Answer:
The work done by non-conservative forces on the car from the top of the first hill to the top of the second hill is 6574.75 joules.
Explanation:
By Principle of Energy Conservation and Work-Energy Theorem we present the equations that describe the situation of the roller coaster car on each top of the hill. Let consider that bottom has a height of zero meters.
From top of the first hill to the bottom
[tex]m\cdot g \cdot h_{1} = \frac{1}{2}\cdot m\cdot v_{1}^{2} +W_{1, loss}[/tex] (1)
From the bottom to the top of the second hill
[tex]\frac{1}{2}\cdot m\cdot v_{1}^{2} = m\cdot g \cdot h_{2} + \frac{1}{2}\cdot m \cdot v_{2}^{2}+W_{2,loss}[/tex] (2)
Where:
[tex]m[/tex] - Mass of the roller coaster car, in kilograms.
[tex]v_{1}[/tex] - Speed of the roller coaster car at the bottom between the two hills, in meters per second.
[tex]g[/tex] - Gravitational acceleration, in meters per square second.
[tex]h_{1}[/tex] - Height of the first top of the hill with respect to the bottom, in meters.
[tex]W_{1, loss}[/tex] - Work done by non-conservative forces on the car between the top of the first hill and the bottom, in joules.
[tex]v_{2}[/tex] - Speed of the roller coaster car at the top of the second hill, in meters per seconds.
[tex]h_{2}[/tex] - Height of the second top of the hill with respect to the bottom, in meters.
[tex]W_{2, loss}[/tex] - Work done by non-conservative forces on the car bewteen the bottom between the two hills and the top of the second hill, in joules.
By using (1) and (2), we reduce the system of equation into a sole expression:
[tex]m\cdot g\cdot h_{1} = m\cdot g\cdot h_{2} + \frac{1}{2}\cdot m \cdot v_{2}^{2} + W_{loss}[/tex] (3)
Where [tex]W_{loss}[/tex] is the work done by non-conservative forces on the car from the top of the first hill to the top of the second hill, in joules.
If we know that [tex]m = 175\,kg[/tex], [tex]g = 9.807\,\frac{m}{s^{2}}[/tex], [tex]h_{1} = 18\,m[/tex], [tex]h_{2} = 8\,m[/tex] and [tex]v_{2} = 11\,\frac{m}{s}[/tex], then the work done by non-conservative force is:
[tex]W_{loss} = m\cdot\left[ g\cdot \left(h_{1}-h_{2}\right)-\frac{1}{2}\cdot v_{2}^{2} \right][/tex]
[tex]W_{loss} = 6574.75\,J[/tex]
The work done by non-conservative forces on the car from the top of the first hill to the top of the second hill is 6574.75 joules.
Why does ice reflect more energy compared to water?
Answer:
while ice is made by water again it melts and becomes water. water is colourless and odourless and has no taste but ice is only cold and hard. water is used for drinking and other things. but is for freshness and it never flows
Explanation:
so ice reflect more energy compared to water
a man pushed on the side ..
Answer:
B.will increase the maximum static friction between the box and the floor
Explanation:
Because static friction is the force that keeps an object at rest
Question 2 of 15
When the source of a sound is moving, its speed increases.
A. True
B. False
Please Help!!!!!
Belinda observes that the reaction 2H2O+O2=2H2O2 appears to have stopped, because the concentrations of reactants and products are not changing. Which statement is true at this point in the reaction
A P E X
Answer: Molecules of H202, H20 and 02 are still forming. ( A P E X )
Explanation: I know this is late but for anyone looking at this later
The above question is incomplete, I think the original question is
Belinda observes that the reaction 2H20+02 2H2O2 appears to have stopped because the concentrations of reactants and products are not changing. Which statement is true at this point in the reaction?
A. Molecules of H₂O₂ are formed only when the reaction vessel is disturbed.
B. Molecules of H2O2 have stopped forming.
C. Molecules of H20 and O₂ have stopped forming.
D. Molecules of H2O2, H2O, and O2 are still forming.
At this point in the reaction, the system has reached a state of equilibrium i.e there is no net change in the concentrations of reactants and products. So the Molecules of H2O2 have stopped forming. The correct option is B.
What is the state of equilibrium?In chemistry, a state of equilibrium refers to a situation where the concentrations of reactants and products in a chemical reaction are no longer changing over time.
This occurs when the rates of the forward and reverse reactions are equal, and there is no net change in the concentrations of reactants and products.
At equilibrium, the system is in a dynamic state, where the forward and reverse reactions continue to occur, but at the same rate, resulting in no overall change in the concentrations of the species involved in the reaction. The equilibrium state is typically characterized by the equilibrium constant, which is a measure of the relative concentrations of reactants and products at equilibrium for a given reaction under specific conditions of temperature, pressure, and concentration.
Here in this question,
The molecules of H2O2 have stopped forming. This means that the forward reaction (2H2O + O2 → 2H2O2) and the reverse reaction (2H2O2 → 2H2O + O2) are occurring at the same rate, resulting in no net change in the concentration of H2O2. However, molecules of H2O and O2 are still being consumed and produced as they are involved in the reaction, but their concentrations are not changing because they are being replenished at the same rate that they are being consumed.
Therefore, the correct answer is B i.e Molecules of H2O2 have stopped forming.
To learn about redox reactions click:
https://brainly.com/question/13293425
#SPJ3
Bending the stick stretches the chemical bonds holding the stick's atoms together, which provides a source of elastic energy.
a. True
b. False
Answer:
true
Explanation:
Experiments carried out on the television show Mythbusters determined that a magnetic field of 1000 gauss is needed to corrupt the information on a credit card's magnetic strip. (They also busted the myth that a credit card can be demagnetized by an electric eel or an eelskin wallet.) Suppose a long, straight wire carries a current of 5.0 A .
How close can a credit card be held to this wire without damaging its magnetic strip?
Answer:
his distance is too small (r = 0.01 mm), therefore the cut can be at any distance
Explanation:
For this exercise let's use the ampere law.
Let's use a cylinder as the circulating surface
∫ B. ds = μ₀ I
in this case the field is circular and ds is circular therefore the angle between them is zero and cos 0 = 1
B 2π r = μ₀ I
r = [tex]\frac{\mu_o I}{2\pi B}[/tex]
The field needed to demagnetize the card is B = 1000 gauss = 0.1 T
r = [tex]\frac{4\pi 10^{-7} 5.0 }{2\pi \ 0.1}[/tex]
r = 2 10⁻⁷ 5.0/0.1
r = 1 10⁻⁵ m
this distance is too small (r = 0.01 mm), therefore the cut can be at any distance
Suppose a rocket in space is accelerating at 1.5 m/s2. If, at a later time, the rocket quadruples its thrust (i.e., net propelling force), what is the new acceleration?
In medieval warfare, one of the greatest technological advancement was the trebuchet. The trebuchet was used to sling rocks into castles. You are asked to study the motion of such a projectile for a group of local enthusiast planning a medieval war reenactment. Unfortunately an actual trebuchet had not been built yet, so you decide to first look at the motion of a thrown ball as a model of rocks thrown by a trebuchet. Specifically, you are interested in how the horizontal and the vertical components of the velocity for a thrown object change with time. 1. Make a large rough sketch of the trajectory of the ball after it has been thrown. Draw the ball in at least five different positions; two when the ball is going up, two when it is going down, and one at its maximum height. Label the horizontal and vertical axes of your coordinate system.
2. On the sketch, draw and label the expected acceleration vectors of the ball (relative sizes and directions) for the five different positions. Decompose each acceleration vector into its vertical and horizontal components.
3. On the sketch, draw and label the velocity vectors of the object at the same positions you chose to draw your acceleration vectors. Decomposes each velocity vector into its vertical and horizontal components. Check to see that the changes in the velocity vector are consistent with the acceleration vectors.
4. Looking at the sketch, how does someone expect the ball's horizontal acceleration to change with time? Could you give a possible equation giving the ball's horizontal acceleration as a function of time? Graph this equation. If there are constants in your equation, what kinematic quantities do they represent? How would someone determine these constants from the graph?
5. Looking at the sketch, how does someone expect the ball's horizontal velocity to change with time? Is it consistent with the statements about the ball's acceleration from the previous question? Could you give a possible equation for the ball's horizontal velocity as a function of time? Graph this equation. If there are constants in the equation, what kinematic quantities do they represent? How would someone determine these constants from the graph?
6. Could you give a possible equation for the ball's horizontal position as a function of time? Graph this equation. If there are constants in the equation, what kinematic quantities do they represent? How would someone determine these constants from the graph? Are any of these constants related to the equations for horizontal velocity or acceleration?
7. Repeat questions 4-6 for the vertical component of the acceleration, velocity, and position. How are the constants for the acceleration, velocity and position equations related?
Answer:
2) a_y= -g 3) vₓ=constant v_y = v_{oy} - g t, 4) vₓ = v₀ₓ - ax t
5) changes the horizontal speed, should change range
7) changes the vertical speed change the maximum height
Explanation:
1) After reading your long writing, we are going to solve the exercise, in the attachment you can see the different vectors.
2) The acceleration vectors are vertical and directed downwards due to the attraction of the Earth (gravity force) this force is constant, on the x axis there is no acceleration
3) the velocity vectors on the x-axis are constant because there are no relationships and the y-axis changes value according to the expression
v_y = v_{oy} - gt
at the point of maximum height, vy = 0 is equal to the maximum height
4) For someone to change the horizontal acceleration we must assume a friction with the air, in this case they relate it would be in the opposite direction to the horizontal speed
In the graph it would be directed to the left, therefore the velocity would be
vₓ = v₀ₓ - ax t
5 and 6) If someone changes the horizontal speed, they should change the range of the shot for greater horizontal speed, the rock goes further.
the equations of motion are
x = v₀ₓ t
y = v_{oy} t - ½ g t²
7) If someone changes the vertical speed change the maximum height, but not the scope of the shot, for higher speed higher maximum height,
the equations of motion are the same.
4. While cleaning your bedroom, you move your mattress to vacuum underneath your bed. You use a force of 48 N to move the mattress 1.5 meters out of the way. How much work was done?
Answer:
72 J
Explanation:
Use the Work formula
W= F x d
Given:
F - 48 N
d - 1.5 m
Solution:
W= F x d
W= 48 N x 1.5 m
W= 72 J
What happens during heat
transfer?
A. Heat always flows from cool to warm.
B. Heat always flows from warm to cool.
C. Heat always flows from warm to hot.
Answer:
B
Explanation:
1. An electron travels 4.82 meters in 0.00360 seconds. What is its average speed?
Answer:
speed =distance /time
speed =4.82/0.00360
speed =1338.8m/s
1. A person kicks a rock off a cliff horizontally with a speed of 20 m/s. It takes 7.0 seconds to hit the
ground, find:
a. height of the cliff
b. final vertical velocity
C. range
D.speed and angle of impact
This problem involved half projectile.
initial velocity, vo = 20 m/s
time of flight, t = 7 s
(a) Simply use the formula to get the height, h:
h = vo*t - (1/2)gt^2
(b) To get the final vertical velocity or terminal velocity (vf), use the formula:
(vf)^2 - (vo)^2 = 2gh
(c) Use the formula find the horizontal distance traveled, R:
R = vo * cos(θ) * t
But since the angle involved with respect to horizontal is zero, and cos(0) = 1, we have
R = vo * t
Hope this helps~ `u`
Jai
A man whose mass is 69 kg and a woman whose mass is 52 kg sit at opposite ends of a canoe 5 m long, whose mass is 20 kg. Suppose that the man moves quickly to the center of the canoe and sits down there. How far does the canoe move in the water
Answer:
the canoe moved 1.2234 m in the water
Explanation:
Given that;
A man whose mass = 69 kg
A woman whose mass = 52 kg
at opposite ends of a canoe 5 m long, whose mass is 20 kg
now let;
x1 = position of the man
x2 = position of canoe
x3 = position of the woman
Now,
Centre of mass = [m1x1 + m2x2 + m3x3] / m1 + m2 + m3
= ( 69×0 ) + ( 52×5) + ( 20× 5/2) / 69 + 52 + 20
= (0 + 260 + 50 ) / ( 141 )
= 310 / 141
= 2.19858 m
Centre of mass is 2.19858 m
Now, New center of mass will be;
52 × 2.5 / ( 69 + 52 + 20 )
= 130 / 141
= 0.9219858 m { away from the man }
To get how far, the canoe moved;
⇒ 2.5 + 0.9219858 - 2.19858
= 1.2234 m
Therefore, the canoe moved 1.2234 m in the water
The canoe move in the water will be 1.2234 m. The canoe move depending on the center of mass of the bodies.
What is the center of mass?The center of mass of an item or set of objects is a place specified relative to it. It's the average location of all the system's components, weighted by their mass.
The centroid is the location of the center of mass for simple rigid objects with homogeneous density. The center of mass of a uniform disc shape, for example, would be at its center.
The given data in the problem is;
m₁ is the mass of man = 69 kg
m₂ is the mass of woman whose= 52 kg
m₃ is the mass of canoe = 20 kg
L is the length of canoe = 5 m
x₁ is the position of the man
x₂ is the position of the canoe
x₃ is the position of the woman
The center of mass will be;
[tex]\rm COM= \frac{[m_1x_1 + m_2x_2 + m_3x_3]}{ m1 + m2 + m3} \\\\ \rm COM= \frac{[69 \times 0 +52 \times 5 + 20 \times 2.5]}{ 69+ 52 + 20} \\\\ \rm COM= (0 + 260 + 50 ) / ( 141 )\\\\ \rm COM = 310 / 141 \\\\ \rm COM = 2.19858 m[/tex]
The new center of mass is;
[tex]\rm COM= \frac{52 \times 2.5 }{69+52+20} \\\\ \rm COM=\frac{130}{141} \\\\ \rm COM= 0.9219 m[/tex]
The distance to find how the canoe moved will be found by;
[tex]\rm x= 2.5+0.9219-2.1985 = 1.2234[/tex]
Hence the canoe move in the water will be 1.2234 m.
To learn more about the center of mass refer to the link;
https://brainly.com/question/8662931
Which of the following is NOT true about a space-based internet system? * Data is transmitted in the form of electromagnetic radiation. Signals travel faster through space than through fiber-optic cables. No ground equipment is needed to access the internet. The network is made of many satellites organized in a grid pattern
Answer:
A Data is transmitted in the form of electromagnetic radiation.
B Signals travel faster through space than through fiber-optic cables.
C No ground equipment is needed to access the internet.
D The network is made of many satellites organized in a grid pattern.
Explanation:
THose are the options
Answer:
B
Explanation:
clarity the term fair discrimination
Answer:
The discrimination which is based on affirmative action, inherent requirement of a particular job, productivity and compulsory discrimination by law are termed as fair discrimination.
hope it helps :)
Explanation:
You are comparing the beam waste for two different situations with the goal of using the smallest beam waste possible. A Nd-YAG laser system emits light at 532 nm and the beam is 8 mm in diameter. You also have a Ti-sapphire laser that emits at 855 nm and has a beam diameter of 6 mm. Compare the beam waist for both laser systems using a focusing lens with a focal length of 10 mm. Assume the light fills the lenses in each case
Answer:
comparing the beam waist for both lasers ( ratio of the beam waists )
4.536 μm / 2.117 μm = 2.14
Explanation:
Nd-YAG laser system : emits at 532 nm , beam diameter = 8 mm
Ti-sapphire laser system : emits at 855 nm , Beam diameter = 6mm
Comparing the beam waist for both lase systems using a focusing lens
Focal length = 10 mm
assumption : light fills lenses in each laser system
Beam waist radius ( W ) = [tex](\frac{2\beta }{\pi } )(\frac{F}{D} )[/tex]
β = wavelength , D = diameter illuminated , F = focal length
For
Nd-YAG laser system
β = 532 mm , D = 8 mm
hence ( Wn ) = [tex](\frac{2\beta }{\pi } )(\frac{F}{D} )[/tex] = ( 2*532 / π ) ( 10 / 8 ) = 2.117 μm
For
Ti-sapphire laser
β = 855 nm , D = 6 mm
hence ( Wt ) [tex](\frac{2\beta }{\pi } )(\frac{F}{D} )[/tex] = ( 2* 855 ) / π ) ( 50 / 6 ) = 4.536 μm
comparing the beam waist for both lasers ( ratio of the beam waists )
4.536 μm / 2.117 μm = 2.14
A ball is thrown so that its speed increases by 20 m/s in 10 seconds. What is the ball’s acceleration?
Answer: a= 2 m/s²
Explanation: acceleration = change of speed/ time = 20 m/s / 10 s
What causes coastal erosion
La erosión costera es la pérdida o desplazamiento de tierra, o la remoción a largo plazo de sedimentos y rocas a lo largo de la costa debido a la acción de olas, corrientes, mareas, agua impulsada por el viento, hielo transportado por el agua u otros impactos de marejadas ciclónicas.
Which sentence accurately uses the homophones “they’re,” “there,” or “their”?
Many of the students left there backpacks on the bus.
They’re going to come home as soon as the movie is over.
I think I left the bags of groceries on the floor over their.
These dogs bark at everyone, but there not dangerous at all.
Answer:
They're going to come home as soon as the movie is over.
Answer:
B: They're going to come home as soon as the movie is over.
Explanation:
How does increasing the number of resistors in a parallel branch change the total resistance of the system?
Increasing the number of resistors in a parallel branch, decreases the total resistance of the system.
What is parallel branch?Parallel resistive circuit is one where the resistors are connected to the same two points (or nodes) and is identified by the fact that it has more than one current path connected to a common voltage source.
As more and more resistors are added in parallel to a circuit, the equivalent resistance of the circuit decreases and the total current of the circuit increases.
To learn more about Parallel circuit here
https://brainly.com/question/11409042
#SPJ2
Check out this app! It's millions of students helping each other get through their schoolwork. https://brainly.app.link/qpzV02MawO
Answer:
OK we appreciate your concern.
a) The velocity with which the basketball is thrown and its time to reach the basket if thrown at angle of 45 degrees.
b) The velocity with which the basketball is thrown and its time to reach the basket if thrown at angle of 60 degrees.
c) The velocity with which the basketball is thrown and its time to reach the basket if thrown at angle of 30 degrees.
Please list the given, find, equations used, and steps to solve.
Answer: I think the answer is b
Explanation:
There are two main types of collisions that you will study: elastic and perfectly inelastic. In an elastic collision, kinetic energy is conserved. In a perfectly inelastic collision, the particles stick together and thus retain the same velocity after the collision.
a. True
b. False
Answer:
The first part is right (KE is conserved in an elastic collision).
The second part of the statement is false,.
Since momentum is conserved, let moving mass m strike stationary mass M:
m v = (m + M) V where m v is the momentum in
Obviously, v does not equal V.
indicate the types of mechanical energy that are present in the following situation. a punk sliding along level ice and is slowing down.
a) Kinetic Energy
b) Potential Energy
c) Both
d) Neither
Answer:
c
Explanation:
It contains both kinetic and potential energy.
how is a trench and a tsunami related? 6-8 sentences
Answer: A tsunami is a very long-wavelength wave of water that is generated by sudden displacement of the seafloor or disruption of any body of standing water. Tsunami are sometimes called "seismic sea waves", although they can be generated by mechanisms other than earthquakes. Tsunami have also been called "tidal waves", but this term should not be used because they are not in any way related to the tides of the Earth. Because tsunami occur suddenly, often without warning, they are extremely dangerous to coastal communities. Ocean trenches are steep depressions in the deepest parts of the ocean [where old ocean crust from one tectonic plate is pushed beneath another plate, raising mountains, causing earthquakes, and forming volcanoes on the seafloor and on land.
Explanation:
What is the equation for Hookes law ?
Answer:
Fs = -kx is the formula
Explanation:
Fs = spring force
k = spring constant
x = spring compression
Answer:
Equation of Hooks law
F=kx
Where,
F=Force applied
k= spring constant
x=extension of spring
our battery has died and your friends push your vehicle so you can kick-start the engine. You and the vehicle have a combined mass of 1600 kg. If your friends do 6000 J of work and one-third of that is dissipated by friction, how fast is your vehicle traveling?
Answer:2.23 m/s
Explanation:
Given
Mass of person and vehicle is [tex]m=1600\ kg[/tex]
Total work done is [tex]W_t=6000\ J[/tex]
Friction consumes one-third of the energy
The remaining two-third is consumed to increase the kinetic energy
[tex]\Rightarrow \dfrac{2}{3}\times 6000=\dfrac{1}{2}\times 1600\times v^2\\\\\Rightarrow 4000\times 2=1600\times v^2\\\\\Rightarrow v=\sqrt{5}\ \approx 2.23\ m/s[/tex]
What is the mass of a truck in grams of it produces a force of 1500N while accelerating at a rate of 6 m/s²?
Answer:
250,000
Explanation:
formula = ( F=ma F=1500Na=6m/s^2F= mam=?1500/6 = mm=250 kg 1kg =1000gm so 250kg =250,000gm m =250×10^3 gmConsider the path of a comet orbiting a star, the system of the comet plus the star. Which of the following statements are correct? Select all that are True. 1) As the comet slows down, the kinetic energy of the system decreases. 2) As the comet's kinetic energy increases, the gravitational potential energy of the system also increases. 3) External work must be done on the system to speed up the comet. 4) As the kinetic energy of the system increases, the gravitational potential energy of the system decreases. 5) As the comet slows down, energy is lost from the system.
Answer:
True 1, 4
False 2, 3, 5
Explanation:
The system is formed by the Sun that is fixed at a point (focus of movement) and the comet that rotates around in styptic orbits. The only force involved is the force of attraction between the two bodies, if we write the energy of the system
Em = K + U
Em = ½ m v2 + G m Ms / r2
where m is the mass of the comet, Ms the mass of the Sun and r the distance between them.
This system is isolated so the energy is conserved throughout the movement, it only transforms from kinetic to gravitational potential.
Let's review the different claims;
1) True. The speed of the comet determines its kinetic energy, so when decreasing the speed decreases the kinetic energy, there is also a decrease due to the lost mass
2) False. The total energy is constant, so if the kinetic energy increases, the power energy must decrease
3) False. The comet's speed changes are due to changes in gravitational energy, so no external work is needed to change the speed.
4) True. Correct because the sum of the two must be constant
5) False. When the comet loses speed, the energy increases, the power would gravitate, so there is no loss of energy, we are ignoring the loss of mass of the comet.
an ice skater is moving across a flat and level skating rink and is speeding up. which one of the following statement is true of the ice skater
a) its potential energy is constant
b) its potential energy is increasing
c) its potential energy is decreasing
Answer:
A
Explanation:
The angular momentum of a system of particles around a point in a fixed inertial reference frame is conserved if there is no net external torque around that point:
d
→
L
d
t
=
0
or
→
L
=
→
l
1
+
→
l
2
+
⋯
+
→
l
N
=
constant
.
Note that the total angular momentum
→
L
is conserved. Any of the individual angular momenta can change as long as their sum remains constant. This law is analogous to linear momentum being conserved when the external force on a system is zero.