Answer:
6.77m/s
Explanation:
Using the law of conservation of momentum
m1u1 + m2u2 = (m1+m2)v
m1 and m2 are the masses of the object
u1 and u2 are the velocities before collision
v is the final collision
Given
m1 = 300g = 0.3kg
u1 = 6.0m/s
m2 = 10g = 0.01kg
u2 = 30m/s
Required
The bird's speed immediately after swallowing v
Substitute the given values into the formula
m1u1 + m2u2 = (m1+m2)v
0.3(6) + 0.01(30) = (0.3+0.01)v
1.8+0.3 = 0.31v
2.1 = 0.31v
v = 2.1/0.31
v = 6.77m/s
Hence the bird's speed immediately after swallowing is 6.77m/s
An object whose specific gravity is 0.850 is placed in water. What fraction of the object is below the surface of the water?
Answer:
The fraction of the object that is below the surface of the water is ¹⁷/₂₀
Explanation:
Given;
specific gravity of the object, γ = 0.850
Specific gravity is given as;
[tex]specific \ gravity = \frac{density \ of the \ object}{density \ of \ water}\\\\0.85= \frac{density \ of the \ object}{1000 \ kg/m^3} \\\\density \ of the \ object = 850 \ kg/m^3[/tex]
Fraction of the object's weight below the surface of water is calculated as;
[tex]= \frac{850}{1000} \ \times\ 100\%\\\\= 85 \% \\\\= \frac{17}{20}[/tex]
Therefore, the fraction of the object that is below the surface of the water is ¹⁷/₂₀
Define a rotation of the earth answer fast
Answer:
here u go
Explanation:
Earth's rotation is the rotation of planet Earth around its own axis. Earth rotates eastward, in prograde motion. As viewed from the north pole star Polaris, Earth turns counterclockwise.
When 26400j of energy is supplied to a 2.0kg bloom of aluminum it temperature rise from 20oc to 35oc.The block is well so there is no energy lost to sorround determine the specific heat capacity of aluminum
Answer:
880J/kelvin
Explanation:
Q =MC ×change in t
c =C/m
C=Q/change in t
c= Q/ m× change in t
c = 26400 / 2.0 × 15
c = 880 J/kelvin
what is the difference between alcoholic and Mercury thermometer based on their function?
g While hauling a log in the back of a flatbed truck, a driver is pulled over by the state police. Although the log cannot roll sideways, the police claim that the log could have slid out the back of the truck when accelerating from rest. The driver claims that the truck could not possibly accelerate at the level needed to achieve such an effect. Regardless, the police write a ticket, and the drive
Answer:
The minimum coefficient of static friction required, µ = 0.10
Note. The question is incomplete. The complete question is given below:
While hauling a log in the back of a flatbed truck, a driver is pulled over by the state police. Although the log cannot roll sideways, the police claim that the log could have slid out the back of the truck when accelerating from rest. The driver claims that the truck could not possibly accelerate at the level needed to achieve such an effect. Regardless, the police write a ticket anyway and now the driver court date is approaching.
The log has a mass of m = 929 kg; the truck has a mass of M = 8850 kg. According to the truck manufacturer, the truck can accelerate from 0 to 55 mph in 23.0 seconds, but this does not account for the additional mass of the log. Calculate the minimum coefficient of static friction μs needed to keep the log in the back of the truck.
Explanation:
First, velocity in mph is converted to m/s
1 mph = 0.447 m/s
55 mph ≈ 24.6 m/s
The acceleration of the empty truck is a = v/t = 24.6 / 23 = 1.07 m/s²
Force that can be generated by the truck, F = ma
F = 8850kg * 1.07 m/s² = 9469.5 N
However, with the added mass of the log on it, the acceleration of the truck will become;
a = F / m = 9469.5 N / (8550+929)kg = 0.97 m/s²
Frictional force between the log and the truck = 0.97 m/s² * 929 kg = 901.13 N
Normal reaction on the truck due to the weight of the log, R = mg
R = 929 kg * 9.8m/s² = 9104.2 N
Coefficient of static friction, µ = F/R
µ = 901.13/9104.2
µ = 0.098 ≈ 0.10
Therefore, the minimum static friction required is µ = 0.10