A 3-phase, 50 Hz, 110 KV overhead line has conductors placed in a horizontal plane 3 m apart. Conductor diameter is 2.5 cm. If the line length is 220 km, determine the charging current per phase assuming complete transposition. (6 Marks)

Answers

Answer 1

Answer:

A 3-phase, 50 Hz, 110 KV overhead line has conductors

Explanation:

hope it will helps you


Related Questions

13- Convert the following numbers to the indicated bases. List all intermediate steps.
a- (36459080)10 to octal
b- (20960032010 to hexadecimal
c- (2423233303003040)s to base
25 36459080/8= 4557385 0/8 209600320/16=13100020 + 0/16 (2423233303003040)5 (36459080)10 =( 18 (209600320)10=( 1)16 (2423233303003040)5=( )125

Answers

Answer:

Following are the conversion to this question:

Explanation:

In point (a):

[tex]\to \frac{36459080}{8} = 4557385 + \ \ \ \ \ \ \ \ \ \frac{0}{8}\\\\\to \frac{4557385}{8} = 569673 + \ \ \ \ \ \ \ \ \ \frac{1}{8}\\\\\to \frac{569673}{8} = 71209+ \ \ \ \ \ \ \ \ \ \frac{1}{8}\\\\\to \frac{71209}{8}=8901+\ \ \ \ \ \ \ \ \ \ \ \frac{1}{8}\\\\\to \frac{8901}{8}=1112+ \ \ \ \ \ \ \ \ \ \ \ \ \frac{5}{8}\\\\\to \frac{1112}{8}=139+ \ \ \ \ \ \ \ \ \ \ \frac{0}{8}\\\\\to \frac{139}{8}=17+ \ \ \ \ \ \ \ \ \ \ \frac{3}{8}\\\\\to \frac{17}{8}=2+ \ \ \ \ \ \ \ \ \ \ \ \ \frac{1}{8}\\\\[/tex]

[tex]\to \frac{2}{8}=0+ \ \ \ \ \ \ \ \ \ \frac{2}{8}\\\\ \bold{(36459080)_{10}=(213051110)_8}[/tex]

In point (b):

[tex]\to \frac{20960032010}{16} = 13100020+ \ \ \ \ \ \ \ \ \ \frac{0}{16}\\\\\to \frac{13100020}{16} = 818751+ \ \ \ \ \ \ \ \ \ \frac{4}{16}\\\\\to \frac{818751}{16} = 51171+ \ \ \ \ \ \ \ \ \ \frac{15}{16}\\\\\to \frac{51171}{16}=3198+\ \ \ \ \ \ \ \ \ \ \ \frac{3}{16}\\\\\to \frac{3198}{16}=199+ \ \ \ \ \ \ \ \ \ \ \ \ \frac{14}{1}\\\\\to \frac{199}{16}=12+ \ \ \ \ \ \ \ \ \ \ \frac{7}{16}\\\\\to \frac{12}{16}=0+ \ \ \ \ \ \ \ \ \ \ \frac{12}{16}\\\\ \bold{(20960032010)_{10}=(C7E3F40)_{16}}[/tex]

In point (c):

[tex]\to (2423233303003040)_s=(88757078520)_{10}\\\\\to \frac{88757078520}{25}= 3550283140+ \ \ \ \ \ \ \ \ \ \frac{20}{25}\\\\ \to \frac{3550283140}{25}= 142011325+ \ \ \ \ \ \ \ \ \ \frac{15}{25}\\\\\to \frac{142011325}{25}= 5680453+ \ \ \ \ \ \ \ \ \ \frac{0}{25}\\\\\to \frac{5680453}{25}= 227218+ \ \ \ \ \ \ \ \ \ \frac{3}{25}\\\\\to \frac{227218}{25}= 9088+ \ \ \ \ \ \ \ \ \ \frac{18}{25}\\\\\to \frac{9088}{25}= 363+ \ \ \ \ \ \ \ \ \ \frac{13}{25}\\\\[/tex]

[tex]\to \frac{363}{25}= 14+ \ \ \ \ \ \ \ \ \ \frac{13}{25}\\\\\to \frac{14}{25}= 0+ \ \ \ \ \ \ \ \ \ \frac{14}{25}\\\\\bold{(2423233303003040)_s=(EDDI30FK)_{25}}[/tex]

Symbols of Base 25 are as follows:

[tex]0, 1, 2, 3,4,5,6,7,8,9,A,B,C,D,E,F,G,H,I,J,K,L,M,N, \ and \ O[/tex]

Air at 80 °F is to flow through a 72 ft diameter pipe at an average velocity of 34 ft/s . What diameter pipe should be used to move water at 60 °F and average velocity of 71 ft/s if Reynolds number similarity is enforced? The kinematic viscosity of air at 80 °F is 1.69E-4 ft^2/s and the kinematic viscosity of water at 60 °F is 1.21E-5 ft^2/s. Round your answer (in ft) to TWO decimal places.

Answers

Answer:

2.47  ft

Explanation:

Given that:

The initial temperature of air = 80°F

Diameter of the pipe = 72 ft

average velocity [tex]v_{air}[/tex] of the air flow through the pipe =  34 ft/s

The objective is to determine the diameter of the  pipe to  be used to move water at:

At a temperature = 60°F   &

An average velocity [tex]v_{water}[/tex] of 71 ft/s

Assuming Reynolds number similarity is enforced;

where :

kinematic viscosity (V_air) of air at 80 °F  (V_air)  = 1.69 × 10⁻⁴ ft²/s

kinematic viscosity of water  at 60 °F (V_water) = 1.21 × 10⁻⁵ ft²/s

The diameter of the pipe can be calculated by using the expression:

[tex]D_{water} = \dfrac{V_{water}}{V_{air}}*\dfrac{v_{air}}{v_{water}}* D_{air}[/tex]

[tex]D_{water} = \dfrac{1.21*10^{-5} \ ft^2/s}{1.69*10^{-4} \ ft^2/s}*\dfrac{34 \ ft/s}{71 \ ft/s}* 72 \ ft[/tex]

[tex]D_{water} =[/tex] 2.4686  ft

[tex]D_{water} =[/tex] 2.47 ft   ( to two decimal places)

Thus; diameter pipe to be use to move water at the given temperature and average velocity is 2.47 ft

Answer:

2.47  ft

Explanation:

Given that:

The initial temperature of air = 80°F

Diameter of the pipe = 72 ft

average velocity  of the air flow through the pipe =  34 ft/s

The objective is to determine the diameter of the  pipe to  be used to move water at:

At a temperature = 60°F   &

An average velocity  of 71 ft/s

Assuming Reynolds number similarity is enforced;

where :

kinematic viscosity (V_air) of air at 80 °F  (V_air)  = 1.69 × 10⁻⁴ ft²/s

kinematic viscosity of water  at 60 °F (V_water) = 1.21 × 10⁻⁵ ft²/s

The diameter of the pipe can be calculated by using the expression:

2.4686  ft

2.47 ft   ( to two decimal places)

Thus; diameter pipe to be use to move water at the given temperature and average velocity is 2.47 ft

For the following peak or rms values of some important sine waves, calculate the corresponding other value:
(a) 117 V rms, a household-power voltage in North America
(b) 33.9 V peak, a somewhat common peak voltage in rectifier circuits
(c) 220 V rms, a household-power voltage in parts of Europe
(d) 220 kV rms, a high-voltage transmission-line voltage in North America

Answers

Answer:

A) V_peak ≈ 165 V

B) V_rms ≈ 24 V

C) V_peak ≈ 311 V

D) V_peak ≈ 311 KV

Explanation:

Formula for RMS value is given as;

V_rms = V_peak/√2

Formula for peak value is given as;

V_peak = V_rms x √2

A) At RMS value of 117 V, peak value would be;

V_peak = 117 x √2

V_peak = 165.46 V

V_peak ≈ 165 V

B) At peak value of 33.9 V, RMS value would be;

V_rms = 33.9/√2

V_rms = 23.97 V

V_rms ≈ 24 V

C) At RMS value of 220 V, peak value is;

V_peak = 220 × √2

V_peak = 311.13 V

V_peak ≈ 311 V

D) At RMS value of 220 KV, peak value is;

V_peak = 220 × √2

V_peak = 311.13 KV

V_peak ≈ 311 KV

A ball bearing has been selected with the bore size specified in the catalog as 35.000 mm to 35.020 mm. Specify appropriate minimum and maximum shaft diameters to provide a locational interference fit.

Answers

Answer:

A ball bearing has been selected with the bore size specified in the catalog as 35.000 mm to 35.020 mm. Specify.... ... has been selected with the bore size specified in the catalog as 35.000 mm to 35.020 mm. Specify appropriate minimum and maximum shaft diameters to provide a locational interference fit.

Explanation:

which of the following tells the computer wha to do
operating system
the ROM
the motherboard
the monitor

Answers

That’s a very hard question! But I believe it’s the operating system, hope I helped!

A 30-g bullet is fired with a horizontal velocity of 450 m/s and becomes embedded in block B which has a mass of 3 kg. After the impact, block B slides on a 30-kg carrier C until it impacts the end of the carrier.Knowing the impact between B and C is perfectly plastic determine (a) velocity of the bullet and B after the first impact, (b) the final velocity of the carrier
(Distance between C and B is 0.5 m)

Answers

Answer:

a.) 4.46 m/s

b.) 0.41 m/s

Explanation:

a) Given that the mass M of the bullet = 30g = 30/1000 = 0.03 kg

Velocity V = 450 m/s

From conservative of linear momentum,

Sum of momentum before impact = Sum of momentum after impact

0.03 × 450 = (0.03 + 3 ) × v₂

v₂ = 13.5/3.03 = 4.4554 m/s

Therefore the velocity of the bullet and B after the first impact = 4.46 m/s approximately

(b) To calculate the velocity of the carrier, you will consider the conservation of linear momentum again.

(m₁ + m₂)×v₂  = (m₁ + m₂ + m₃)×v₃

Where:

Mass of the carrier m₃ = 30 kg

Substitute all the parameters into the formula

3.03×4.4554 = (3.03 +30) × v₃

v₃ = 13.5 / 33.03 = 0.40872 m/s

Therefore the velocity of the carrier is 0.41 m/s approximately.

A cylindrical tank is required to contain a gage pressure 560 kPa . The tank is to be made of A516 grade 60 steel with a maximum allowable normal stress of 150 MPa . If the inner diameter of the tank is 3 m , what is the minimum thickness, t, of the wall

Answers

Answer:

5.6 mm

Explanation:

Given that:

A cylindrical tank is required to contain a:

Gage Pressure P = 560 kPa

Allowable normal stress [tex]\sigma[/tex] = 150 MPa = 150000 Kpa.

The inner diameter of the tank = 3 m

In a closed cylinder  there exist both the circumferential stress and the longitudinal stress.

Circumferential stress [tex]\sigma = \dfrac{pd}{2t}[/tex]

Making thickness t the subject; we have

[tex]t = \dfrac{pd}{2* \sigma}[/tex]

[tex]t = \dfrac{560000*3}{2*150000000}[/tex]

t = 0.0056 m

t = 5.6 mm

For longitudinal stress.

[tex]\sigma = \dfrac{pd}{4t}[/tex]

[tex]t= \dfrac{pd}{4*\sigma }[/tex]

[tex]t = \dfrac{560000*3}{4*150000000}[/tex]

t = 0.0028  mm

t = 2.8 mm

From the above circumferential stress and longitudinal stress; the stress with the higher value will be considered ; which is circumferential stress and it's minimum value  with the maximum thickness = 5.6 mm

A four-cylinder, four-stroke internal combustion engine has a bore of 3.7 in. and a stroke of 3.4 in. The clearance volume is 16% of the cylinder volume at bottom dead center and the crankshaft rotates at 2400 RPM. The processes within each cylinder are modeled as an air-standard Otto cycle with a pressure of 14.5 lbf/in.2 and a temperature of 60F at the beginning of compression. The maximum temperature in the cycle is 5200R. Based on this model, calculate the net work per cycle, in Btu, and the power developed by the engine, in horsepower.

Answers

Answer:

the net work per cycle [tex]\mathbf{W_{net} = 0.777593696}[/tex]  Btu per cycle

the power developed by the engine, W = 88.0144746 hp

Explanation:

the information given includes;

diameter of the four-cylinder bore = 3.7 in

length of the stroke = 3.4 in

The clearance volume = 16% = 0.16

The cylindrical volume [tex]V_2 = 0.16 V_1[/tex]

the crankshaft N rotates at a speed of  2400 RPM.

At the beginning of the compression , temperature [tex]T_1[/tex] = 60 F = 519.67 R    

and;

Otto cycle with a pressure =  14.5 lbf/in² = (14.5 × 144 ) lb/ft²

= 2088 lb/ft²

The maximum temperature in the cycle is 5200 R

From the given information; the change in volume is:

[tex]V_1-V_2 = \dfrac{\pi}{4}D^2L[/tex]

[tex]V_1-0.16V_1= \dfrac{\pi}{4}(3.7)^2(3.4)[/tex]

[tex]V_1-0.16V_1= 36.55714291[/tex]

[tex]0.84 V_1 =36.55714291[/tex]

[tex]V_1 =\dfrac{36.55714291}{0.84 }[/tex]

[tex]V_1 =43.52040823 \ in^3 \\ \\ V_1 = 43.52 \ in^3[/tex]

[tex]V_1 = 0.02518 \ ft^3[/tex]

the mass in air ( lb) can be determined by using the formula:

[tex]m = \dfrac{P_1V_1}{RT}[/tex]

where;

R = 53.3533 ft.lbf/lb.R°

[tex]m = \dfrac{2088 \ lb/ft^2 \times 0.02518 \ ft^3}{53.3533 \ ft .lbf/lb.^0R \times 519 .67 ^0 R}[/tex]

m = 0.0018962 lb

From the tables  of ideal gas properties at Temperature 519.67 R

[tex]v_{r1} =158.58[/tex]

[tex]u_1 = 88.62 Btu/lb[/tex]

At state of volume 2; the relative volume can be determined as:

[tex]v_{r2} = v_{r1} \times \dfrac{V_2}{V_1}[/tex]

[tex]v_{r2} = 158.58 \times 0.16[/tex]

[tex]v_{r2} = 25.3728[/tex]

The specific energy [tex]u_2[/tex] at [tex]v_{r2} = 25.3728[/tex] is 184.7 Btu/lb

From the tables of ideal gas properties at maximum Temperature T = 5200 R

[tex]v_{r3} = 0.1828[/tex]

[tex]u_3 = 1098 \ Btu/lb[/tex]

To determine the relative volume at state 4; we have:

[tex]v_{r4} = v_{r3} \times \dfrac{V_1}{V_2}[/tex]

[tex]v_{r4} =0.1828 \times \dfrac{1}{0.16}[/tex]

[tex]v_{r4} =1.1425[/tex]

The specific energy [tex]u_4[/tex] at [tex]v_{r4} =1.1425[/tex] is 591.84 Btu/lb

Now; the net work per cycle can now be calculated as by using the following formula:

[tex]W_{net} = Heat \ supplied - Heat \ rejected[/tex]

[tex]W_{net} = m(u_3-u_2)-m(u_4 - u_1)[/tex]

[tex]W_{net} = m(u_3-u_2- u_4 + u_1)[/tex]

[tex]W_{net} = m(1098-184.7- 591.84 + 88.62)[/tex]

[tex]W_{net} = 0.0018962 \times (1098-184.7- 591.84 + 88.62)[/tex]

[tex]W_{net} = 0.0018962 \times (410.08)[/tex]

[tex]\mathbf{W_{net} = 0.777593696}[/tex]  Btu per cycle

the power developed by the engine, in horsepower. can be calculated as follows;

In the  four-cylinder, four-stroke internal combustion engine; the power developed by the engine can be calculated by using the expression:

[tex]W = 4 \times N' \times W_{net[/tex]

where ;

[tex]N' = \dfrac{2400}{2}[/tex]

N' = 1200 cycles/min

N' = 1200 cycles/60 seconds

N' = 20 cycles/sec

W = 4 × 20 cycles/sec ×  0.777593696

W = 62.20749568 Btu/s

W = 88.0144746 hp

The net work per cycle and the power developed by this combustion engine are 0.7792 Btu and 88.20 hp.

Given the following data:

Diameter of bore = 3.7 inStroke length = 3.4 inClearance volume = 16% = 0.16Speed of  2400 RPM.Initial temperature = 60 F to R = 519.67 R.  Initial pressure =  14.5 [tex]lbf/in^2[/tex] to [tex]lbf/ft^2[/tex] = 2088 [tex]lbf/ft^2[/tex] Maximum temperature = 5200 R.

Note: The cylindrical volume is equal to [tex]0.16V_1[/tex]

How to calculate the net work per cycle.

First of all, we would determine the volume, mass and specific energy as follows:

[tex]V_1-V_2=\frac{\pi D^2L}{4} \\\\V_1-0.16V_1=\frac{3.142 \times 3.7^2 \times 3.4}{4}\\\\0.84V_1=36.56\\\\V_1=\frac{36.56}{0.84} \\\\V_1=43.52\;in^3 \;to \;ft^3 = 0.0252\;ft^3[/tex]

For the mass:

[tex]M=\frac{PV}{RT} \\\\M=\frac{2088 \times 0.0252}{53.3533 \times 519.67} \\\\M=\frac{52.6176}{27726.109411}[/tex]

M = 0.0019 lb.

At a temperature of 519.67 R, the relative volume and specific energy are:

[tex]v_{r1}=158.58\\\\u_1 = 88.62\;Btu/lb[/tex]

For the relative volume at the second state, we have:

[tex]v_{r2}=v_{r1}\times \frac{V_2}{V_1} \\\\v_{r2}=158.58\times 0.16\\\\v_{r2}=25.3728[/tex]

Note: At 25.3728, specific energy ([tex]u_2[/tex]) is 184.7 Btu/lb.

At a maximum temperature of 519.67 R, the relative volume and specific energy are:

[tex]v_{r3}=0.1828\\\\u_3 = 1098\;Btu/lb[/tex]

For the relative volume at state 4, we have:

[tex]v_{r4}=v_{r3}\times \frac{V_1}{V_3} \\\\v_{r4}=0.1828\times \frac{1}{0.16}\\\\v_{r4}=1.1425[/tex]

Note: At 1.1425, specific energy ([tex]u_4[/tex]) is 591.84 Btu/lb.

Now, we can calculate the net work per cycle by using this following formula:

[tex]W=Heat\;supplied -Heat\rejected\\\\W=m(u_3-u_2)-m(u_4-u_1)\\\\W=0.0019(1098-184.7)-0.0019(591.84-88.62)\\\\W=1.73527-0.956118[/tex]

W = 0.7792 Btu.

How to calculate the power developed.

In a four-cylinder, four-stroke internal combustion engine, power is given by this formula:

[tex]W=4N'W_{net}[/tex]

But;

[tex]N'=\frac{N}{2 \times 60} \\\\N'=\frac{2400}{120} \\\\N'=20\;cycle/sec[/tex]

Substituting the given parameters into the formula, we have;

[tex]W=4 \times 20 \times 0.7792[/tex]

W = 62.336 Btu/sec.

In horsepower:

W = 88.20 hp.

Read more on net work here: https://brainly.com/question/10119215

At steady state, a refrigerator whose coefficient of performance is 3 removes energy by heat transfer from a freezer compartment at 0 degrees C at the rate of 6000 kJ/hr and discharges energy by heat transfer to the surroundings, which are at 20 degrees C. a) Determine the power input to the refrigerator and compare with the power input required by a reversible refrigeration cycle operating between reservoirs at these two temperatures. b) If electricity costs 8 cents per kW-hr, determine the actual and minimum theoretical operating costs, each in $/day

Answers

Answer:

(A)0.122 kW (B) Actual cost = 1.056 $/day, Theoretical cost =  0.234 $/day

Explanation:

Solution

Given that:

The coefficient of performance is =3

Heat transfer = 6000kJ/hr

Temperature = 20°C

Cost of electricity = 8 cents per kW-hr

Now

The next step is to find the power input to the refrigerator and compare with the power input considered by a reversed refrigeration cycle operating between reservoirs at the two temperatures.

Thus

(A)The coefficient of performance is given below:

COP = Heat transfer from freezer/Power input

3 =6000/P

P =6000/3

P= 2000

P =  2000 kJ/hr = 2000/(60*60) kW

= 2000 (3600)kW

= 0.55 kW

Thus

The ideal coefficient of performance = T_low/(T_high - T_low)

= (0+273)/(20-0)

= 13.65

So,

P ideal = 6000/13.65 = 439.6 kJ/hr

= 439.6/(60*60) kW

= 0.122 kW

(B)For the actual cost we have the following:

Actual cost = 0.55 kW* 0.08 $/kW-hr = $ 0.044 per hour

= 0.044*24 $/day

= 1.056 $/day

For the theoretical cost we have the following:

Theoretical cost = 0.122 kW* 0.08 $/kW-hr = $ 0.00976 per hour

= 0.00976*24 $/day

= 0.234 $/day

Other Questions
A recent survey found that 80% of jeans have back pockets, 65% have front pockets, and 48% have both back andfront pockets. Suppose a pair of jeans is selected at random and it is determined that it has front pockets. What is theprobability that a randomly selected pair of jeans with front pockets also has back pockets?0.520.600.740.81 not sure what to do here uculating the Perimeter of a TriangleGOyTriangle ABC is an isosceles triangle in which sideAB = AC. What is the perimeter of triangle ABC?54O 5+ 10 units32O 10 + 10 units1210/10 units2.3- 5 4 -3 -2 -1-145O 50 unitsB-2c-5 Evaulate 9^sqrt{3} in it to the nearest ten thousandth Currently, a U.S. trader notes that in the 6-month forward market, the Japanese yen is selling at a premium (that is, you receive more dollars per yen in the forward market than you do in the spot market), while the British pound is selling at a discount. Which of the following statements is correct?a) If interest rate parity holds among the three countries, the United States should have the highest 6-month interest rates and Britain should have the lowest rates.b) If interest rate parity holds among the three countries, the United States should have the highest 6-month interest rates and Japan should have the lowest rates.c) If interest rate parity holds among the three countries, Japan should have the highest 6-month interest rates and Britain should have the lowest rates.d) If interest rate parity holds, 6-month interest rates should be the same in the U.S., Britain, and Japan.e) If interest rate parity holds among the three countries, Britain should have the highest 6-month interest rates and Japan should have the lowest rates. Using the diagram below, solve the right triangle. Round angle measures to thenearest degree and segment lengths to the nearest tenth. Psyche is a Greek word meaning Which are elements of plot structure that the reader can study in order to understand the resolution? Check all that apply. Yo ir contigo. Correct Incorrect Read the excerpt from Part 2 of The Odyssey. Why not take these cheeses, get them stowed, come back, throw open all the pens, and make a run for it? We'll drive the kids and lambs aboard. We say put out again on good salt water!' Ah, how sound that was! Yet I refused. I wished to see the caveman, what he had to offer no pretty sight, it turned out, for my friends. What theme is supported by the excerpt? A. It is important to see new sights. B. People should indulge their curiosities. C. It is wise to follow the counsel of trusted friends. D. People should trust their instincts. A triangle with side lengths of 4 , 5 , 6 , what are the measures of it angles to the nearest degree ? [tex]\frac{5x-11}{2x^2+x-6}[/tex] You need to work for your points now! Use the given degree of confidence and sample data to construct a confidence interval for the population proportion p. n = 130x = 69; 90% confidencea. 0.463 < p < 0.599 b. 0.458 < p < 0.604c. 0.461 < p < 0.601 d. 0.459 < p < 0.603 What is the shape of the cross section of a sphere?Rectangletriangleellipsecircle Suppose N coins lie heads up on a table. In one turn, you can turn over any (N1) coins. Is it possible that N coins could lay tails up in any number of turns, if a N=15 ? Select the correct answer.What is the role of the leader in a group discussion?O A.to help resolve conflicts during group discussionsOB.to take notes on the main points of discussionO C.to introduce information for the group to discussOD.to track the time spent on the group discussion What tool is used to draw circles ASAP!! Please help me. I will not accept nonsense answers, but will mark as BRAINLIEST if you answer is correctly with solutions. Tru-U stock is selling for $41 a share. A 6-month call on Tru-U stock with a strike price of $45 is priced at $1.60. Risk-free assets are currently returning .29 percent per month. What is the price of a 6-month put on Tru-U stock with a strike price of $45? The mean of 100 numerical observations is 51.82 what is the value of all 100 numbers