The speed and mass of the second ball after the collision are 5.65 m/s and 0.88 kg respectively.
The speed and mass of the second ball after the collision can be determined using the principles of conservation of momentum and conservation of kinetic energy. The formula for the conservation of momentum is given as:
m₁v₁ + m₂v₂ = m₁u₁ + m₂u₂
where, m₁ and m₂ are the masses of the two balls respectively, v₁ and v₂ are the initial velocities of the balls, and u₁ and u₂ are the velocities of the balls after the collision.
The formula for conservation of kinetic energy is given as:0.5m₁v₁² + 0.5m₂v₂² = 0.5m₁u₁² + 0.5m₂u₂²
where, m₁ and m₂ are the masses of the two balls respectively, v₁ and v₂ are the initial velocities of the balls, and u₁ and u₂ are the velocities of the balls after the collision.
Given,
m₁ = 220 g
m = 0.22 kg
v₁ = 7.5 m/s
u₁ = -3.8 m/s (rebounding)
m₂ = ?
v₂ = 0 (initially at rest)
u₂ = ?
The conservation of momentum equation can be written as:
m₁v₁ + m₂v₂ = m₁u₁ + m₂u₂
=> 0.22 × 7.5 + 0 × m₂ = 0.22 × (-3.8) + m₂u₂
=> 1.65 - 0.22u₂ = -0.836 + u₂
=> 0.22u₂ + u₂ = 2.486
=> u₂ = 2.486/0.44= 5.65 m/s
Conservation of kinetic energy equation can be written as:
0.5m₁v₁² + 0.5m₂v₂² = 0.5m₁u₁² + 0.5m₂u₂²
=> 0.5 × 0.22 × 7.5² + 0.5 × 0 × v₂² = 0.5 × 0.22 × (-3.8)² + 0.5 × m₂ × 5.65²
=> 2.475 + 0 = 0.7388 + 1.64m₂
=> m₂ = (2.475 - 0.7388)/1.64= 0.88 kg
Learn more about conservation of kinetic energy: https://brainly.com/question/24301052
#SPJ11
(a) Write down the Klein-Gordon (KG) equation in configuration of space-time representation ? (b) What kind of particles does the equation describe? (4) Write down the quark content of the following particle und (a) proton (P) (b) Delta ∆++ c) Pion π- (d) Lambda ∆° (strangeness number = ad
e) Kaon K+ (strangeness number = +1)
(a) The Klein-Gordon equation in configuration space-time representation is:
∂²ψ/∂t² - ∇²ψ + (m₀c²/ħ²)ψ = 0.
(b) The Klein-Gordon equation describes scalar particles with spin 0.
(c) The quark content of the mentioned particles is as follows:
(a) Proton (P): uud.
(b) Delta ∆++: uuu.
(c) Pion π-: dū.
(d) Lambda ∆°: uds.
(e) Kaon K+: us.
(a) The Klein-Gordon (KG) equation in configuration space-time representation is given by:
∂²ψ/∂t² - ∇²ψ + (m₀c²/ħ²)ψ = 0,
where ψ represents the wave function of the particle, t represents time, ∇² is the Laplacian operator for spatial derivatives, m₀ is the rest mass of the particle, c is the speed of light, and ħ is the reduced Planck constant.
(b) The Klein-Gordon equation describes scalar particles, which have spin 0. These particles include mesons (pions, kaons) and hypothetical particles like the Higgs boson.
(c) The quark content of the particles mentioned is as follows:
(a) Proton (P): uud (two up quarks and one down quark)
(b) Delta ∆++: uuu (three up quarks)
(c) Pion π-: dū (one down antiquark and one up quark)
(d) Lambda ∆°: uds (one up quark, one down quark, and one strange quark)
(e) Kaon K+: us (one up quark and one strange quark)
In the quark content notation, u represents an up quark, d represents a down quark, s represents a strange quark, and ū represents an up antiquark. The number of subscripts indicates the electric charge of the quark.
Learn more about mesons:
https://brainly.com/question/13274788
#SPJ11
A uniform solid sphere of radius r = 0.420 m and mass m = 15.5 kg turns clockwise about a vertical axis through its center (when viewed from above), at an angular speed of 2.80 rad/s. What is its vector angular momentum about this axis?
The vector angular momentum of the solid sphere rotating about a vertical axis through its center is approximately 1.87 kg·m²/s.
To calculate the vector angular momentum of a solid sphere rotating about a vertical axis through its center, we can use the formula:
L = I * ω
where:
L is the vector angular momentum,
I is the moment of inertia, and
ω is the angular speed.
Given:
Radius of the solid sphere (r) = 0.420 m,
Mass of the solid sphere (m) = 15.5 kg,
Angular speed (ω) = 2.80 rad/s.
The moment of inertia for a solid sphere rotating about an axis through its center is given by:
I = (2/5) * m * r^2
Substituting the given values:
I = (2/5) * 15.5 kg * (0.420 m)^2
Now we can calculate the vector angular momentum:
L = I * ω
Substituting the calculated value of I and the given value of ω:
L = [(2/5) * 15.5 kg * (0.420 m)^2] * 2.80 rad/s
Calculating this expression gives:
L ≈ 1.87 kg·m²/s
Therefore, the vector angular momentum of the solid sphere rotating about a vertical axis through its center is approximately 1.87 kg·m²/s.
Learn more about angular momentum from the given link
https://brainly.com/question/4126751
#SPJ11
Discuss concept of mass conservation and Bernoulli Equation"
The concept of mass conservation and the Bernoulli equation are fundamental principles in fluid mechanics, which describe the behavior of fluids (liquids and gases).
1. Mass Conservation:
Mass conservation, also known as the continuity equation, states that mass is conserved within a closed system. In the context of fluid flow, it means that the mass of fluid entering a given region must be equal to the mass of fluid leaving that region.
Mathematically, the mass conservation equation can be expressed as:
[tex]\[ \frac{{\partial \rho}}{{\partial t}} + \nabla \cdot (\rho \textbf{v}) = 0 \][/tex]
where:
- [tex]\( \rho \)[/tex] is the density of the fluid,
- [tex]\( t \)[/tex] is time,
- [tex]\( \textbf{v} \)[/tex] is the velocity vector of the fluid,
- [tex]\( \nabla \cdot \)[/tex] is the divergence operator.
This equation indicates that any change in the density of the fluid with respect to time [tex](\( \frac{{\partial \rho}}{{\partial t}} \))[/tex] is balanced by the divergence of the mass flux [tex](\( \nabla \cdot (\rho \textbf{v}) \))[/tex].
In simpler terms, mass cannot be created or destroyed within a closed system. It can only change its distribution or flow from one region to another.
2. Bernoulli Equation:
The Bernoulli equation is a fundamental principle in fluid dynamics that relates the pressure, velocity, and elevation of a fluid in steady flow. It is based on the principle of conservation of energy along a streamline.
The Bernoulli equation can be expressed as:
[tex]\[ P + \frac{1}{2} \rho v^2 + \rho g h = \text{constant} \][/tex]
where:
- [tex]\( P \)[/tex] is the pressure of the fluid,
- [tex]\( \rho \)[/tex] is the density of the fluid,
- [tex]\( v \)[/tex] is the velocity of the fluid,
- [tex]\( g \)[/tex] is the acceleration due to gravity,
- [tex]\( h \)[/tex] is the height or elevation of the fluid above a reference point.
According to the Bernoulli equation, the sum of the pressure energy, kinetic energy, and potential energy per unit mass of a fluid remains constant along a streamline, assuming there are no external forces (such as friction) acting on the fluid.
The Bernoulli equation is applicable for incompressible fluids (where density remains constant) and under certain assumptions, such as negligible viscosity and steady flow.
This equation is often used to analyze and predict the behavior of fluids in various applications, including pipe flow, flow over wings, and fluid motion in a Venturi tube.
It helps in understanding the relationship between pressure, velocity, and elevation in fluid systems and is valuable for engineering and scientific calculations involving fluid dynamics.
Thus, the concepts of mass conservation and the Bernoulli equation provide fundamental insights into the behavior of fluids and are widely applied in various practical applications related to fluid mechanics.
Know more about Bernoulli equation:
https://brainly.com/question/29865910
#SPJ4
The concept of mass conservation and Bernoulli's equation are two of the fundamental concepts of fluid mechanics that are crucial for a thorough understanding of fluid flow.
In this context, it is vital to recognize that fluid flow can be defined in terms of its mass and energy. According to the principle of mass conservation, the mass of a fluid that enters a system must be equal to the mass that exits the system. This principle is significant because it means that the total amount of mass in a system is conserved, regardless of the flow rates or velocity of the fluid. In contrast, Bernoulli's equation describes the relationship between pressure, velocity, and elevation in a fluid. In essence, Bernoulli's equation states that as the velocity of a fluid increases, the pressure within the fluid decreases, and vice versa. Bernoulli's equation is commonly used in fluid mechanics to calculate the pressure drop across a pipe or to predict the flow rate of a fluid through a system. In summary, the concepts of mass conservation and Bernoulli's equation are two critical components of fluid mechanics that provide the foundation for a thorough understanding of fluid flow. By recognizing the relationship between mass and energy, and how they are conserved in a system, engineers and scientists can accurately predict fluid behavior and design effective systems to control fluid flow.
Learn more about Bernoulli's equation
https://brainly.com/question/29865910
#SPJ11
Transcribed image text: A rotating fan completes 1150 revolutions every minute. Consider the tip of the blade, at a radius of 120 cm. What is the linear distance moved when the tip moves through one revolution? What is the tip's speed and the magnitude of its acceleration? What is the period of the motion? Sebuah kipas yang berputar membuat 1150 putaran lengkap seminit. Pertimbangkan hujung bilah kipas, pada jejari 120 cm Berapakah jarak yang dibuat oleh hujung bilah kipas di dalam sutu putaran? Berapakah laju dan magnitud pecutan hujung bilah kipas? Berapakah tempoh gerakan? [16 marks / 16 markah] (a Light from a helium-neon laser (630 nm) is incident on a pair of slits. Interference pattern can be seen on a screen 2.0 m from the slits and the bright fringes are separated by 1.40 cm. What is the slit separation? A grating has 5000 lines per cm. Determine the angular separation between the central maximum and the second-order bright fringe if the wavelength of violet light is 410 nm. (b) (a) Cahaya dari helium-neon laser (630 nm) melalui sepasang celahan. Corak interferens dapat dilihat pada layar yang jauhnya 2.0 m dari celahan dan pinggir-pinggir terang dipisahkan sejauh 1.40 cm. Berapakah jarak pisahan antara celahan? Satu parutan mempunyai 5000 garisan per cm. Tentukan sudut pemisahan di antara pinggir terang pusat dengan pinggir terang tertib kedua jika panjang gelombang cahaya ungu ialah 410 nm. [16 marks / 16 markah] (b)
When the rotating fan completes one revolution, the tip of the blade moves a linear distance equal to the circumference of a circle with a radius of 120 cm. The tip's speed is the linear distance moved per unit of time, and its acceleration can be calculated using the formula for centripetal acceleration. The period of motion is the time taken for one complete revolution.
To find the linear distance moved by the tip of the blade in one revolution, we can use the formula for the circumference of a circle: C = 2πr, where r is the radius. Substituting the given radius of 120 cm, we have C = 2π(120 cm) = 240π cm.
The tip's speed is the linear distance moved per unit of time. Since the fan completes 1150 revolutions per minute, we can calculate the speed by multiplying the linear distance moved in one revolution by the number of revolutions per minute and converting to a consistent unit. Let's convert minutes to seconds by dividing by 60:
Speed = (240π cm/rev) * (1150 rev/min) * (1 min/60 s) = 4600π/3 cm/s.
To find the magnitude of the tip's acceleration, we can use the formula for centripetal acceleration: a = v²/r, where v is the speed and r is the radius. Substituting the given values, we have:
Acceleration = (4600π/3 cm/s)² / (120 cm) = 211200π²/9 cm/s².
The period of motion is the time taken for one complete revolution. Since the fan completes 1150 revolutions per minute, we can calculate the period by dividing the total time in minutes by the number of revolutions:
Period = (1 min)/(1150 rev/min) = 1/1150 min/rev.
In summary, when the fan completes one revolution, the tip of the blade moves a linear distance of 240π cm. The tip's speed is 4600π/3 cm/s, and the magnitude of its acceleration is 211200π²/9 cm/s². The period of motion is 1/1150 min/rev.
To know more about centripetal acceleration refer here:
https://brainly.com/question/32812920#
#SPJ11
An object is recognized even if its orientation changes pertains to what aspect of object perception? OA. Figure and ground B. Whole and part
C. Shape and orientation
The recognition of an object even when its orientation changes pertains to the aspect of object perception known as shape and orientation.
Perception is a cognitive process in which we interpret sensory information in the environment. Perception enables us to make sense of our world by identifying, organizing, and interpreting sensory information.
Perception involves multiple processes that work together to create an understanding of the environment. The first process in perception is sensation, which refers to the detection of sensory stimuli by the sensory receptors.
The second process is called attention, which involves focusing on certain stimuli and ignoring others. The third process is organization, in which we group and organize sensory information into meaningful patterns. Finally, perception involves interpretation, in which we assign meaning to the patterns of sensory information that we have organized and grouped.
Shape and orientation is an important aspect of object perception. It enables us to recognize objects regardless of their orientation. For example, we can recognize a chair whether it is upright or upside down. The ability to recognize an object regardless of its orientation is known as shape constancy.
This ability is important for our survival, as it enables us to recognize objects in different contexts. Thus, the recognition of an object even if its orientation changes pertains to the aspect of object perception known as shape and orientation.
Learn more about cognitive process at: https://brainly.com/question/7272441
#SPJ11
Why Cu wire can conduct electricity, but rubber cannot?
(please type)
Cu wire can conduct electricity because it is a good conductor of electricity, while rubber cannot conduct electricity due to its insulating properties.
Copper (Cu) wire is actually a good conductor of electricity, not an insulator. Copper is widely used in electrical wiring and transmission lines due to its high electrical conductivity. When a voltage is applied across a copper wire, the free electrons in the metal can easily move and carry the electric charge from one end to the other, allowing for the flow of electric current.
Rubber, on the other hand, is an insulator. Insulating materials, such as rubber, have high resistance to the flow of electric current. The electrons in rubber are tightly bound to their atoms and do not move freely. This makes rubber unable to conduct electricity effectively. Insulators are commonly used to coat electrical wires or as insulation in electrical systems to prevent the unwanted flow of electric current and to ensure safety by minimizing the risk of electric shock or short circuits.
To learn more about conductors , click here:
brainly.com/question/29773282
#SPJ11
1.Find the force on a particle of mass m=1.70×10-27kg and charge q=1.60×10-19C if it enters a field B=5 mT with an initial speed of v=83.5 km/s. Assume the velocity is in the x direction and the magnetic field enters perpendicular to the screen. Also make a schematic drawing of these vectors. Don't forget to place your reference system.
2.Find the force on a straight conductor of length 0.3 m, which carries a current of 5 A in the negative z-direction. In that space there is a magnetic field given by the vector B=3.5×10-3Ti-3.5×10-3Tj . Make a schematic drawing of the situation. (We do not require precision in your drawing for the direction of the magnetic field, only approximate).
3.A conductor of length 2.5 m is located at z=0, x=4m with a current of 12 A in the -y direction. Find the magnetic field that exists in that region if the force on the conductor is F=-1.20×10-2N(-12i-12j).
4.A long thin wire carries a current I. A metal bar of length L is moving with a constant speed v as shown in the figure. Point a is a distance d from the wire a) Calculate the electromotive force induced in the bar. b) If the bar is replaced by a rectangular circuit of resistance R, what is the magnitude of the induced current in the circuit?
1. The force on the particle is 1.36 x 10^-14 N, schematic drawing shows velocity in x-direction, magnetic field entering perpendicular to the screen, and force perpendicular to both.
2. The force on the straight conductor is 5.25 x 10^-3 N, schematic drawing shows conductor in negative z-direction and magnetic field vectors approximately orthogonal to the conductor.
3. The magnetic field is approximately -0.01 T in the x-direction and -0.01 T in the y-direction.
4. a) The electromotive force induced in the bar is BLv. b) The magnitude of the induced current in the rectangular circuit is V/R.
1. The force on the particle can be calculated using the equation F = qvB, where q is the charge, v is the velocity, and B is the magnetic field. Plugging in the given values, the force is 1.36 x 10^-14 N. A schematic drawing would show the velocity vector in the x-direction, the magnetic field vector entering perpendicular to the screen, and the force vector perpendicular to both.
2. The force on the straight conductor can be calculated using the equation F = IL x B, where I is the current, L is the length of the conductor, and B is the magnetic field. Plugging in the given values, the force is 5.25 x 10^-3 N. A schematic drawing would show the conductor in the negative z-direction, with the magnetic field vectors shown approximately orthogonal to the conductor.
3. The magnetic field can be determined using the equation F = IL x B. Since the force is given as F = -1.20 x 10^-2 N (-12i - 12j), we can equate the force components to the corresponding components of the equation and solve for B. The resulting magnetic field is approximately -0.01 T in the x-direction and -0.01 T in the y-direction.
4. To calculate the electromotive force induced in the bar, we can use the equation emf = BLv, where B is the magnetic field, L is the length of the bar, and v is the speed of the bar. The magnitude of the induced current in the rectangular circuit can be calculated using Ohm's Law, I = V/R, where V is the electromotive force and R is the resistance of the circuit.
Learn more about magnetic field:
https://brainly.com/question/14411049
#SPJ11
(a) A wire that is 1.50 m long at 20.0°C is found to increase in length by 1.90 cm when warmed t 420.0'C. Compute its average coefficient of linear expansion for this temperature range. (b) The wire i stretched just taut (zero tension) at 420.0*C. Find the stress in the wire if it is cooled to 20.0°C withou being allowed to contract. Young's modulus for the wire is 2.0 x 10^11 Pa.
(a) Thee average coefficient of linear expansion for this temperature range is approximately 3.17 x 10^(-5) / °C. (b) The stress in the wire, when cooled to 20.0°C without being allowed to contract, is approximately 2.54 x 10^3 Pa.
(a) The average coefficient of linear expansion (α) can be calculated using the formula:
α = (ΔL / L₀) / ΔT
Where ΔL is the change in length, L₀ is the initial length, and ΔT is the change in temperature.
Given that the initial length (L₀) is 1.50 m, the change in length (ΔL) is 1.90 cm (which is 0.019 m), and the change in temperature (ΔT) is 420.0°C - 20.0°C = 400.0°C, we can substitute these values into the formula:
α = (0.019 m / 1.50 m) / 400.0°C
= 0.01267 / 400.0°C
= 3.17 x 10^(-5) / °C
(b) The stress (σ) in the wire can be calculated using the formula:
σ = E * α * ΔT
Where E is the Young's modulus, α is the coefficient of linear expansion, and ΔT is the change in temperature.
Given that the Young's modulus (E) is 2.0 x 10^11 Pa, the coefficient of linear expansion (α) is 3.17 x 10^(-5) / °C, and the change in temperature (ΔT) is 420.0°C - 20.0°C = 400.0°C, we can substitute these values into the formula:
σ = (2.0 x 10^11 Pa) * (3.17 x 10^(-5) / °C) * 400.0°C
= 2.0 x 10^11 Pa * 3.17 x 10^(-5) * 400.0
= 2.54 x 10^3 Pa.
To learn more about the linear expansion, click here: https://brainly.com/question/32547144
#SPJ11
If the food has a total mass of 1.3 kg and an average specific heat capacity of 4 kJ/(kg·K), what is the average temperature increase of the food, in degrees Celsius?
If the food has a total mass of 1.3 kg and an average specific heat capacity of 4 kJ/(kg·K), 1.25°C is the average temperature increase of the food, in degrees Celsius?
The equation for specific heat capacity is C = Q / (m T), where C is the substance's specific heat capacity, Q is the energy contributed, m is the substance's mass, and T is the temperature change.
The overall mass in this example is 1.3 kg, and the average specific heat capacity is 4 kJ/(kgK). We are searching for the food's typical temperature increase in degrees Celsius.
Let's assume that the food's original temperature is 20°C. The food's extra energy can be determined as follows:
Q = m × C × ΔT where Q is the extra energy, m is the substance's mass, C is its specific heat capacity, and T is the temperature change.
Q=1.3 kg*4 kJ/(kg*K)*T
Q = 5.2 ΔT kJ
Further, the temperature change can be calculated as follows:
ΔT = Q / (m × C)
T = 5.2 kJ / (1.3 kg x 4 kJ / (kg x K))
ΔT = 1.25 K
Hence, the food's average temperature increase is 1.25°C.
Learn more about Average Temperature at
brainly.com/question/28041542
#SPJ4
help !
2-A ball is thrown vertically upward with a speed of 25 m/s a. Find its position after 2s. b. Find its velocity at position 30m ?
The problem involves a ball being thrown vertically upward with an initial speed of 25 m/s. The task is to determine: a) the position of the ball after 2 seconds, and b) the velocity of the ball when it reaches a height of 30m.
To solve this problem, we can use the equations of motion for vertical motion under constant acceleration. The key parameters involved are position, time, velocity, and height.
a) To find the position of the ball after 2 seconds, we can use the equation: h = u*t + (1/2)*g*t^2, where h is the height, u is the initial velocity, g is the acceleration due to gravity, and t is the time. By substituting the given values of u and t = 2s into the equation, we can calculate the position of the ball.
b) To find the velocity of the ball at a height of 30m, we can use the equation: v^2 = u^2 + 2*g*h, where v is the final velocity and h is the height. By substituting the known values of u, g, and h = 30m into the equation, we can solve for the velocity.
In summary, we can determine the position of the ball after 2 seconds by using an equation of motion, and find the velocity of the ball at a height of 30m by using another equation of motion. These calculations rely on the initial speed, acceleration due to gravity, and the given time or height values.
Learn more about speed:
https://brainly.com/question/17661499
#SPJ11
A uniform 6m long and 600N beam rests on two supports. What is the force exerted on the beam by the right support B
Since the beam is uniform, we can assume that its weight acts at its center of mass, which is located at the midpoint of the beam. Therefore, the weight of the beam exerts a downward force of:
F = mg = (600 N)(9.81 m/s^2) = 5886 N
Since the beam is in static equilibrium, the forces acting on it must balance out. Let's first consider the horizontal forces. Since there are no external horizontal forces acting on the beam, the horizontal component of the force exerted by each support must be equal and opposite.
Let F_B be the force exerted by the right support B. Then, the force exerted by the left support A is also F_B, but in the opposite direction. Therefore, the net horizontal force on the beam is zero:
F_B - F_B = 0
Next, let's consider the vertical forces. The upward force exerted by each support must balance out the weight of the beam. Let N_A be the upward force exerted by the left support A and N_B be the upward force exerted by the right support B. Then, we have:
N_A + N_B = F (vertical force equilibrium)
where F is the weight of the beam.
Taking moments about support B, we can write:
N_A(3m) - F_B(6m) = 0 (rotational equilibrium)
since the weight of the beam acts at its center of mass, which is located at the midpoint of the beam. Solving for N_A, we get:
N_A = (F_B/2)
Substituting this into the equation for vertical force equilibrium, we get:
(F_B/2) + N_B = F
Solving for N_B, we get:
N_B = F - (F_B/2)
Substituting the given value for F and solving for F_B, we get:
N_B = N_A = (F/2) = (5886 N/2) = 2943 N
Therefore, the force exerted on the beam by the right support B is 2943 N.
Read more about Force:
brainly.com/question/18158308
#SPJ11
"The horizontal line that accommodates points C and F of a
mirror:
A. Is its principal axis,
B. It changes with distance from the object,
C. It is a beam of light,
D. Has other point
The answer to the question is that the horizontal line that accommodates points C and F of a mirror is its principal axis.
The explanation is given below:
Mirror A mirror is a smooth and polished surface that reflects light and forms an image. Depending on the type of surface, the reflection can be regular or diffuse.
The shape of the mirror also influences the reflection. Spherical mirrors are the most common type of mirrors used in optics.
Principal axis of mirror: A mirror has a geometric center called its pole (P). The perpendicular line that passes through the pole and intersects the mirror's center of curvature (C) is called the principal axis of the mirror.
For a spherical mirror, the principal axis passes through the center of curvature (C), the pole (P), and the vertex (V). This axis is also called the optical axis.
Principal focus: The principal focus (F) is a point on the principal axis where light rays parallel to the axis converge after reflecting off the mirror. For a concave mirror, the focus is in front of the mirror, and for a convex mirror, the focus is behind the mirror. The distance between the focus and the mirror is called the focal length (f).
For a spherical mirror, the distance between the pole and the focus is half of the radius of curvature (r/2).
The horizontal line that accommodates points C and F of a mirror is its principal axis.
To learn more about principal visit;
https://brainly.com/question/30026819
#SPJ11
An RLC series circuit has a 3 Q resistor, a 354 mH inductor, and a 17.7 uF capacitor. If this is connected to a 178 Volt power supply, what will the rms current be at 362 Hz? Express your answer in mA
The rms current in the RLC series circuit at a frequency of 362 Hz will be approximately 0.358 A. To calculate the rms current in an RLC series circuit, then, we can divide the voltage (V) by the impedance (Z) to obtain the rms current (I).
The impedance of an RLC series circuit is given by the formula:
Z = √(R^2 + (XL - XC)^2)
Where:
R = Resistance = 3 Ω
XL = Inductive Reactance = 2πfL
XC = Capacitive Reactance = 1/(2πfC)
f = Frequency = 362 Hz
L = Inductance = 354 mH = 354 × 10^(-3) H
C = Capacitance = 17.7 μF = 17.7 × 10^(-6) F
Let's calculate the values:
XL = 2πfL = 2π(362)(354 × 10^(-3)) ≈ 1.421 Ω
XC = 1/(2πfC) = 1/(2π(362)(17.7 × 10^(-6))) ≈ 498.52 Ω
Now we can calculate the impedance:
Z = √(R^2 + (XL - XC)^2)
= √(3^2 + (1.421 - 498.52)^2)
≈ √(9 + 247507.408)
≈ √247516.408
≈ 497.51 Ω
Finally, we can calculate the rms current:
I = V / Z
= 178 / 497.51
≈ 0.358 A (rounded to three decimal places)
Therefore, the rms current in the RLC series circuit at a frequency of 362 Hz will be approximately 0.358 A.
Learn more about frequency here:
brainly.com/question/29739263
#SPJ11
A light, rigid rod is 55.2 cm long. It's top end is privoted on a frictionless horizontal axie. The rod hangs straigh down at with an massive ball attached to its bottom end. You strike the ball, suddenly giving it a horizontal velocity so that it swings around on a full circle. What minimum speed at the bottom is required to make the ball go over the top of the circle?.
The minimum speed at the bottom required to make the ball go over the top of the circle is 32.91 cm/s.
When the ball is at the bottom of the circle, it has a certain amount of kinetic energy. This kinetic energy is converted into potential energy as the ball moves up the circle.
When the ball reaches the top of the circle, all of its kinetic energy has been converted into potential energy. The potential energy of the ball at the top of the circle is equal to its mass times the acceleration due to gravity times its height above the pivot point.
The ball will only be able to make it over the top of the circle if it has enough kinetic energy to overcome its potential energy. The minimum speed at the bottom of the circle required to do this is given by the following equation:
v_min = sqrt(2gh)
where:
v_min is the minimum speed at the bottom of the circle
g is the acceleration due to gravity (9.81 m/s^2)
h is the height of the ball above the pivot point (55.2 cm = 0.552 m)
Plugging in these values, we get:
v_min = sqrt(2 * 9.81 * 0.552) = 32.91 cm/s
Therefore, the minimum speed at the bottom required to make the ball go over the top of the circle is 32.91 cm/s.
To learn more about horizontal velocity click here: brainly.com/question/2114749
#SPJ11
A cockroach of mass m lies on the rim of a uniform disk of mass 7.00 m that can rotate freely about its center like a merry-go-round. Initially the cockroach and disk rotate together with an angular velocity of 0.200 rad. Then the cockroach walks halfway to the
center of the disk.
(a) What then is the angular velocity of the cockroach-disk system?
(b) What is the ratio K/Ko of the new kinetic energy of the system to its initial kinetic energy?
(a) The angular velocity of the cockroach-disk system after the cockroach walks halfway to the centre of the disk is 0.300 rad.
(b) The ratio K/Ko of the new kinetic energy of the system to its initial kinetic energy is 0.700.
When the cockroach walks halfway to the centre of the disk, it decreases its distance from the axis of rotation, effectively reducing the moment of inertia of the system. Since angular momentum is conserved in the absence of external torques, the reduction in moment of inertia leads to an increase in angular velocity. Using the principle of conservation of angular momentum, the final angular velocity can be calculated by considering the initial and final moments of inertia. In this case, the moment of inertia of the system decreases by a factor of 4, resulting in an increase in angular velocity to 0.300 rad.
The kinetic energy of a rotating object is given by the equation K = (1/2)Iω^2, where K is the kinetic energy, I is the moment of inertia, and ω is the angular velocity. Since the moment of inertia decreases by a factor of 4 and the angular velocity increases by a factor of 1.5, the ratio K/Ko of the new kinetic energy to the initial kinetic energy is (1/2)(1/4)(1.5^2) = 0.700. Therefore, the new kinetic energy is 70% of the initial kinetic energy.
To learn more about velocity, click here:
brainly.com/question/30559316
#SPJ11
Finnish saunas can reach temperatures as high as 130 - 140 degrees Celcius - which extreme sauna enthusiasts can tolerate in short bursts of 3 - 4 minutes. Calculate the heat required to convert a 0.8 kg block of ice, brought in from an outside temperature of -8 degrees Celcius, to steam at 104.0 degrees Celcius in the sauna. [The specific heat capacity of water vapour is 1.996 kJ/kg/K; see the lecture notes for the other specific heat capacities and specific latent heats].
To calculate heat required to convert a 0.8 kg block of ice to steam at 104.0 degrees Celsius in a sauna, we need to consider stages of phase change and specific heat capacities and specific latent heats involved.
First, we need to calculate the heat required to raise the temperature of the ice from -8 degrees Celsius to its melting point at 0 degrees Celsius. The specific heat capacity of ice is 2.09 kJ/kg/K. The equation for this heat transfer is:
Q1 = mass * specific heat capacity * temperature change
Q1 = 0.8 kg * 2.09 kJ/kg/K * (0 - (-8)) degrees Celsius. Next, we calculate the heat required to melt the ice at 0 degrees Celsius. The specific latent heat of fusion for ice is 334 kJ/kg. The equation for this heat transfer is:
Q2 = mass * specific latent heat
Q2 = 0.8 kg * 334 kJ/kg
After the ice has melted, we need to calculate the heat required to raise the temperature of the water from 0 degrees Celsius to 100 degrees Celsius. The specific heat capacity of water is 4.18 kJ/kg/K. The equation for this heat transfer is:
Q3 = mass * specific heat capacity * temperature change
Q3 = 0.8 kg * 4.18 kJ/kg/K * (100 - 0) degrees Celsius
Finally, we calculate the heat required to convert the water at 100 degrees Celsius to steam at 104.0 degrees Celsius. The specific latent heat of vaporization for water is 2260 kJ/kg. The equation for this heat transfer is:
Q4 = mass * specific latent heat
Q4 = 0.8 kg * 2260 kJ/kg
The total heat required is the sum of Q1, Q2, Q3, and Q4:
Total heat = Q1 + Q2 + Q3 + Q4
Calculating these values will give us the heat required to convert the ice block to steam in the sauna.
To learn more about specific latent heats click here : brainly.com/question/30460917
#SPJ11
"A child lets a ball fall off a balcony. After one second the
speed of the ball is 10m/s. What is the speed of the ball after 5
seconds?
After 5 seconds, the speed of the ball will be 49.2 m/s.
To determine the speed of the ball after 5 seconds, we need to consider the effect of gravity on its motion. Assuming no other forces act on the ball apart from gravity, we can use the laws of motion to calculate its speed.
When the child releases the ball, it starts falling under the influence of gravity. The acceleration due to gravity near the surface of the Earth is approximately 9.8 m/s², acting downward. The speed of the ball increases at a constant rate due to this acceleration.
After 1 second, the ball has reached a speed of 10 m/s. This means that it has been accelerating at a rate of 9.8 m/s² for that duration. We can use this information to calculate the change in velocity over the next 4 seconds.
Since the acceleration is constant, we can use the equation of motion:
v = u + at,
where:
v is the final velocity,
u is the initial velocity,
a is the acceleration,
t is the time taken.
Given that the initial velocity (u) is 10 m/s, the acceleration (a) is 9.8 m/s², and the time (t) is 4 seconds, we can substitute these values into the equation:
v = 10 + 9.8 × 4 = 10 + 39.2 = 49.2 m/s.
Therefore, after 5 seconds, the speed of the ball will be 49.2 m/s.
To learn more about speed
https://brainly.com/question/13943409
#SPJ11
What is the wavelength of light in nm falling on double slits
separated by 2.20 µm if the third-order maximum is at an angle of
65.0°?
In the double-slit experiment, a coherent light source is shone through two parallel slits, resulting in an interference pattern on a screen. The interference pattern arises from the wave nature of light.
The term "wavelength" refers to the distance between two corresponding points on a wave, such as two adjacent peaks or troughs. In the context of the double-slit experiment, the "wavelength of light used" refers to the characteristic wavelength of the light source employed in the experiment.
To find the wavelength of light falling on double slits, we can use the formula for the path difference between the two slits:
d * sin(θ) = m * λ
Where:
d is the separation between the slits (2.20 µm = 2.20 × 10^(-6) m)
θ is the angle of the third-order maximum (65.0° = 65.0 × π/180 radians)
m is the order of the maximum (in this case, m = 3)
λ is the wavelength of light we want to find
We can rearrange the formula to solve for λ:
λ = (d * sin(θ)) / m
Plugging in the given values:
λ = (2.20 × 10⁻⁶ m) * sin(65.0 × π/180) / 3
Evaluating this expression gives us the wavelength of light falling on the double slits.
To know more about double slit experiment visit:
https://brainly.com/question/29381229
#SPJ11
Light of wavelength ^ = 685 m passes through a pair of slits that are 13 m wide and 185 m apart.
How many bright interference fringes are there in the central diffraction maximum? How many bright interference fringes are there in the whole pattern?
The number of bright interference fringes in the central diffraction maximum is approximately 19. The number of bright interference fringes in the whole pattern is approximately 5405.
To determine the number of bright interference fringes in the central diffraction maximum and the whole pattern, we can use the formula for the number of fringes:
Number of fringes = (Distance between slits / Wavelength) * (Width of slits / Distance between slits)
Wavelength (λ) = 685 nm = 685 × 10^(-9) m
Width of slits (w) = 13 × 10^(-6) m
Distance between slits (d) = 185 × 10^(-6) m
Number of bright interference fringes in the central diffraction maximum:
The central diffraction maximum occurs when m = 0, where m is the order of the fringe. In this case, the formula simplifies to:
Number of fringes = (Width of slits / Wavelength)
Number of fringes = (13 × 10^(-6) m) / (685 × 10^(-9) m)
Number of fringes ≈ 19
Therefore, there are approximately 19 bright interference fringes in the central diffraction maximum.
Number of bright interference fringes in the whole pattern:
To calculate the number of fringes in the whole pattern, we consider the distance between the central maximum and the first-order maximum, which is given by:
Distance between maxima = (Wavelength) / (Width of slits)
Number of fringes = (Distance between maxima / Wavelength) * (Width of slits / Distance between slits)
Number of fringes = [(Wavelength) / (Width of slits)] / (Wavelength) * (Width of slits / Distance between slits)
Number of fringes = 1 / (Distance between slits)
Number of fringes = 1 / (185 × 10^(-6) m)
Number of fringes ≈ 5405
Therefore, there are approximately 5405 bright interference fringes in the whole pattern.
Note: The calculations assume the Fraunhofer diffraction regime, where the distance between the slits and the observation screen is much larger than the slit dimensions.
To learn more about fringes visit : https://brainly.com/question/15715225
#SPJ11
A spaceship, 230-m long for those on board, moves by the Earth at 0.955c. What is its length as measured by an earthbound observer
The length of the spaceship as measured by an earthbound observer is approximately 68.69 meters.
To calculate the length of the spaceship as measured by an earthbound observer, we can use the Lorentz transformation for length contraction:
L' = L × sqrt(1 - (v²/c²))
Where:
L' is the length of the spaceship as measured by the earthbound observer,
L is the proper length of the spaceship (230 m in this case),
v is the velocity of the spaceship relative to the earthbound observer (0.955c),
c is the speed of light.
Substituting the given values:
L' = 230 m × sqrt(1 - (0.955c)²/c²)
To simplify the calculation, we can rewrite (0.955c)² as (0.955)² × c²:
L' = 230 m × sqrt(1 - (0.955)² × c²/c²)
L' = 230 m × sqrt(1 - 0.911025)
L' = 230 m sqrt(0.088975)
L' = 230 m × 0.29828
L' = 68.69 m
Learn more about speed -
brainly.com/question/13943409
#SPJ11
Concept Simulation 26.4 provides the option of exploring the ray diagram that applies to this problem. The distance between an object and its image formed by a diverging lens is 7.50 cm. The focal length of the lens is -4.30 cm. Find (a) the image distance and (b) the object distance.
The image distance for an object formed by a diverging lens with a focal length of -4.30 cm is determined to be 7.50 cm, and we need to find the object distance.
To find the object distance, we can use the lens formula, which states:
1/f = 1/v - 1/u
Where:
f is the focal length of the lens,
v is the image distance,
u is the object distance.
f = -4.30 cm (negative sign indicates a diverging lens)
v = 7.50 cm
Let's plug in the values into the lens formula and solve for u:
1/-4.30 = 1/7.50 - 1/u
Multiply through by -4.30 to eliminate the fraction:
-1 = (-4.30 / 7.50) + (-4.30 / u)
-1 = (-4.30u + 7.50 * -4.30) / (7.50 * u)
Multiply both sides by (7.50 * u) to get rid of the denominator:
-7.50u = -4.30u + 7.50 * -4.30
Combine like terms:
-7.50u + 4.30u = -32.25
-3.20u = -32.25
Divide both sides by -3.20 to solve for u:
u = -32.25 / -3.20
u ≈ 10.08 cm
Therefore, the object distance is approximately 10.08 cm.
To learn more about image distance click here:
brainly.com/question/29678788
#SPJ11
1. . The spring-loaded handle of a pinball machine is pulled out 8 cm and held there. The spring constant is 140 N/m. What is the force applied by the handle on the ball?2. .A jumper on a pogo stick compresses the spring by 15cm when he jumps on it. The spring constant is 3000 N/m. How much vertical force does the pogo stick exert on the jumper?
3. A spring that is originally 20 cm long is extended to a length of 25 cm when a 750g mass is hung on it. What is the spring constant for this spring?
4. A steel spring is suspended vertically from its upper end and a monkey is hanging from it. If the spring has a spring constant of 500 N/m and the spring extends 25 cm beyond its normal length, what is the mass of the monkey?
5. You are standing on a scale in an elevator. You have a mass of 75kg. Determine what a scale would show as your "apparent" weight if…
a. the elevator starts to accelerate upwards at 3.0m/s2 .
b. the elevator starts to accelerate downwards at 4.0m/s2
The total force measured by the scale= F = Fg - Fa = 735 N - (75 kg)(4.0 m/s^2) = 735 N - 300 N = 435 N.
The force applied by the handle on the ball is 11.2 N.Force F = kx = (140 N/m) x (0.08 m) = 11.2 N2. The vertical force exerted by the pogo stick on the jumper is 450 N. Vertical force, F = kx = (3000 N/m) x (0.15 m) = 450 N3. The spring constant for this spring is 50 N/m.
Spring constant k = (mg) / x = (0.750 kg x 9.80 m/s^2) / (0.05 m) = 147 N/m4. The mass of the monkey is 5.0 kg. Mass, m = F / g = (25 cm x 500 N/m) / (9.80 m/s^2) = 5.1 kg5.
The scale would show an apparent weight of 809 N when the elevator starts to accelerate upwards at 3.0m/s^2
The scale would show an apparent weight of 539 N when the elevator starts to accelerate downwards at 4.0m/s^2.
From the information given, the force applied by the handle on the ball is found using the formula for Hooke's law, F = kx, where F is the force applied by the spring, k is the spring constant, and x is the displacement of the spring from its equilibrium position. In this case, the spring constant k is 140 N/m and the displacement x is 0.08 m. Therefore, the force applied by the handle on the ball is 11.2 N.2. The vertical force exerted by the pogo stick on the jumper is found using the formula for Hooke's law, F = kx, where F is the force applied by the spring, k is the spring constant, and x is the displacement of the spring from its equilibrium position. In this case, the spring constant k is 3000 N/m and the displacement x is 0.15 m. Therefore, the vertical force exerted by the pogo stick on the jumper is 450 N.3. The spring constant for the spring is found using the formula, k = (mg) / x, where k is the spring constant, m is the mass of the object hanging from the spring, g is the acceleration due to gravity, and x is the displacement of the spring from its equilibrium position. In this case, the mass of the object hanging from the spring is 0.750 kg, the displacement of the spring is 0.05 m, and the acceleration due to gravity is 9.80 m/s^2. Therefore, the spring constant for the spring is 147 N/m.4. The mass of the monkey is found using the formula, m = F / g, where m is the mass of the monkey, F is the force applied by the spring, and g is the acceleration due to gravity. In this case, the force applied by the spring is 500 N and the displacement of the spring from its equilibrium position is 0.25 m.
Therefore, the mass of the monkey is 5.1 kg.5. When the elevator starts to accelerate upwards at 3.0 m/s^2, the scale would show an apparent weight of 809 N. This is because the force that the scale is measuring is the sum of the gravitational force and the force due to the acceleration of the elevator. The gravitational force is given by Fg = mg, where m is the mass of the person and g is the acceleration due to gravity. Therefore,
Fg = (75 kg)(9.80 m/s^2) = 735 N. The force due to the acceleration of the elevator is given by Fa = ma, where a is the acceleration of the elevator. Therefore,
Fa = (75 kg)(3.0 m/s^2) = 225 N. Therefore, the total force measured by the scale is F = Fg + Fa = 735 N + 225 N = 960 N. When the elevator starts to accelerate downwards at 4.0 m/s^2, the scale would show an apparent weight of 539 N. This is because the force that the scale is measuring is the difference between the gravitational force and the force due to the acceleration of the elevator.
Therefore, F = Fg - Fa = 735 N - (75 kg)(4.0 m/s^2) = 735 N - 300 N = 435 N.
To know more about Hooke's law visit
brainly.com/question/30379950
#SPJ11
Light with a wavelength of 655 nm (6.55 x 107 m) is incident upon a double slit with a
separation of 0.9 mm (9 x 10+ m). A screen is location 2.5 m from the double slit. (a) At what distance from the center of the screen will the first bright fringe beyond the center
fringe appear?
Given:
Wavelength of light = 655 nm
Separation between double slits = 0.9 mm = 9 x 10^-4 m
Distance of screen from double slits = 2.5 m
Find the distance from the center of the screen to the first bright fringe beyond the center fringe.
The distance between the central maximum and the next bright spot is given by:tanθ = y / L Where, y is the distance of the bright fringe from the central maximum, L is the distance from the double slits to the screen and θ is the angle between the central maximum and the bright fringe.
The bright fringes occur when the path difference between the two waves is equal to λ, 2λ, 3λ, ....nλ.The path difference between the two waves of the double-slit experiment is given by
d = Dsinθ Where D is the distance between the two slits, d is the path difference between the two waves and θ is the angle between the path difference and the line perpendicular to the double slit.
Using the relation between path difference and angle
θ = λ/d = λ/(Dsinθ)y = Ltanθ = L(λ/d) = Lλ/Dsinθ
Substituting the given values, we get:
y = 2.5 x 655 x 10^-9 / (9 x 10^-4) = 0.018 m = 1.8 cm.
Therefore, the first bright fringe beyond the center fringe will appear at a distance of 1.8 cm from the center of the screen.
#SPJ11
Learn more about distance and Wavelength https://brainly.com/question/25847009
Mark all the options that are true a. There is only movement when there is force b. The greater the force, the greater the acceleration C. Force and velocity always point in the same direction d. If t
The true statements among the given options are:
b. The greater the force, the greater the acceleration.
d. If the force is zero, the speed is constant. Option B and D are correct
a. There is only movement when there is force: This statement is not entirely true. According to Newton's first law of motion, an object will remain at rest or continue moving with a constant velocity (in a straight line) unless acted upon by an external force. So, in the absence of external forces, an object can maintain its state of motion.
b. The greater the force, the greater the acceleration: This statement is true. According to Newton's second law of motion, the acceleration of an object is directly proportional to the net force applied to it and inversely proportional to its mass. Therefore, increasing the force applied to an object will result in a greater acceleration.
c. Force and velocity always point in the same direction: This statement is not true. The direction of force and velocity can be the same or different depending on the specific situation. For example, when an object is thrown upward, the force of gravity acts downward while the velocity points upward.
d. If the force is zero, the speed is constant: This statement is true. When the net force acting on an object is zero, the object will continue to move with a constant speed in a straight line. This is based on Newton's first law of motion, also known as the law of inertia.
e. Sometimes the speed is zero even if the force is not: This statement is true. An object can have zero speed even if a force is acting on it. For example, if a car experiences an equal and opposite force of friction, its speed can decrease to zero while the force is still present.
Therefore, Option B and D are correct.
Complete Question-
Mark all the options that are true:
a. There is only movement when there is force
b. The greater the force, the greater the acceleration
c. Force and velocity always point in the same direction
d. If the force is zero, the speed is constant.
e. Sometimes the speed is zero even if the force is not
To know more about acceleration, click here-
brainly.com/question/2303856
#SPJ11
A 43 kg crate full of very cute baby chicks is placed on an incline that is 31° below the horizontal. The crate is connected to a spring that is anchored to a vertical wall, such that the spring is
parallel to the surface of the incline. (a) ( ) If the crate was connected to the spring at equilibrium length, and then allowed to stretch the spring until the crate comes to rest, determine the spring constant. Assume
that the incline is frictionless and that the change in length of the spring is 1.13 m. (b) If there is friction between the incline and the crate, would the spring stretch more, or less than if the incline is frictionless? You must use concepts pertaining to work
and energy to receive full credit
(a) The spring constant is calculated to be (2 * 43 kg * 9.8 m/s^2 * 1.13 m * sin(31°)) / (1.13 m)^2, using the given values.
(b) If there is friction between the incline and the crate, the spring would stretch less compared to a frictionless incline due to the additional work required to overcome friction.
(a) To determine the spring constant, we can use the concept of potential energy stored in the spring. When the crate is at rest, the gravitational potential energy is converted into potential energy stored in the spring.
The gravitational potential energy can be calculated as:
PE_gravity = m * g * h
where m is the mass of the crate (43 kg), g is the acceleration due to gravity (9.8 m/s^2), and h is the vertical height of the incline.
h = L * sin(theta)
where L is the change in length of the spring (1.13 m) and theta is the angle of the incline (31°). Therefore, h = 1.13 m * sin(31°).
The potential energy stored in the spring can be calculated as:
PE_spring = (1/2) * k * x^2
where k is the spring constant and x is the change in length of the spring (1.13 m).
Since the crate comes to rest, the potential energy stored in the spring is equal to the gravitational potential energy:
PE_gravity = PE_spring
m * g * h = (1/2) * k * x^2
Solving for k, we have:
k = (2 * m * g * h) / x^2
Substituting the given values, we can calculate the spring constant.
(b) If there is friction between the incline and the crate, the spring would stretch less than if the incline were frictionless. The presence of friction would result in additional work being done to overcome the frictional force, which reduces the amount of work done in stretching the spring. As a result, the spring would stretch less in the presence of friction compared to a frictionless incline.
To learn more about friction visit : https://brainly.com/question/24338873
#SPJ11
15. You measure the specific heat capacity of a gas and obtain the following results: Cp = -1 (1.13±0.04) kJ kg-¹ K-¹, and Cy = (0.72 ± 0.03) kJ kg-¹ K-¹. State whether this gas is more likely to be monatomic or diatomic. State the confidence level of your answer by calculating the number of standard deviations. Q15: y = 1.57 ± 0.09 (most likely monatomic ~10, diatomic ruled out by ~1.90).
The specific heat capacity, Cp, of a monatomic gas is 3/2 R, where R is the molar gas constant (8.31 J K-¹ mol-¹). The specific heat capacity, Cp, of a diatomic gas is 5/2 R.
The specific heat capacity of a monatomic gas is less than the specific heat capacity of a diatomic gas. Therefore, the gas is more likely to be monatomic based on the values obtained.In order to calculate the number of standard deviations, the formula below is used:
\[\text{Number of standard deviations} = \frac{\text{observed value - mean value}}{\text{standard deviation}}\]Standard deviation, σ = uncertainty in the measurement (±) / 2 (as this is a random error)For Cp:-1 (1.13 ± 0.04) kJ kg-¹ K-¹ \[= -1.13\text{ kJ kg-¹ K-¹ } \pm 0.02\text{ kJ kg-¹ K-¹ }\].
To know more about calculate visit:
https://brainly.com/question/30781060
#SPJ11
Explain in detail why a photon's wavelength must increase when
it scatters from a particle at rest.
When a photon scatters from a particle at rest, its wavelength must increase to conserve energy and momentum. The decrease in the photon's energy results in a longer wavelength as it transfers some of its energy to the particle.
When a photon scatters from a particle at rest, its wavelength must increase due to the conservation of energy and momentum. Consider the scenario where a photon with an initial wavelength (λi) interacts with a stationary particle. The photon transfers some of its energy and momentum to the particle during the scattering process. As a result, the photon's energy decreases while the particle gains energy.
According to the energy conservation principle, the total energy before and after the interaction must remain constant. Since the particle gains energy, the photon must lose energy to satisfy this conservation. Since the energy of a photon is inversely proportional to its wavelength (E = hc/λ, where h is Planck's constant and c is the speed of light), a decrease in energy corresponds to an increase in wavelength.
Learn more about ”wavelength” here:
brainly.com/question/28466888
#SPJ11
A series RLC Circuit has resonance angular frequency 2.00x10³ rad/s. When it is operating at some input frequency, XL=12.0Ω and XC=8.00Ω . (c). If it is possible, find L and C. If it is not possible, give a compact expression for the condition that L and C must satisfy..
For the given conditions, the values of L and C are L = 6.00 mH and C = 6.25 μF (microfarads), respectively.
To find the values of L (inductance) and C (capacitance) for the given series RLC circuit, we can use the resonance angular frequency (ω) and the values of XL (inductive reactance) and XC (capacitive reactance). The condition for resonance in a series RLC circuit is given by:
[tex]X_L = X_C[/tex]
Using the formula for inductive reactance [tex]X_L[/tex] = ωL and capacitive reactance [tex]X_C[/tex] = 1/(ωC), we can substitute these values into the resonance condition:
ωL = 1/(ωC)
Rearranging the equation, we have:
L = 1/(ω²C)
Now we can substitute the given values:
[tex]X_L[/tex] = 12.0 Ω
[tex]X_C[/tex] = 8.00 Ω
Since [tex]X_L[/tex] = ωL and [tex]X_C[/tex] = 1/(ωC), we can write:
ωL = 12.0 Ω
1/(ωC) = 8.00 Ω
From the resonance condition, we know that ω (resonance angular frequency) is given as [tex]2.00 * 10^3[/tex] rad/s.
Substituting ω = [tex]2.00 * 10^3[/tex] rad/s into the equations, we get:
[tex](2.00 * 10^3) L = 12.0[/tex]
[tex]1/[(2.00 * 10^3) C] = 8.00[/tex]
Solving these equations will give us the values of L and C:
L = 12.0 / [tex](2.00 * 10^3)[/tex] Ω = [tex]6.00 * 10^{-3[/tex] Ω = 6.00 mH (millihenries)
C = 1 / [[tex](2.00 * 10^3)[/tex] × 8.00] Ω = [tex]6.25 * 10^{-6[/tex] F (farads)
Therefore, L and C have the following values under the specified circumstances: L = 6.00 mH and C = 6.25 F (microfarads), respectively.
Learn more about angular frequency on:
https://brainly.com/question/30897061
#SPJ4
The resonance angular frequency of a series RLC circuit is given as 2.00x10³ rad/s. At this frequency, the reactance of the inductor (XL) is 12.0Ω and the reactance of the capacitor (XC) is 8.00Ω.
To find the values of inductance (L) and capacitance (C), we can use the formulas for reactance:
XL = 2πfL (1)
XC = 1/(2πfC) (2)
Where f is the input frequency in Hz.
By substituting the given values, we have:
12.0Ω = 2π(2.00x10³)L (3)
8.00Ω = 1/(2π(2.00x10³)C) (4)
Now, let's solve equations (3) and (4) for L and C.
From equation (3):
L = 12.0Ω / (2π(2.00x10³)) (5)
From equation (4):
C = 1 / (8.00Ω * 2π(2.00x10³)) (6)
Using these equations, we can calculate the values of L and C. It is possible to find L and C using these equations. The inductance (L) is equal to 9.54x10⁻⁶ H (Henry), and the capacitance (C) is equal to 1.97x10⁻⁵ F (Farad).
6. A golf cart of 330Kg of mass moves horizontally and without
friction at 5m/s when
a 70Kg person originally at rest gets on the golf cart. What will
be the final speed
of the cart with the person?
The final speed of the golf cart with the person will be 4.26 m/s
Mass of golf cart = 330 kgMass of person = 70 kgTotal mass of the system, m = 330 + 70 = 400 kgInitial velocity of the golf cart, u = 5 m/sFinal velocity of the golf cart with the person, v = ?,
As per the law of conservation of momentum: Initial momentum of the system, p1 = m × u = 400 × 5 = 2000 kg m/sNow, the person gets on the golf cart. Hence, the system now becomes of 400 + 70 = 470 kg of mass.Let the final velocity of the system be v'.Then, the final momentum of the system will be: p2 = m × v' = 470 × v' kg m/sNow, as per the law of conservation of momentum:p1 = p2⇒ 2000 = 470 × v'⇒ v' = 2000/470 m/s⇒ v' = 4.26 m/s.
Therefore, the final velocity of the golf cart with the person will be 4.26 m/s. (rounded off to 2 decimal places).Hence, the final speed of the golf cart with the person will be 4.26 m/s (approximately).
Learn more on momentum here:
brainly.com/question/24030570
#SPJ11
What is the angular velocity of a tricycle wheel relative to the angular velocity of a bicycle wheel (what is w tricycle/w bicycle) if both wheels are traveling with the same translational speed? The bicycle has a wheel radius that is 3.00 times that of the tricycle wheel. Would it be safe to make a child tricycle/adult bicycle tandem?
The angular velocity of the tricycle wheel is three times that of the bicycle wheel (ω_tricycle / ω_bicycle = 3) and it would not be safe to make a child tricycle/adult bicycle tandem.
To determine the angular velocity ratio between the tricycle wheel and the bicycle wheel, we can use the relationship between linear speed, angular velocity, and the radius of a rotating object.
The linear speed of both wheels is the same since they are traveling at the same translational speed.
Let's denote the linear speed as v.
For the bicycle wheel, let's denote its radius as r_bicycle.
For the tricycle wheel, let's denote its radius as r_tricycle.
The relationship between linear speed and angular velocity is given by:
v = ω * r,
where v is the linear speed, ω (omega) is the angular velocity, and r is the radius of the rotating object.
For the bicycle wheel, we have:
v_bicycle = ω_bicycle * r_bicycle.
For the tricycle wheel, we have:
v_tricycle = ω_tricycle * r_tricycle.
Since both wheels have the same linear speed, we can set the two equations equal to each other:
v_bicycle = v_tricycle.
ω_bicycle * r_bicycle = ω_tricycle * r_tricycle.
We can rewrite this equation in terms of the angular velocity ratio:
ω_tricycle / ω_bicycle = r_bicycle / r_tricycle.
Given that the radius of the bicycle wheel is 3.00 times that of the tricycle wheel (r_bicycle = 3 * r_tricycle), we can substitute this into the equation:
ω_tricycle / ω_bicycle = (3 * r_tricycle) / r_tricycle.
ω_tricycle / ω_bicycle = 3.
Therefore, the angular velocity of the tricycle wheel is three times that of the bicycle wheel (ω_tricycle / ω_bicycle = 3).
Based on this, it would not be safe to make a child tricycle/adult bicycle tandem because the tricycle wheel would rotate at a much higher angular velocity than the bicycle wheel, potentially causing stability issues and safety concerns.
Learn more about angular velocity https://brainly.com/question/6860269
#SPJ11