Answer:
a) 3344 N
b) 3344 N
Explanation:
This is the complete question
1100 kg car pushes a 2200 kg truck that has a dead battery. When the driver steps on the accelerator, the drive wheels of the car push against the ground with a force of 5000 N. Rolling friction can be neglected. A. What is the magnitude of the force of the car on the truck? Express your answer to two significant figures and include the appropriate units. B. What is the magnitude of the force of the truck on the car?
Mass of the car = 1100 kg
Mass of the truck = 2200 kg
Force exerted on the ground by the car = 5000 N
The total mass in the system = 1100 + 2200 = 3300 Kg
Total force in the system = 5000 N
Recall that the force in the system = mass x acceleration
therefore,
5000 = 3300 x a
Total acceleration in the system = 5000/3300 = 1.52 m/s^2
The force on the truck individually fro the car, will be the product of this acceleration and its mass
Force on the truck = 2200 x 1.52 = 3344 N
b) Force on the car From the truck will be equal to this force but will act in the opposite direction.
Force on the car from the truck is 3344 N
A 60 kg person is in a head-on collision. The car's speed at impact is 15 m/s . Estimate the net force on the person if he or she is wearing a seat belt and if the air bag deploys.
Complete question:
Seat belts and air bags save lives by reducing the forces exerted on the driver and passengers in an automobile collision. Cars are designed with a "crumple zone" in the front of the car. In the event of an impact, the passenger compartment decelerates over a distance of about 1 m as the front of the car crumples. An occupant restrained by seat belts and air bags decelerates with the car. In contrast, a passenger not wearing a seat belt or using an air bag decelerates over a distance of 5mm.
(a) A 60 kg person is in a head-on collision. The car's speed at impact is 15 m/s . Estimate the net force on the person if he or she is wearing a seat belt and if the air bag deploys.
Answer:
The net force on the person as the air bad deploys is -6750 N backwards
Explanation:
Given;
mass of the passenger, m = 60 kg
velocity of the car at impact, u = 15 m/s
final velocity of the car after impact, v = 0
distance moved as the front of the car crumples, s = 1 m
First, calculate the acceleration of the car at impact;
v² = u² + 2as
0² = 15² + (2 x 1)a
0 = 225 + 2a
2a = -225
a = -225 / 2
a = -112.5 m/s²
The net force on the person;
F = ma
F = 60 (-112.5)
F = -6750 N backwards
Therefore, the net force on the person as the air bad deploys is -6750 N backwards
Unpolarized light enters a polarizer with vertical polarization axis. The light that passes through passes another polarizer with transmission axis at 40 degrees to the horizontal. What is the intensity of the light after the second polarizer expressed as a fraction of the original intensity
Answer:
I = 0.2934 I₀
Explanation:
The expression that governs the transmission of polarization is
I = I₀ cos² θ
Let's apply this to our case, when the unpolarized light enters the first polarized, the polarized light that comes out has the intensity of
I₁ = I₀ / 2
this is the light that enters the second polarizer
I = I₁ cos² θ
we substitute
I = I₀ / 2 cos² 40
I = I₀ 0.2934
I = 0.2934 I₀
what is the largest star in our night sky
A conventional current of 8 A runs clockwise in a circular loop of wire in the plane, with center at the origin and with radius 0.078 m. Another circular loop of wire lies in the same plane, with its center at the origin and with radius 0.03 m. How much conventional current must run counterclockwise in this smaller loop in order for the magnetic field at the origin to be zero
Answer:
I2 = 3.076 A
Explanation:
In order to calculate the current in the second loop, you take into account that the magnitude of the magnetic field at the center of the ring is given by the following formula:
[tex]B=\frac{\mu_oI}{2R}[/tex] (1)
I: current in the wire
R: radius of the wire
μo: magnetic permeability of vacuum = 4π*10^-7 T/A
In the case of the two wires with opposite currents and different radius, but in the same plane, you have that the magnitude of the magnetic field at the center of the rings is:
[tex]B_T=\frac{\mu_oI_1}{2R_1}-\frac{\mu_oI_2}{2R_2}[/tex] (2)
I1: current of the first ring = 8A
R1: radius of the first ring = 0.078m
I2: current of the second ring = ?
R2: radius of the first second = 0.03m
To find the values of the current of the second ring, which makes the magnitude of the magnetic field equal to zero, you solve the equation (2) for I2:
[tex]\frac{\mu_oI_2}{2R_2}=\frac{\mu_oI_1}{2R_1}\\\\I_2=I_1\frac{R_2}{R_1}=(8A)\frac{0.03m}{0.078m}=3.076A[/tex]
The current of the second ring is 3.076A and makes that the magntiude of the total magnetic field generated for both rings is equal to zero.
A circuit element maintains a constant resistance. If the current through the circuit element is doubled, what is the effect on the power dissipated by the circuit element
Answer:
This shows that the power dissipated by the circuit element is four times its original power if the current is doubled.Explanation:
The formula for calculating the power expended in a circuit is P = I²R... 1
i is the current (in amperes)
R is the resistance (in ohms)
If a circuit element maintains a constant resistance and the current through the circuit element is doubled, then new current I₂ = 2I
New power dissipated P₂ = (I₂)²R
P₂ = (2I)²R
P₂ = 4I²R ... 2
Dividing equation 2 by 1 will give;
P₂/P = 4I²R/I²R
P₂/P = 4
P₂ = 4P
This shows that the power dissipated by the circuit element is four times its original power if the current is doubled.
An accelerating voltage of 2.25 103 V is applied to an electron gun, producing a beam of electrons originally traveling horizontally north in vacuum toward the center of a viewing screen 36.4 cm away. (a) What is the magnitude of the deflection on the screen caused by the Earth's gravitational field
Answer:
s= 8.28×10⁻¹⁶m
Explanation:
given
V= 2.25×10³V
from conservation of energy
mv²/2=qΔV
v=√(2qΔV/m)
v= √(2×1.6×10⁻¹⁹×2.25×10³/9.1×10⁻³¹)
=√7.9×10¹⁴m/s
=2.8×10⁷m/s
the deflection of electron beam is
S= gt²/2
recall t= d/v
s=g([tex]\frac{d}{v}[/tex])²/2
s= [tex]\frac{1}{2}[/tex]×9.8×(0.364/2.8×10⁷)²
s= 8.28×10⁻¹⁶m
What is the equivalent temperature in kelvin if you have a metal at 50°F?
Answer:
The required temperature is 283 K.
Explanation:
[tex]T\:=\:\left(50-32\right)\times \frac{5}{9}+273\\\\T=283\:K[/tex]
Best Regards!
The magnetic field strength at the north pole of a 2.0-cm-diameter, 8-cm-long Alnico magnet is 0.10 T. To produce the same field with a solenoid of the same size, carrying a current of 1.8 A , how many turns of wire would you need
Answer:
The number of turns of the solenoid is 3536 turns
Explanation:
Given;
magnetic field of the solenoid, B = 0.1 T
current in the solenoid, I = 1.8 A
length of the solenoid, L = 8cm = 0.08m
The magnetic field near the center of the solenoid is given by;
B = μ₀nI
Where;
μ₀ is permeability of free space = 4π x 10⁻⁷ m/A
n is number of turns per length
I is the current in the coil
The number of turns per length is calculated as;
n = B / μ₀I
n = (0.1 ) / (4π x 10⁻⁷ x 1.8)
n = 44203.95 turns/m
The number of turns is calculated as;
N = nL
N = (44203.95)(0.08)
N = 3536 turns
Therefore, the number of turns of the solenoid is 3536 turns
Air is cooled in a process with constant pressure of 150 kPa. Before the process begins, air has a specific volume of 0.062 m^3/kg. The final specific volume is 0.027 m^3/kg. Find the specific work in the process.
Answer:
The pressure is constant, and it is P = 150kpa.
the specific volumes are:
initial = 0.062 m^3/kg
final = 0.027 m^3/kg.
Then, the specific work can be written as:
[tex]W = \int\limits^{vf}_{vi} {Pdv} \, = P(vf - vi) = 150kPa*(0.0027 - 0.062)m^3/kg = -5.25 kPa*m^3/kg.[/tex]
The fact that the work is negative, means that we need to apply work to the air in order to compress it.
Now, to write it in more common units we have that:
1 kPa*m^3 = 1000J.
-5.25 kPa*m^3/kg = -5250 J/kg.
An alarm clock is plugged into a 120 volt outlet and has a resistance of 15,000 ohms. How much power does it use?
Answer:
The power used is 0.96 watts.
Explanation:
Recall the formula for electric power (P) as the product of the voltage applied times the circulating current:
[tex]P=V\,\,I[/tex]
and recall as well that the circulating current can be obtained via Ohm's Law as the quotient of the voltage applied divided the resistance:
[tex]V=I\,\,R\\I=\frac{V}{R}[/tex]
Then we can re-write the power expression as:
[tex]P=V\,\,I=V\,\,\frac{V}{R} =\frac{V^2}{R}[/tex]
which in our case becomes:
[tex]P=\frac{V^2}{R}=\frac{120^2}{15000} =0.96\,\,watts[/tex]
You walk into an elevator, step onto a scale, and push the "down" button to go directly from the tenth floor to the first floor. You also recall that your normal weight is w= 635 N. If the elevator has an initial acceleration of magnitude 2.45 m/s2, what does the scale read? Express your answer in newtons.
Answer: 479. 425 N
Explanation: the calculation of a body in an elevator obeys Newton law. When it is accelerating upward, the scale reading is greater than the true weight of the person.
It is given by N= m(g+a)
When it is accelerating downward, the scale reading is less than the true weight.
It so given by N = m(g-a)
The answer to the above questions is in the attached photo
Answer:
the scale will read 476.414 N
Explanation:
Weight = 635 N
mass = (weight) ÷ (acceleration due to gravity 9.81 m/^2)
mass m = 635 ÷ 9.81 = 64.729 kg
initial acceleration of the elevator a = 2.45 m/s^2
the force produced by the acceleration of the elevator downwards = ma
your body inertia force try to counteract this force, by a force equal and opposite to the direction of this force, leading to an apparent weight loss
apparent weight = weight - ma
apparent weight = 635 - (64.729 x 2.45)
apparent weight = 635 - 158.586 = 476.414 N
An electromagnetic wave is propagating towards the west. At a certain moment the direction of the magnetic field vector associated with this wave points vertically up. What is the direction of the electric field vector?
Answer:
the electric field is pointing horizontal direction and in south direction
Explanation:
In an electromagnetic wave, the magnetic field and electrical field are perpendicular to each other and these are perpendicular to the direction of the waves.
The upward velocity of a 2540kg rocket is v(t)=At + Bt2. At t=0 a=1.50m/s2. The rocket takes off and one second afterwards v=2.00m/s. Determine the constants A and B with units.
Answer:
The value of A is 1.5m/s^2 and B is 0.5m/s^³
Explanation:
The mass of the rocket = 2540 kg.
Given velocity, v(t)=At + Bt^2
Given t =0
a= 1.50 m/s^2
Now, velocity V(t) = A*t + B*t²
If, V(0) = 0, V(1) = 2
a(t) = dV/dt = A+2B × t
a(0) = 1.5m/s^²
1.5m/s^² = A + 2B × 0
A = 1.5m/s^2
now,
V(1) = 2 = A× 1 + B× 1^²
1.5× 1 +B× 1 = 2m/s
B = 2-1.5
B = 0.5m/s^³
Now Check V(t) = A× t + B × t^²
So, V(1) = A× (1s) + B× (1s)^² = 1.5m/s^² × 1s + 0.5m/s^³ × (1s)^² = 1.5m/s + 0.5m/s = 2m/s
Therefore, B is having a unit of m/s^³ so B× (1s)^² has units of velocity (m/s)
What is meant civilized?
Answer:
at an advanced stage of social and cultural development. "a civilized society"
Explanation:
polite and well-mannered "I went to talk to them and we had a very civilized conversation" hope this helps you :)
In an undergraduate physics lab, a simple pendulum is observed to swing through 71 complete oscillations in a time period of 1.80 min. What are the period and length of the pendulum
Explanation:
We have
A simple pendulum is observed to swing through 71 complete oscillations in a time period of 1.80 min.
The frequency of a pendulum is equal to the no of oscillation per unit time. so,
[tex]f=\dfrac{N}{t}\\\\f=\dfrac{71}{1.8\times 60}\\\\f=0.65\ Hz[/tex]
Tim period is reciprocal of frequency. So,
[tex]T=\dfrac{1}{0.65}\\\\T=1.53\ s[/tex]
The time period of a pendulum is given by :
[tex]T=2\pi \sqrt{\dfrac{l}{g}}[/tex]
l is length of pendulum
[tex]l=\dfrac{T^2g}{4\pi ^2}\\\\l=\dfrac{T^2g}{4\pi ^2}\\\\l=\dfrac{(1.53)^2\times 9.8}{4\pi ^2}\\\\l=0.58\ m[/tex]
So, the period and length of the pendulum are 1.53 s and 0.58 m respectively.
The pressure exerted by a phonograph needle on a record is surprisingly large. If the equivalent of 0.600 g is supported by a needle, the tip of which is a circle 0.240 mm in radius, what pressure is exerted on the record in N/m2?
Answer:
[tex]P=3.25x10^{4}\frac{N}{m^2}[/tex]
Explanation:
Hello,
In this case, since pressure is defined as the force applied over a surface:
[tex]P=\frac{F}{A}[/tex]
We can associate the force with the weight of the needle computed by using the acceleration of the gravity:
[tex]F=0.600g*\frac{1kg}{1000g}*9.8\frac{m}{s^2} =5.88x10^{-3}N[/tex]
And the area of the the tip (circle) in meters:
[tex]A=\pi r^2=\pi (0.240mm)^2=\pi (0.240mm*\frac{1m}{1000mm} )^2\\\\A=1.81x10^{-7}m^2[/tex]
Thus, the pressure exerted on the record turns out:
[tex]P=\frac{5.88x10^{-3}N}{1.81x10^{-7}m^2} \\\\P=3.25x10^{4}\frac{N}{m^2}[/tex]
Which is truly a large value due to the tiny area on which the pressure is exerted.
Best regards.
Which scientist's work led to our understanding of how planets move around
the Sun?
A. Albert Einstein
B. Lord Kelvin
C. Johannes Kepler
D. Edwin Hubble
Answer:
Johannes KeplerExplanation:
He made rules about planetary motion.The scientist Johannes Kepler was a German astronomer.He found out that the planets evolved around the Sun.He also made the laws of planetary motion.Hope this helped,
Kavitha
Check Your UnderstandingSuppose the radius of the loop-the-loop inExample 7.9is 15 cm and thetoy car starts from rest at a height of 45 cm above the bottom. What is its speed at the top of the loop
Answer:
v = 1.7 m/s
Explanation:
By applying conservation of energy principle in this situation, we know that:
Loss in Potential Energy of Car = Gain in Kinetic Energy of Car
mgΔh = (1/2)mv²
2gΔh = v²
v = √(2gΔh)
where,
v = velocity of car at top of the loop = ?
g = 9.8 m/s²
Δh = change in height = 45 cm - Diameter of Loop
Δh = 45 cm - 30 cm = 15 cm = 0.15 m
Therefore,
v = √(2)(9.8 m/s²)(0.15 m)
v = 1.7 m/s
Which describes any compound that has at least one element from group 17? Halide;noble gas; metalliod; transition metal
Answer:
Halide
Explanation:
It has at least one element from the halogen group (17)
Halide describes any compound that has at least one element from group 17, therefore the correct option is option A.
What are halides?When the elements belonging to group 17 of the periodic table form ionic compounds with other electropositive elements, then these compounds are known as halides.
These elements from group 17 are also known as halogens. Generally, these halides have very high electronegativity as they reside on the right side of the periodic table.
Generally, the valency of the halogens element involved in the halide compound is one and they form ionic compounds with the alkali and alkaline earth metals.
Thus, halides are compounds that have at least one element from group 17.
Learn more about halides from here
https://brainly.com/question/5504882
#SPJ6
A load of 223,000 N is placed on an aluminum column 10.2 cm in diameter. If the column was originally 1.22 m high find the amount that the column has shrunk.
Answer:
0.4757 mm
Explanation:
Given that:
Load P = 223,000 N
the length of the height of the aluminium column = 1.22 m
the diameter of the aluminum column = 10.2 cm = 0.102 m
The amount that the column has shrunk ΔL can be determined by using the formula:
[tex]\Delta L = \dfrac{PL}{AE_{Al}}[/tex]
where;
A = πr²
2r = D
r = D/2
r = 0.102/2
r = 0.051
A = π(0.051)²
A = 0.00817
Also; the young modulus of aluminium [tex]E_{Al}[/tex] is:
[tex]E_{Al}= 7*10^{10} \Nm^{-2}[/tex]
[tex]\Delta L = \dfrac{PL}{AE_{Al}}[/tex]
[tex]\Delta L = \dfrac{223000* 1.22}{0.00817* 7*10^{10}}[/tex]
ΔL = 4.757 × 10⁻⁴ m
ΔL = 0.4757 mm
Hence; the amount that the column has shrunk is 0.4757 mm
What is the equivalent resistance between the points A and B of the network?
Explanation:
First, simplify the circuit. Then calculate the parallel and consecutive resistances to find the answer.
A meat baster consists of a squeeze bulb attached to a plastic tube. When the bulb is squeezed and released, with the open end of the tube under the surface of the basting sauce, the sauce rises in the tube to a distance h, as the drawing shows. Using 1.013 105 Pa for the atmospheric pressure and 1200 kg/m3 for the density of the sauce, find the absolute pressure in the bulb when the distance h is (a) 0.15 m and (b) 0.10 m.
Answer:
(a) P = 103064 Pa = 103.064 KPa
(b) P = 102476 Pa = 102.476 KPa
Explanation:
(a)
First we need to find the gauge pressure:
Gauge Pressure = Pg = (density)(g)(h)
Pg = (1200 kg/m³)(9.8 m/s²)(0.15 m)
Pg = 1764 Pa
So, the absolute Pressure is:
Absolute Pressure = P = Atmospheric Pressure + Pg
P = 1.013 x 10⁵ Pa + 1764 Pa
P = 103064 Pa = 103.064 KPa
(b)
First we need to find the gauge pressure:
Gauge Pressure = Pg = (density)(g)(h)
Pg = (1200 kg/m³)(9.8 m/s²)(0.1 m)
Pg = 1176 Pa
So, the absolute Pressure is:
Absolute Pressure = P = Atmospheric Pressure + Pg
P = 1.013 x 10⁵ Pa + 1176 Pa
P = 102476 Pa = 102.476 KPa
The absolute pressure in the bulb is approximately 1.031 x 10⁵ Pa when h = 0.15 m and 1.025 x 10⁵ Pa when h = 0.10 m.
Absolute pressure is the total pressure exerted by a fluid, including both the pressure from the fluid itself and the atmospheric pressure. It is the sum of the gauge pressure, which is the pressure above atmospheric pressure, and the atmospheric pressure. Absolute pressure is measured relative to a complete vacuum, where the pressure is zero.
In fluid mechanics, absolute pressure is important for determining the forces and behaviors of fluids in various systems. It is commonly expressed in units such as pascals (Pa), atmospheres (atm), pounds per square inch (psi), or torr.
The absolute pressure in the bulb can be calculated using the following formula:
P = P₀ + ρgh
where:
P is the absolute pressure in the bulb,
P₀ is the atmospheric pressure (1.013 x 10⁵ Pa),
ρ is the density of the sauce (1200 kg/m³),
g is the acceleration due to gravity (9.8 m/s²), and
h is the height of the sauce in the tube.
(a) When h = 0.15 m:
P = 1.013 x 10⁵ Pa + (1200 kg/m³) x (9.8 m/s²) x (0.15 m)
P ≈ 1.013 x 10⁵ Pa + 1764 Pa
P ≈ 1.031 x 10⁵ Pa
(b) When h = 0.10 m:
P = 1.013 x 10⁵ Pa + (1200 kg/m³) x (9.8 m/s²) x (0.10 m)
P ≈ 1.013 x 10⁵ Pa + 1176 Pa
P ≈ 1.025 x 10⁵ Pa
Learn more about Absolute Pressure, here:
https://brainly.com/question/13390708
#SPJ6
HELP ILL MARK BRAINLIEST PLS!!!!
A patch of mud has stuck to the surface of a bicycle tire as shown. The stickiness of
the mud is the centripetal or tension force that keeps the mud on the tire as it spins.
Has work been done on the mud as the tire makes one revolution, if the mud stays
on the tire? Explain.
Answer:
Yes, work has been done on the mud.
Explanation:
Work is done on a body, when a force is applied on the body to move it through a certain distance. In the case of the mud, the tire exerts a centripetal force on the mud. The centripetal force moves the mud along a path that follows the circle formed by the tire in one revolution of the tire. The total distance traveled is the circumference of the circle formed. The work done on the mud is therefore the product of the centripetal force on the mud from the tire, and the circumference of the circle formed by the tire, usually expressed in radian.
A block is released from the top of a frictionless incline plane as pictured above. If the total distance travelled by the block is 1.2 m to get to the bottom, calculate how fast it is moving at the bottom using Conservation of Energy.
Complete Question
The diagram for this question is showed on the first uploaded image (reference homework solutions )
Answer:
The velocity at the bottom is [tex]v = 11.76 \ m/ s[/tex]
Explanation:
From the question we are told that
The total distance traveled is [tex]d = 1.2 \ m[/tex]
The mass of the block is [tex]m_b = 0.3 \ kg[/tex]
The height of the block from the ground is h = 0.60 m
According the law of energy
[tex]PE = KE[/tex]
Where PE is the potential energy which is mathematically represented as
[tex]PE = m * g * h[/tex]
substituting values
[tex]PE = 3 * 9.8 * 0.60[/tex]
[tex]PE = 17.64 \ J[/tex]
So
KE is the kinetic energy at the bottom which is mathematically represented as
[tex]KE = \frac{1}{2} * m v^2[/tex]
So
[tex]\frac{1}{2} * m* v ^2 = PE[/tex]
substituting values
=> [tex]\frac{1}{2} * 3 * v ^2 = 17.64[/tex]
=> [tex]v = \sqrt{ \frac{ 17.64}{ 0.5 * 3 } }[/tex]
=> [tex]v = 11.76 \ m/ s[/tex]
On Apollo missions to the Moon, the command module orbited at an altitude of 160 km above the lunar surface. How long did it take for the command module to complete one orbit?
Answer:
T = 2.06h
Explanation:
In order to calculate the time that the Apollo takes to complete an orbit around the moon, you use the following formula, which is one of the Kepler's law:
[tex]T=\frac{2\pi r^{3/2}}{\sqrt{GM_m}}[/tex] (1)
T: time for a complete orbit = ?
r: radius of the orbit
G: Cavendish's constant = 6.674*10^-11 m^3.kg^-1.s^-2
Mm: mass of the moon = 7.34*10^22 kg
The radius of the orbit is equal to the radius of the moon plus the distance from the surface to the Apollo:
[tex]r=R_m+160km\\\\[/tex]
Rm: radius of the moon = 1737.1 km
[tex]r=1737.1km+160km=1897.1km=1897.1*10^3 m[/tex]
Then, you replace all values of the parameters in the equation (1):
[tex]T=\frac{2\pi (1897.1*10^3m)^{3/2}}{\sqrt{(6.674*10^{-11}m^3/kgs^2)(7.34*10^22kg)}}\\\\T=7417.78s[/tex]
In hours you obtain:
[tex]T=7417.78s*\frac{1h}{3600s}=2.06h[/tex]
The time that the Apollo takes to complete an orbit around the moon is 2.06h
An 75-kg hiker climbs to the summit of Mount Mitchell in western North Carolina. During one 2.0-h period, the climber's vertical elevation increases 540 m. Determine the change in gravitational potential energy of the climber-Earth system.
Answer:
The change in gravitational potential energy of the climber-Earth system is [tex]\Delta PE = 396900 \ J[/tex]
Explanation:
From the question we are told that
The mass of the hiker is [tex]m = 75 \ kg[/tex]
The time taken is [tex]T = 2 \ hr = 2 * 3600 = 7200 \ s[/tex]
The vertical elevation after time T is [tex]H = 540 \ m[/tex]
The change in gravitational potential is mathematically represented as
[tex]\Delta PE = mgH[/tex]
here g is the acceleration due to gravity with value [tex]g = 9.8 \ m/s^2[/tex]
substituting values
[tex]\Delta PE = 75 * 9.8 * 540[/tex]
[tex]\Delta PE = 396900 \ J[/tex]
Two charged particles are projected into a region where a magnetic field is directed perpendicular to their velocities. If the charges are deflected in opposite directions, what are the possible relative charges and directions? (Select all that apply.)
Answer:
*If the particles are deflected in opposite directions, it implies that their charges must be opposite
*the force is perpendicular to the speed, therefore it describes a circular movement, one in the clockwise direction and the other in the counterclockwise direction.
Explanation:
When a charged particle enters a magnetic field, it is subjected to a force given by
F = q v x B
where bold letters indicate vectors
this expression can be written in the form of a module
F = qv B sin θ
and the direction of the force is given by the right-hand rule.
In our case the magnetic field is perpendicular to the speed, therefore the angle is 90º and the sin 90 = 1
If the particles are deflected in opposite directions, it implies that their charges must be opposite, one positive and the other negative.
Furthermore, the force is perpendicular to the speed, therefore it describes a circular movement, one in the clockwise direction and the other in the counterclockwise direction.
Stress is a factor that contributes to heart disease risk.true or false
Passengers in a carnival ride move at constant speed in a circle of radius 5.0 m, making a complete revolution in 4.0 s. As they spin, they feel their backs pressing against the wall holding them in the ride. A. What is the direction of the passengers' acceleration? a. No direction (zero acceleration) b. Directed towards center c. Directed away from center d. Directed tangentially B. What is the passengers' linear speed in m/s? C. What is the magnitude of their acceleration in m/s^2? D. What is their angular speed in rad/s?
Answer:
A. b) Directed towards center
B. [tex]v = 7.854\ m/s[/tex]
C. [tex]a_c = 12.337\ m/s^2[/tex]
D. [tex]w = 1.57\ rad/s[/tex]
Explanation:
The "force" that they feel pressing their backs against the wall is because the reaction to the centripetal acceleration .
A.
This acceleration has its direction towards the center of the circle. (option b)
B.
Their linear speed can be calculated with the equation:
[tex]v = (\theta/t)*r[/tex]
Where [tex]\theta[/tex] is the total angular position moved in radians ([tex]1\ rev = 2\pi\ radians[/tex]), 't' is the time elapsed for the angular position moved and 'r' is the radius. So we have that:
[tex]v = (2\pi/4)*5 = 7.854\ m/s[/tex]
C.
The centripetal acceleration is given by the equation:
[tex]a_c = v^2/r[/tex]
[tex]a_c = 7.854^2/5[/tex]
[tex]a_c = 12.337\ m/s^2[/tex]
D.
Their angular speed is given by the equation:
[tex]w = \theta/t = 2\pi/4 = \pi/2 = 1.57 \ rad/s[/tex]
The fastest pitched baseball was clocked at 47 m/s. Assume that the pitcher exerted his force (assumed to be horizontal and constant) over a distance of 1.0 m, and a baseball has a mass of 145 g.(a) What force did he produce on the ball during this record-setting pitch? (b) Draw free-body diagrams of the ball during the pitch and just after it left the pitcherâs hand.
Answer:
Explanation:
F ×1 = 0.5×0.145×47×47
F = 160.15 N