, the solutions for the wave function and energy levels for a particle confined in a two-dimensional box with infinite potential barriers are obtained by separation of variables. This problem has important applications in quantum mechanics and related fields, such as solid-state physics and materials science.

To learn more about Schrodinger equation click brainly.com/question/30884437

#SPJ11

please explain if answer is vague so its easier to understand.
especially #25, thank you. any help would be great
Question 20 (2 points) Listen 1) What is the difference between radiation and radioactivity? Radioactivity and radiation are synonymous. Radioactive decays include the release of matter particles, but

Answers

Radioactivity and radiation are not synonymous. Radiation is a process of energy emission, and radioactivity is the property of certain substances to emit radiation.

Radioactive decays include the release of matter particles, but radiation does not.

Radiation is energy that travels through space or matter. It may occur naturally or be generated by man-made processes. Radiation comes in a variety of forms, including electromagnetic radiation (like x-rays and gamma rays) and particle radiation (like alpha and beta particles).

Radioactivity is the property of certain substances to emit radiation as a result of changes in their atomic or nuclear structure. Radioactive materials may occur naturally in the environment or be created artificially in laboratories and nuclear facilities.

The three types of radiation commonly emitted by radioactive substances are alpha particles, beta particles, and gamma rays.

Radiation and radioactivity are not the same things. Radiation is a process of energy emission, and radioactivity is the property of certain substances to emit radiation. Radioactive substances decay over time, releasing particles and energy in the form of radiation.

Radiation, on the other hand, can come from many sources, including the sun, medical imaging devices, and nuclear power plants. While radioactivity is always associated with radiation, radiation is not always associated with radioactivity.

To learn more about radiation, refer below:

https://brainly.com/question/31106159

#SPJ11

Physics
4. Define refraction, absorption, reflection, index of refraction, optically dense medium, optically less dense medium, monochromatic light.

Answers

Refraction refers to the bending or change in direction of a wave as it passes from one medium to another, caused by the difference in the speed of light in the two mediums. This bending occurs due to the change in the wave's velocity and is governed by Snell's law, which relates the angles and indices of refraction of the two mediums.

Absorption is the process by which light or other electromagnetic waves are absorbed by a material. When light interacts with matter, certain wavelengths are absorbed by the material, causing the energy of the light to be converted into other forms such as heat or chemical energy.

Reflection is the phenomenon in which light or other waves bounce off the surface of an object and change direction. The angle of incidence, which is the angle between the incident wave and the normal (a line perpendicular to the surface), is equal to the angle of reflection, the angle between the reflected wave and the normal.

Index of Refraction: The index of refraction is a property of a material that quantifies how much the speed of light is reduced when passing through that material compared to its speed in a vacuum. It is denoted by the symbol "n" and is calculated as the ratio of the speed of light in a vacuum to the speed of light in the material.

Optically Dense Medium: An optically dense medium refers to a material that has a higher index of refraction compared to another medium. When light travels from an optically less dense medium to an optically dense medium, it tends to slow down and bend towards the normal.

Optically Less Dense Medium: An optically less dense medium refers to a material that has a lower index of refraction compared to another medium. When light travels from an optically dense medium to an optically less dense medium, it tends to speed up and bend away from the normal.

Monochromatic Light: Monochromatic light refers to light that consists of a single wavelength or a very narrow range of wavelengths. It is composed of a single color and does not exhibit a broad spectrum of colors. Monochromatic light sources are used in various applications, such as scientific experiments and laser technology, where precise control over the light's characteristics is required.

In summary, refraction involves the bending of waves at the interface between two mediums, absorption is the process of light energy being absorbed by a material, reflection is the bouncing of waves off a surface, the index of refraction quantifies how light is slowed down in a material, an optically dense medium has a higher index of refraction, an optically less dense medium has a lower index of refraction, and monochromatic light consists of a single wavelength or a very narrow range of wavelengths.

Learn more about refraction here:

https://brainly.com/question/14760207

#SPJ11

Two equal charges of magnitude 1.8 x 10-7C experience an electrostatic force of 4.5 x 10-4 N. How far apart are the centers of the two charges?

Answers

The distance between the centers of the two charges is 5.4 x 10⁻³ m.

Two equal charges of magnitude q = 1.8 x 10⁻⁷ C experience an electrostatic force F = 4.5 x 10⁻⁴ N.

To find, The distance between two charges.

The electrostatic force between two charges q1 and q2 separated by a distance r is given by Coulomb's law as:

F = (1/4πε₀) (q1q2/r²)

Where,ε₀ is the permittivity of free space,ε₀ = 8.85 x 10⁻¹² C² N⁻¹ m⁻².

Substituting the given values in the Coulomb's law

F = (1/4πε₀) (q1q2/r²)⇒ r² = (1/4πε₀) (q1q2/F)⇒ r = √[(1/4πε₀) (q1q2/F)]

The distance between the centers of the two charges is obtained by multiplying the distance between the two charges by 2 since each charge is at the edge of the circle.

So, Distance between centers of the charges = 2r

Here, q1 = q2 = 1.8 x 10⁻⁷ C andF = 4.5 x 10⁻⁴ Nε₀ = 8.85 x 10⁻¹² C² N⁻¹ m⁻²

Now,The distance between two charges, r = √[(1/4πε₀) (q1q2/F)]= √[(1/4π x 8.85 x 10⁻¹² x 1.8 x 10⁻⁷ x 1.8 x 10⁻⁷)/(4.5 x 10⁻⁴)] = 2.7 x 10⁻³ m

Therefore,The distance between centers of the charges = 2r = 2 x 2.7 x 10⁻³ m = 5.4 x 10⁻³ m.

Hence, The distance between the centers of the two charges is 5.4 x 10⁻³ m.

Learn more about magnitude at: https://brainly.com/question/30337362

#SPJ11

Give an example of a moving frame of reference and draw the moving coordinates.

Answers

An example of a moving frame of reference is a person standing on a moving train.

In this scenario, the person on the train represents a frame of reference that is in motion relative to an observer outside the train. The moving coordinates in this case would show the position of objects and events as perceived by the person on the train, taking into account the train's velocity and direction.

Consider a person standing inside a train that is moving with a constant velocity along a straight track. From the perspective of the person on the train, objects inside the train appear to be stationary or moving with the same velocity as the train. However, to an observer standing outside the train, these objects would appear to be moving with a different velocity, as they are also affected by the velocity of the train.

To visualize the moving coordinates, we can draw a set of axes with the x-axis representing the direction of motion of the train and the y-axis representing the perpendicular direction. The position of objects or events can be plotted on these axes based on their relative positions as observed by the person on the moving train.

For example, if there is a table inside the train, the person on the train would perceive it as stationary since they are moving with the same velocity as the train. However, an observer outside the train would see the table moving with the velocity of the train. The moving coordinates would reflect this difference in perception, showing the position of the table from the perspective of both the person on the train and the external observer.

Learn more about frame of reference here:

brainly.com/question/12222532

#SPJ11

how far does a person travel in coming to a complete stop in 33 msms at a constant acceleration of 60 gg ?

Answers

To calculate how far a person travels to come to a complete stop in 33 milliseconds at a constant acceleration of 60 g, we will use the following formula .

Where,d = distance travelled

a = acceleration

t = time taken

Given values area = 60 gg (where 1 g = 9.8 m/s^2) = 60 × 9.8 m/s^2 = 588 m/s2t = 33 ms = 33/1000 s = 0.033 s.

Substitute the given values in the formula to find the distance travelled:d = (1/2) × 588 m/s^2 × (0.033 s)^2d = 0.309 m Therefore, the person travels 0.309 meters to come to a complete stop in 33 milliseconds at a constant acceleration of 60 g.

To know more about acceleration visit :

https://brainly.com/question/2303856

#SPJ11

Other Questions
Part B What is the current through the 3.00 2 resistor? | I = A Submit Previous Answers Request Answer X Incorrect; Try Again; 4 attempts remaining Part C What is the current through the 6.00 2 resistor? V] ? I = A Submit Previous Answers Request Answer X Incorrect; Try Again; 4 attempts remaining Part D What is the current through the 12.00 resistor? | I = A < 1 of 1 Submit Request Answer E = 60.0 V, r = 0 + Part E 3.00 12 12.0 12 What is the current through the 4.00 resistor? | 6.00 12 4.00 12 I = The company is expected to pay a year-end dividend of $1.7 per share, which is expected to grow at a Constant rate of 6%; and the current equilibrium stock price is $22.5. New stock can be sold to the public at the current price, but a flotation cost of 15% would be incurred. What would the cost of equity from new common stock be? 14.01% 16.07% 13.56% 15.42% 14.89% How does the narrator describe his feeling of uncertainty in his mind? What is the action he uses to test his feeling one day when he is having meditation on this subject?Rousseau, be that as it may, went the alternate way. He recommended that the condition of nature wasn't exactly terrible, suggesting that individuals in it were independent, genuinely singular by decision, thoughtful to other people, and quiet Also, try to think of ways how you could have avoided this if youwere running xerox? Net exports are $114 billion and exports are $824 billion. What are imports? $710 billion $7 billion $938 billion $710 billion Question 1 a. Consider the current economic condition both globally and locally in Bahrain, including inflation and 3conomic growth. Do you think that the central bank should increase interest rates, reduce interest rate, or leave interest rates at their present levels? Provide explanation for your answer. b. The central bank use monetary policy to control the level of inflation. Explain how the government fiscal policy can make the policy of the central bank more difficult. Specifically, if the government has a plan to implement a new program that will expand the benefits to most people in the country. The new program is likely to increase government deficit. Discuss the impact of this policy on interest rates and show how this make the task of the central bank more difficult. The market price of a semi-annual pay bond is $970.22. It has 11.00 years to maturity and a coupon rate of 8.00%. Par value is $1,000. What is the effective annual yield? a. 8.5977% b. 8.9891% c. 9.1827% d. 9.3251% Consider the function f(x)=x+2+3. If f1(x) is the inverse function of f(x), find f1(5). Provide your answer below: f1(5)= The firm's tax rate is 35% - The current price of Harry Davis' 125% coupon, semiannual payment, noncallable bonds with 15 years remaining to maturity is $. Harry Davis does not use short-term interestbearing debt on a permanent basis. New bonds would be privately placed with no flotation cost. - The current price of the firm's 10%,$100 par value, quarterly dividend, perpetual preferred stock is \$. Harry Davis would incur flotation costs equal to 6% of the proceeds on a new issue. - Harry Davis' common stock is currently selling at $70 per share. Its last dividend (D0) was $, and dividends are expected to grow at a constant rate of 5.8% in the foreseeable future. Harry Davis' beta is 1.4, the yield on T-bonds is 5.6%, and the market risk premium is estimated to be 6%. For the own-bond-yield-plus-judgmental-risk-premium approach, the firm uses a 3.2% risk premium. - Harry Davis' target capital structure is 30% long-term debt, 10% preferred stock, and 60% common equity. Group 3: Bond price =1150.25-Preferred stock =107.54D0=3.12 3. Should the costs be histurical (cmbedded) custs or ecw (trarginal) costs? Why? 4. What is the market Interest rate en Harry Davis' debt, and what in the comapenent eost of the tile drht for the WacC perpese? 5. What is the firen's cast of preferred stock? 8. Harry Davis docsn't plan to issue new shares of common stock. Using the CAPM approach, what is Harry Davis' estimated cost of equity? 9. What is the estimated cost of cquify using the discounted cash flow (DCF) approach? Create a problem of common ODE Form #3 with boundary values you define (see the notes for : refresher). Solve the equation using the boundary values you provide, by hand. Show all of your work. This is a Multiple Answers Question, meaning that more than one answer may be correct. Select ALL the answers you think are correct.The diversion of the Fourth Crusade to Constantinoplereflects generations of antagonism between Latins and Greeks.apparently resulted from a series of accidents.was a calculated conspiracy engineered by Innocent III, also involving Enrico Dandolo, Philip of Swabia, and Boniface of Montferrat.was a calculated conspiracy involving Enrico Dandolo, Philip of Swabia, Boniface of Montferrat, and with Innocent III's passive compliance If your able to explain the answer, I will give a greatrating!!The ODE System X=AX, where A=/1231 010 212 has eigenvalues of A=-1 X=1 1 and 1=4. Find the eigen Vector of to X=-1 -3 a) () 2 2 2 0 b) ( 2 ((() 2 3 D -3 123 010 212 that corresponds Why does it seem that only high-end retailers practicesuperior customer service? Is it possible for low to medium-endretailers to give superior customer service? Analyze the driving and restraining forces of change that college students are likely to make in their lives. Do you believe that understanding force-field analysis can help them more effectively implement a significant change in their own behavior? Cite some examples, too. 1- What is the main role of the following hormones: Glucagon. Insulin. Calcitonin. Thyroxine. Somatotropin. ADH, Aldosterone, Angiotensin II, ANP. Renin. Estrogen, hCG, LH,FSH, Progesterone 2- Briefly describe phases of the General Adaptation Syndrome. 3- Briefly define megakaryocytes, cosinophils, basophils and monoblasts. What is the coefficient of x^8 in (2+x)^14 ? Do not use commas in your answer. Answer: You must enter a valid number. Do not include a unit in your response. What did Churchill mean by the "Iron Curtain"?A: The cultural divide between the United States and EuropeB: The political divide between the Northern and Southern hemispheresC: The political divide between Western and Eastern EuropeD: The cultural divide between North America and Asia Lifting an elephant with a forklift is an energy intensive task requiring 200,000 J of energy. The average forklift has a power output of 10 kW (1 kW is equal to 1000 W)and can accomplish the task in 20 seconds. How powerful would the forklift need to beto do the same task in 5 seconds? Question 38 1 pts What caused Earth's lithosphere to fracture into plates? volcanism, which produced heavy volcanoes that bent and cracked the lithosphere tidal forces from the Moon and Sun internal temperature changes that caused the crust to expand and stretch impacts of asteroids and planetesimals convection of the underlying mantle Assume that the copying service in has been established at (x = 2, y = 2) Assume that each customer order represents an expenditure of approximately $10 Because convenience would be an important customer criterion, assume that A = 2. If we wish to open a competing store at location (x = 3, y = 2) but with twice the capacity of the existing copy center, How much market share would we expect to capture?