22.5 J
Explanation:
Given:
x = 3 m
[tex]k = 5\:\text{N/m}[/tex]
The spring potential energy [tex]PE_s[/tex] is
[tex]PE_s = \frac{1}{2}kx^2 = \frac{1}{2}(5\:\text{N/m})(3\:\text{m})^2[/tex]
[tex]\:\:\:\:\:\:\:=22.5\:\text{J}[/tex]
What is the best description of the distribution of the galaxies that lie within about 200 Mpc of Earth
A stone is dropped from the edge of a roof, and hits the ground with a velocity of -150 feet per second. How high (in feet) is the roof
Answer:
how long does it take? we need it to answer ure question
Explanation:
cause we don't know how many feet until we know how long it was falling
If a stone is dropped from the edge of a roof and hits the ground with a velocity of -150 feet per second, then the height of the roof would have been 1148 feet.
What are the three equations of motion?There are three equations of motion given by Newton
v = u + at
S = ut + 1/2 × a × t²
v² - u² = 2 × a × s
As given in the problem, a penny is dropped from a building that is 95 m tall, the initial velocity of the penny is zero, and the acceleration acting is due to the acceleration due to gravity,
By using the second equation of the motion for the vertical motion ,
v² = ( 2 × g ×h )
150² = 2 × 9.8 × h
h = 22500 / 19.6
= 1148 feet
Thus, the height of the roof would have been 1148 feet.
To learn more about equations of motion here, refer to the link given below ;
brainly.com/question/5955789
#SPJ2
A car starts from rest and accelerates uniformly over a time of 5.21 seconds for a distance of 110 m. Determine the acceleration of the car.
Answer:
The acceleration of the car is 8.10 m/s²
Explanation:
Given:d = 110 m
t = 5.21 s
vi = 0 m/s
To Find:a = ?
d = Vᵢ × t + 0.5 × a × t²
110 m = (0 m/s) × (5.21 s) + 0.5 × (a) × (5.21 s)²
110 m = (13.57 s²) × a
a = (110 m)/(13.57 s²)
a = 8.10 m/s²
Thus, The acceleration of the car is 8.10 m/s²
-TheUnknownScientist 72
Circuit connections can either be series or parallel. In a_____connections, there is only one path of electrons, loads that are connected have the same current passing through them.
Answer:
circuit
Explanation:
1.25 is the closest to 1.04 or not I want to answer please. I think it's true, but I want to prove it scientifically, please.
Answer:
in general context yes it is closest to 1.04
Explanation:
theres no right or wrong way to scientifically prove this though.
Overall in scale its closest to 1.04 hope that helped
She had a quiet voice what is the adjective in this sentence
Answer:
Quiet, is the adjective in this sentence
Explanation:
She had a quiet voice. This statement uses the adjective quiet. Her voice can be characterized as quiet.
What is adjectives?
A word used to characterize a person, place, or thing is called an adjective. Adjectives are used to modify nouns or pronouns.
There are many adjectives that describe quiet, including muted, peaceful, reticent, silent, soft, gentle, mild, placid, private, secluded, sedate, serene, timid, smooth, calm, tranquil, modest, restrained, sober, and subdued.
Hence, the significance of the adjectives is aforementioned.
Learn more about on adjectives, here:
https://brainly.com/question/11385993
#SPJ2
what is the meaning of word thermodynamics
Answer:
physics that deals with the mechanical action or relations of heat.
Question 3. A wire 25.0cm long lies along the z-axis and carries a current of 9.00A in the +z-direction. The a magnetic field is uniform and has components Bx = -0.242T, By= -0.985, and B2=-0.336. a. Find the components of the magnetic force on the wire? b. What is the magnitude of the net magnetic force on the wire?
a.
The components of the force are Fx = 2.2163 N, Fy = -0.5445 N and Fz = 0 N
The force on a current carrying conductor in a magnetic field is given by F = iL × B where i = current = 9.00 A, L = 25.0 cmk = 0.25 mk (since the conductor is along the z-direction). B = magnetic field. Since B has component Bx = -0.242T, By= -0.985, and Bz = -0.336, B = -0.242i + (-0.985j) + (-0.336)k = -0.242i - 0.985j - 0.336)k.
So, F = iL × B
F = 9.00 A{(0.25 m)k × [-0.242Ti + (-0.985Tj) + (-0.336T)k]T}
F = 9.00 A{(0.25 m)k × (-0.242T)i + (0.25 m)k × (-0.985Tj) + (0.25 m)k × (-0.336T)k]}
F = 9.00 A{-0.0605mT)k × i + (-0.24625 mT)k × j + (-0.084 m)k × k]}
F = 9.00 A{-0.0605mT)j + (-0.24625 mT) × -i + (-0.084 mT) × 0]}
F = 9.00 A{-0.0605mT)j + (0.24625 mT)i + 0 mT]}
F = -0.5445 AmT)j + (2.21625 AmT)i + 0 AmT]}
F = -0.5445j + 2.21625i + 0 k
F = (2.2163i - 0.5445j + 0 k) N
So, the components of the force are Fx = 2.2163 N, Fy = -0.5445 N and Fz = 0 N
b.
The magnitude of the net force on the wire is 2.282 N
The net force F = √(Fx² + Fy² + Fz²)
F = √[(2.2163 N)² + (-0.5445 N)² + (0 N)²)
F = √[(4.912 N)² + 0.2964 N)² + (0 N)²)
F = √[5.2084 N)²
F = 2.2822 N
F ≅ 2.282 N
So, the magnitude of the net force on the wire is 2.282 N
Learn more about force on a current carrying conductor:
https://brainly.com/question/16387830
A 400 g ball swings in a vertical circle at the end of
a 1.5-m-long string. When the ball is at the bottom
of the circle, the tension in the string is 10 N.
A) what is the speed of the ball at that point?
Answer:
a = 25 m/s2
Explanation:
A = f/m
A = Speed/Acceleration
F =‘Force
M = Mass
How do light travels
Answer:
Light can travel in three ways from a source to another location: (1) directly from the source through empty space; (2) through various media; (3) after being reflected from a mirror.
Explanation:
A mass vibrates back and forth from the free end of an ideal spring of spring constant 20 N/m with an amplitude of 0.30 m. What is the kinetic energy of this vibrating mass when it is 0.30 m from its equilibrium position?
Hi there!
We can begin by using the work-energy theorem in regards to an oscillating spring system.
Total Mechanical Energy = Kinetic Energy + Potential Energy
For a spring:
[tex]\text{Total ME} = \frac{1}{2}kA^2\\\\\text{KE} = \frac{1}{2}mv^2\\\\PE = \frac{1}{2}kx^2[/tex]
A = amplitude (m)
k = Spring constant (N/m)
x = displacement from equilibrium (m)
m = mass (kg)
We aren't given the mass, so we can solve for kinetic energy by rearranging the equation:
ME = KE + PE
ME - PE = KE
Thus:
[tex]KE = \frac{1}{2}kA^2 - \frac{1}{2}kx^2\\\\[/tex]
Plug in the given values:
[tex]KE = \frac{1}{2}(20)(0.3^2) - \frac{1}{2}(20)(0.3^2) = \boxed{0 \text{ J}}[/tex]
We can also justify this because when the mass is at the amplitude, the acceleration is at its maximum, but its instantaneous velocity is 0 m/s.
Thus, the object would have no kinetic energy since KE = 1/2mv².
Give an example of intense aerobics activity. Prompt must be accurate.
Answer:
Explanation:
An example of an intense aerobic activity would be running/ sprinting sprinting targets six specific muscle groups: hamstrings, quadriceps, glutes, hips, abdominals and calves. Sprinting is a total body workout featuring short, high-intensity repetitions and long, easy recoveries.
plz answer the question.
Answer:
a
Explanation:
sana po makatulong <3♡♡
A 100 N crate is being pulled at a constant velocity by a rope a 30 degrees to the horizontalas depicted in the diagramFind the force of friction Show your work and explain your reasoning in two to sentences
Answer:
Explanation:
As the velocity is constant, Net force is zero. This means that the friction force must equal the applied force in the horizontal direction.
Ff = Fcosθ
if we had a coefficient of kinetic friction μ, we could quantify the friction force more precisely.
μN = Fcosθ
μ(mg - Fsinθ) = Fcosθ
μmg = Fcosθ + μFsinθ
100μ = F(cos30 + μsin30)
F = 100μ / (cos30 + ½μ)
Ff = 100μcos30 / (cos30 + ½μ)
A 100 N create is being pulled at a constant velocity by a rope a 30 degrees to the horizontal as depicted in the diagram given in question the force of friction Ff = 100μcos30 / (cos30 + ½μ).
What is force?
A force in physics is an effect that has the power to alter an object's motion. An object with mass can change its velocity, or accelerate, as a result of a force. An obvious way to describe force is as a push or a pull. A force is a vector quantity since it has both magnitude and direction.
As the velocity is constant, Net force is zero. This means that the friction force must equal the applied force in the horizontal direction.
Ff = Fcosθ
if we had a coefficient of kinetic friction μ, we could quantify the friction force more precisely.
μN = Fcosθ
μ(mg - Fsinθ) = Fcosθ
μmg = Fcosθ + μFsinθ
100μ = F(cos30 + μsin30)
F = 100μ / (cos30 + ½μ)
Ff = 100μcos30 / (cos30 + ½μ)
the force of friction Ff, is 100μcos30 / (cos30 + ½μ).
To learn more about force refer to the link:
brainly.com/question/13191643
#SPJ5
What is the word that is used to describe someone that is using a drug?
A: Sober
B: Crazy
C: High
D: Slumped
Helppp
Velocity and Acceleration Quick Check
C
D
E
During which of the labeled time segments is the object moving forward but slowing down?
(1 point)
Ο Α
0 С
OD
ОВ
Answer:
Explanation:
1 Object C has an acceleration that is greater than the acceleration for D.
2 B
3 17M
4 The velocity is zero.
5 a straight line with negative slope
just took it
Air is pumped into the tyre to inflate it.
This increases the temperature and the pressure of the air in the tyre.
Use ideas about molecules to explain why the air pressure in the tyre increases. *
Convection currents occur when _________ energy transfers between two parts of a fluid
Answer:
heat
Explanation:
describe the motion of objects that are viewed from your reference frame both inside and outside while you travel inside a moving vehicle
Answer:
The objects outside the reference frame aren't moving. It appears this way since the vehicle you are inside is moving, but unless the objects are people, animals, or other vehicles, the objects aren't moving.
A 0.035-kg bullet is fired vertically at 214 m/s into a 0.15-kg baseball that is initially at rest. How high does the combined bullet and baseball rise after the collision, assuming the bullet embeds itself in the ball
Answer:
Explanation:
conservation of momentum during the collision
0.035(214) + 0.15(0) = 0.185v
v = 40.486 m/s
The kinetic energy after impact will convert to gravity potential energy
(ignoring air resistance)
mgh = ½mv²
h = v²/2g
h = 40.486² / (2(9.8))
h = 83.6303...
h = 84 m
The element which does not show variable valency a) AI b)Fe c) Cu d) Hg
Answer:
None of these elements.
The figure shown above is the circuit diagram for a simple dc power supply. Identify the type of rectifier circuit represented in the figure and explain the operation of the circuit with reference to the function of each component within the circuit.
Answer:
D1 FG 12 15×AG+5T×G7+3F
A mass undergoes SHM with amplitude of 4 cm. The energy is 8.0 J at this time. The mass is cut in half, and the system is again set in motion with amplitude 4.0 cm. What is the energy of the system now?
Hi there!
[tex]\large\boxed{E_{total} = 8.0 \text{ J}}[/tex]
For a mass undergoing SHM, the total energy of the system is given as:
[tex]ME = \frac{1}{2}kA^2[/tex]
Where:
k = Spring constant (N/m)
A = amplitude (m)
There is no quantity of mass in the equation, so the total mechanical energy of the system is NOT impacted by the object's mass.
Thus, the energy of the system will still be 8.0 J.
jshshwjs sbwiwiw910mw s x djjskskekwkq
Answer:
jsbdhdndmlsusgsbkaksudgnslsosufhbf ffb
Find the dimension of the gravitational constant in this equation F=Gm1m2/r¹r²
The gravitational force acting between the two bodies is given by:
F=G
r
2
m
1
m
2
G=
m
1
m
2
Fr
2
The dimension of the force is [MLT
−2
]
=
[M][M]
[MLT
−2
][L
2
]
=M
−1
L
3
T
−2
A flywheel with a diameter of 0.692 m is rotating at an angular speed of 208 rev/min. (a) What is the angular speed of the flywheel in radians per second
[tex]\omega = 21.8\:\text{rad/s}[/tex]
Explanation:
We know that there are [tex]2\pi[/tex] radians in one revolution and 60 seconds in one minute so we can easily convert the rev/min unit to rad/s using the following conversion factors:
[tex]208\:\dfrac{\text{rev}}{\text{min}}×\dfrac{2\pi\:\text{rad}}{1\:\text{rev}}×\dfrac{1\:\text{min}}{60\:\text{s}}[/tex]
[tex]\;\;\;\;\;=21.8\:\text{rad/s}[/tex]
I NEED THE ANSWER ASAPP
Answer:
Explanation:
a) The spring force will equal the weight.
b) If up is positive
kx - mg = 0
mg = kx kx = 25 N
c) m = kx/g = 25/10 = 2.5 kg
calculate the speed of longitudinal waves in aluminum (assuming the elastic modulus = 6.89 x 10^4 MPa)
The expression for the speed of waves in materials allows us to find the result for the speed of sound in aluminum is:
Sound speed is: v = 5050 m / s
The speed of a wave in a material is determined by the relationship between its volumetric modulus and its density, it is given by the expression.
v = [tex]\sqrt{ \frac{B}{\rho} }[/tex]
where v is the speed of the wave in the material (sound), B is the volume modulus and ρ the density.
They indicate that the volumetric or elastic modulus of aluminum is;
B = 6.89 10⁴ Mpa ( [tex]\frac{10^6 \ Pa}{1 \ MPa}[/tex] ) = 6.89 10¹⁰ Pa
The density of aluminum is tabulated ρ = 2.7 10³ kg / m³
We calculate.
v = [tex]\sqrt{ \frac{6.89 \ 10^{10} }{2.7 \ 10^3 }}[/tex]
v = 5.05 10³ m / s
In conclusion using the expression for the speed of waves in materials we can find the result for the speed of sound in aluminum is:
v = 5050 m / s
Learn more about the speed of sound here: brainly.com/question/6840608
can anyone explain how to do it for me? i don't understand...
Answer:
15[m].
Explanation:
1) the required distance is AD, for more info see the attached picture.
2) [tex]AD=\sqrt{AA_1^2+A_1D^2} =\sqrt{81+144}=15[m].[/tex]
2) A rolling disk, mass m and radius R, approaches a step of height R/2 with velocity v. (i) Taking the corner of the step as the pivot point, what is the initial angular momentum of the disk
The rolling disk's initial angular momentum is mR√[2(gR + v²)]/2
Using the law of conservation of energy, the initial mechanical energy E of the disk equals its final mechanical energy E' as it climbs the step.
So, E = E'
1/2Iω + 1/2mv² + mgh = 1/2Iω' + 1/2mv'² + mgh'
where I = rotational inertia of disk = 1/2mR² where m = mass of disk and R = radius of disk, ω = initial angular speed of disk, v = initial velocity of disk, h = initial height of disk = 0 m, ω' = final angular speed of disk = 0 rad/s (assumung it stops at the top of the step), v' = final velocity of disk = 0 m/s (assumung it stops at the top of the step), and h' = final height of disk = R/2.
Substituting the values of the variables into the equation, we have
1/2Iω² + 1/2mv² + mgh = 1/2Iω'² + 1/2mv'² + mgh'
1/2(1/2mR² )ω² + 1/2mv² + mg(0) = 1/2I(0)² + 1/2m(0)² + mgR/2
mR²ω²/4 + 1/2mv² + 0 = 0 + 0 + mgR/2
mR²ω²/4 + 1/2mv² = mgR/2
R²ω²/4 = gR/2 + 1/2v²
R²ω²/4 = (gR + v²)/2
ω² = 2(gR + v²)/R²
ω² = √[2(gR + v²)/R²]
ω = √[2(gR + v²)]/R
Since angular momentum L = Iω, the rolling disk's initial angular momentum is
L = 1/2mR² ×√[2(gR + v²)]/R
L = mR√[2(gR + v²)]/2
the rolling disk's initial angular momentum is mR√[2(gR + v²)]/2
Learn more about angular momentum here:
https://brainly.com/question/13822610