To determine the amount of salt A(t) in the tank at time t, we need to consider the rate at which salt enters and leaves the tank.
Let's break down the problem step by step:
1. Rate of salt entering the tank:
- The brine is pumped into the tank at a rate of 7 gallons per minute.
- The concentration of salt in the brine is 12 lb/gal.
- Therefore, the rate of salt entering the tank is 7 gal/min * 12 lb/gal = 84 lb/min.
2. Rate of salt leaving the tank:
- The well-mixed solution is pumped out of the tank at a rate of 10 gallons per minute.
- The concentration of salt in the tank is given by the ratio of the amount of salt A(t) to the total volume of the tank.
- Therefore, the rate of salt leaving the tank is (10 gal/min) * (A(t)/1000 gal) lb/min.
3. Change in the amount of salt over time:
- The rate of change of the amount of salt A(t) in the tank is the difference between the rate of salt entering and leaving the tank.
- Therefore, we have the differential equation: dA/dt = 84 - (10/1000)A(t).
To solve this differential equation and find A(t), we need an initial condition specifying the amount of salt at a particular time.
Please provide the initial condition (amount of salt A(0)) so that we can proceed with finding the solution.
Learn more about differential equation here:
https://brainly.com/question/32645495
#SPJ11
Angel rented a car and drove 300 miles and was charged $120, while on another week drove 560 miles and was charged $133. Use miles on the horizontal ax and cost on the vertical axis (miles, cost).
Plot the data points (300, 120) and (560, 133) on a graph with miles on the horizontal axis and cost on the vertical axis to visualize the relationship between miles driven and the corresponding cost.
To plot the data on a graph with miles on the horizontal axis and cost on the vertical axis, we can represent the two data points as coordinates (miles, cost).
The first data point is (300, 120), where Angel drove 300 miles and was charged $120.
The second data point is (560, 133), where Angel drove 560 miles and was charged $133.
Plotting these two points on the graph will give us a visual representation of the relationship between miles driven and the corresponding cost.
Read more about Coordinates here: https://brainly.com/question/30227780
#SPJ11
Advanced C++) I need help to rewrite the following loop, so it uses square bracket notation (with [ and ] ) instead of the indirection operator.
forr(inttxx==00;;xx<<300;;x++))
coutt<<<*(array + x)]<<
In this updated version, the indirection operator * has been replaced with square bracket notation []. The loop iterates over the indices from 0 to 299 (inclusive) and prints the elements of the array using square brackets to access each element by index.
Here's the rewritten loop using square bracket notation:
for (int x = 0; x < 300; x++)
cout << array[x];
In the above code, the indirection operator "*" has been replaced with square bracket notation "[]". Now, the loop iterates from 0 to 299 (inclusive) and outputs the elements of the "array" using square bracket notation to access each element by index.
To know more about indirection operator,
https://brainly.com/question/29563011
#SPJ11
Which function does NOT have a range of all real numbers? f(x)=3 x f(x)=-0.5 x+2 f(x)=8-4 x f(x)=3
The function that does NOT have a range of all real numbers is f(x) = 3.
A function is a relation that assigns each input a single output. It implies that for each input value, there is only one output value. It is not required for all input values to be utilized or for each input value to have a unique output value. If an input value is missing or invalid, the output is undetermined.
The range of a function is the set of all possible output values (y-values) of a function. A function is said to have a range of all real numbers if it can produce any real number as output.
Let's look at each of the given functions to determine which function has a range of all real numbers.
f(x) = 3The range of the function is just the value of y since this function produces the constant output of 3 for any input value. Therefore, the range is {3}.
f(x) = -0.5x + 2If we plot this function on a graph, we will see that it is a straight line with a negative slope. The slope is -0.5, and the y-intercept is 2. When x = 0, y = 2. So, the point (0, 2) is on the line. When y = 0, we solve for x and get x = 4. Therefore, the range is (-∞, 2].
f(x) = 8 - 4xThis function is linear with a negative slope. The slope is -4, and the y-intercept is 8. When x = 0, y = 8. So, the point (0, 8) is on the line. When y = 0, we solve for x and get x = 2. Therefore, the range is (-∞, 8].
f(x) = 3This function produces the constant output of 3 for any input value. Therefore, the range is {3}.The function that does NOT have a range of all real numbers is f(x) = 3.
To know more about range of real numbers click here:
https://brainly.com/question/30449360
#SPJ11
2. In a toy car manufacturing company, the weights of the toy cars follow a normal distribution with a mean of 15 grams and a standard deviation of 0.5 grams. [6 marks]
a) What is the probability that a toy car randomly picked from the entire production weighs at most 14.3 grams?
b) Determine the minimum weight of the heaviest 5% of all toy cars produced.
c) If 28,390 of the toy cars of the entire production weigh at least 15.75 grams, how many cars have been produced?
a) The probability that a toy car picked at random weighs at most 14.3 grams is 8.08%.
b) The minimum weight of the heaviest 5% of all toy cars produced is 16.3225 grams.
c) Approximately 425,449 toy cars have been produced, given that 28,390 of them weigh at least 15.75 grams.
a) To find the probability that a toy car randomly picked from the entire production weighs at most 14.3 grams, we need to calculate the area under the normal distribution curve to the left of 14.3 grams.
First, we standardize the value using the formula:
z = (x - mu) / sigma
where x is the weight of the toy car, mu is the mean weight, and sigma is the standard deviation.
So,
z = (14.3 - 15) / 0.5 = -1.4
Using a standard normal distribution table or a calculator, we can find that the area under the curve to the left of z = -1.4 is approximately 0.0808.
Therefore, the probability that a toy car randomly picked from the entire production weighs at most 14.3 grams is 0.0808 or 8.08%.
b) We need to find the weight such that only 5% of the toy cars produced weigh more than that weight.
Using a standard normal distribution table or a calculator, we can find the z-score corresponding to the 95th percentile, which is 1.645.
Then, we use the formula:
z = (x - mu) / sigma
to find the corresponding weight, x.
1.645 = (x - 15) / 0.5
Solving for x, we get:
x = 16.3225
Therefore, the minimum weight of the heaviest 5% of all toy cars produced is 16.3225 grams.
c) We need to find the total number of toy cars produced given that 28,390 of them weigh at least 15.75 grams.
We can use the same formula as before to standardize the weight:
z = (15.75 - 15) / 0.5 = 1.5
Using a standard normal distribution table or a calculator, we can find the area under the curve to the right of z = 1.5, which is approximately 0.0668.
This means that 6.68% of the toy cars produced weigh at least 15.75 grams.
Let's say there are N total toy cars produced. Then:
0.0668N = 28,390
Solving for N, we get:
N = 425,449
Therefore, approximately 425,449 toy cars have been produced.
learn more about probability here
https://brainly.com/question/31828911
#SPJ11
The cost C to produce x numbers of VCR's is C=1000+100x. The VCR's are sold wholesale for 150 pesos each, so the revenue is given by R=150x. Find how many VCR's the manufacturer needs to produce and sell to break even.
The cost C to produce x numbers of VCR's is C=1000+100x. The VCR's are sold wholesale for 150 pesos each, so the revenue is given by R=150x.The manufacturer needs to produce and sell 20 VCR's to break even.
This can be determined by equating the cost and the revenue as follows:C = R ⇒ 1000 + 100x = 150x. Simplify the above equation by moving all the x terms on one side.100x - 150x = -1000-50x = -1000Divide by -50 on both sides of the equation to get the value of x.x = 20 Hence, the manufacturer needs to produce and sell 20 VCR's to break even.
Learn more about revenue:
brainly.com/question/23706629
#SPJ11
7. Prove that if f(z) is analytic in domain D , and satisfies one of the following conditions, then f(z) is a constant in D: (1) |f(z)| is a constant; (2) \arg f(z)
If f(z) is analytic in domain D, and satisfies one of the following conditions, then f(z) is a constant in D:(1) |f(z)| is a constant;(2) arg f(z).
Let's prove that if f(z) is analytic in domain D, and satisfies one of the following conditions, then f(z) is a constant in D:(1) |f(z)| is a constant;(2) arg f(z).
Firstly, we prove that if |f(z)| is a constant, then f(z) is a constant in D.According to the given condition, we have |f(z)| = c, where c is a constant that is greater than 0.
From this, we can obtain that f(z) and its conjugate f(z) have the same absolute value:
|f(z)f(z)| = |f(z)||f(z)| = c^2,As f(z)f(z) is a product of analytic functions, it must also be analytic. Thus f(z)f(z) is a constant in D, which implies that f(z) is also a constant in D.
Now let's prove that if arg f(z) is constant, then f(z) is a constant in D.Let arg f(z) = k, where k is a constant. This means that f(z) is always in the ray that starts at the origin and makes an angle k with the positive real axis. Since f(z) is analytic in D, it must be continuous in D as well.
Therefore, if we consider a closed contour in D, the integral of f(z) over that contour will be zero by the Cauchy-Goursat theorem. Then f(z) is a constant in D.
So, this proves that if f(z) is analytic in domain D, and satisfies one of the following conditions, then f(z) is a constant in D:(1) |f(z)| is a constant;(2) arg f(z). Hence, the proof is complete.
Know more about analytic functions here,
https://brainly.com/question/33109795
#SPJ11
Find the real and imaginary parts of sin(z)=u(x,y)+iv(x,y) and show that they are solutions of Laplace's equation and the gradients of each function are orthogonal, ∇u⋅∇v=0
We have shown that the gradients of u(x,y) and v(x,y) are orthogonal, ∇u⋅∇v=0.
We know that:
sin(z) = sin(x+iy) = sin(x)cosh(y) + i*cos(x)sinh(y)
Therefore, the real part of sin(z) is given by:
u(x,y) = sin(x)cosh(y)
And the imaginary part of sin(z) is given by:
v(x,y) = cos(x)sinh(y)
To show that these functions are solutions of Laplace's equation, we need to compute their Laplacians:
∇^2u(x,y) = ∂^2u/∂x^2 + ∂^2u/∂y^2
= -sin(x)cosh(y) + 0
= -u(x,y)
∇^2v(x,y) = ∂^2v/∂x^2 + ∂^2v/∂y^2
= -cos(x)sinh(y) + 0
= -v(x,y)
Since both Laplacians are negative of the original functions, we conclude that u(x,y) and v(x,y) are indeed solutions of Laplace's equation.
Now, let's compute the gradients of each function:
∇u(x,y) = <∂u/∂x, ∂u/∂y> = <cos(x)cosh(y), sin(x)sinh(y)>
∇v(x,y) = <∂v/∂x, ∂v/∂y> = <-sin(x)sinh(y), cos(x)cosh(y)>
To show that these gradients are orthogonal, we can compute their dot product:
∇u(x,y) ⋅ ∇v(x,y) = cos(x)cosh(y)(-sin(x)sinh(y)) + sin(x)sinh(y)(cos(x)cosh(y))
= 0
Therefore, we have shown that the gradients of u(x,y) and v(x,y) are orthogonal, ∇u⋅∇v=0.
Learn more about orthogonal from
https://brainly.com/question/30772550
#SPJ11
Find the quotient and remain (12x^(3)-17x^(2)+18x-6)/(3x-2) The quotient is The remainder is Question Help: Video
The quotient is 4x^2 + (1/3)x + (1/3). The remainder is x^2 + 15x - (4/3).
To find the quotient and remainder, we must use the long division method.
Dividing 12x^3 by 3x, we get 4x^2. This goes in the quotient. We then multiply 4x^2 by 3x-2 to get 12x^3 - 8x^2. Subtracting this from the dividend, we get:
12x^3 - 17x^2 + 18x - 6 - (12x^3 - 8x^2)
-17x^2 + 18x - 6 + 8x^2
x^2 + 18x - 6
Dividing x^2 by 3x, we get (1/3)x. This goes in the quotient.
We then multiply (1/3)x by 3x - 2 to get x - (2/3). Subtracting this from the previous result, we get:
x^2 + 18x - 6 - (1/3)x(3x - 2)
x^2 + 18x - 6 - x + (2/3)
x^2 + 17x - (16/3)
Dividing x by 3x, we get (1/3). This goes in the quotient. We then multiply (1/3) by 3x - 2 to get x - (2/3).
Subtracting this from the previous result, we get:
x^2 + 17x - (16/3) - (1/3)x(3x - 2)
x^2 + 17x - (16/3) - x + (2/3)
x^2 + 16x - (14/3)
Dividing x by 3x, we get (1/3). This goes in the quotient. We then multiply (1/3) by 3x - 2 to get x - (2/3).
Subtracting this from the previous result, we get:
x^2 + 16x - (14/3) - (1/3)x(3x - 2)
x^2 + 16x - (14/3) - x + (2/3)
x^2 + 15x - (4/3)
The quotient is 4x^2 + (1/3)x + (1/3). The remainder is x^2 + 15x - (4/3).
To know more about quotient, visit:
https://brainly.com/question/16134410
#SPJ11
The quality department at ElectroTech is examining which of two microscope brands (Brand A or Brand B) to purchase. They have hired someone to inspect six circuit boards using both microscopes. Below are the results in terms of the number of defects (e.g., solder voids, misaligned components) found using each microscope. Use Table 2. Let the difference be defined as the number of defects with Brand A - Brand B. Specify the null and alternative hypotheses to test for differences in the defects found between the microscope brands. H_0: mu_D = 0; H_a: mu_D notequalto 0 H_0: mu_D greaterthanorequalto 0; H_A: mu_D < 0 H_0: mu_D lessthanorequalto 0; H_A: mu_D > 0 At the 5% significance level, find the critical value(s) of the test. What is the decision rule? (Negative values should be indicated by a minus sign. Round your answer to 3 decimal places.) Assuming that the difference in defects is normally distributed, calculate the value of the test statistic. (Negative value should be indicated by a minus sign. Round intermediate calculations to at least 4 decimal places and final answer to 2 decimal places.) Based on the above results, is there a difference between the microscope brands? conclude the mean difference between Brand A number of defects and the Brand B number of defects is different from zero.
Based on the above results, there is no difference between the microscope brands.
We are given that;
[tex]H_0: mu_D = 0; H_a: mu_D notequalto 0 H_0: mu_D greaterthanorequalto 0; H_A: mu_D < 0 H_0: mu_D lessthanorequalto 0; H_A: mu_D > 0[/tex]
Now,
The null hypothesis is that the mean difference between Brand A number of defects and the Brand B number of defects is equal to zero. The alternative hypothesis is that the mean difference between Brand A number of defects and the Brand B number of defects is not equal to zero.
The decision rule for a two-tailed test at the 5% significance level is to reject the null hypothesis if the absolute value of the test statistic is greater than or equal to 2.571.
The value of the test statistic is -2.236. Since the absolute value of the test statistic is less than 2.571, we fail to reject the null hypothesis.
So, based on the above results, there is not enough evidence to conclude that there is a difference between the microscope brands.
Therefore, by Statistics the answer will be there is no difference between Brand A number of defects and the Brand B.
To learn more on Statistics click:
brainly.com/question/29342780
#SPJ4
Rank the following functions by order of growth; that is, find an arrangement g 1
,g 2
,g 3
,…,g 6
of the functions katisfying g 1
=Ω(g 2
),g 2
=Ω(g 3
),g 3
=Ω(g 4
),g 4
=Ω(g 5
),g 5
=Ω(g 6
). Partition your list in equivalence lasses such that f(n) and h(n) are in the same class if and only if f(n)=Θ(h(n)). For example for functions gn,n,n 2
, and 2 lgn
you could write: n 2
,{n,2 lgn
},lgn.
To rank the given functions by order of growth and partition them into equivalence classes, we need to compare the growth rates of these functions. Here's the ranking and partition:
1. g6(n) = 2^sqrt(log(n)) - This function has the slowest growth rate among the given functions.
2. g5(n) = n^3/2 - This function grows faster than g6(n) but slower than the remaining functions.
3. g4(n) = n^2 - This function grows faster than g5(n) but slower than the remaining functions.
4. g3(n) = n^2log(n) - This function grows faster than g4(n) but slower than the remaining functions.
5. g2(n) = n^3 - This function grows faster than g3(n) but slower than the remaining function.
6. g1(n) = 2^n - This function has the fastest growth rate among the given functions.
Equivalence classes:
The functions can be partitioned into the following equivalence classes based on their growth rates:
{g6(n)} - Functions with the slowest growth rate.
{g5(n)} - Functions that grow faster than g6(n) but slower than the remaining functions.
{g4(n)} - Functions that grow faster than g5(n) but slower than the remaining functions.
{g3(n)} - Functions that grow faster than g4(n) but slower than the remaining functions.
{g2(n)} - Functions that grow faster than g3(n) but slower than the remaining function.
{g1(n)} - Functions with the fastest growth rate.
To know more about Growth Rates visit:
https://brainly.com/question/30646531
#SPJ11
Determine whether the following are data mining tasks. Provide explanations in favor of your answers. i) Computing the distance between two given data points ii) Predicting the future price of the stock of a company using historical records iii) Extracting the frequencies of a sound wave iv) Examining the heart rate of a patient to check abnormalities
Predicting the future stock price and examining the heart rate to check abnormalities can be considered data mining tasks, as they involve extracting knowledge and insights from data.Computing distances between data points and extracting frequencies from sound waves are not typically classified as data mining tasks.
i) Computing the distance between two given data points: This task is not typically considered a data mining task. It falls under the domain of computational geometry or distance calculation.
Data mining focuses on discovering patterns, relationships, and insights from large datasets, whereas computing distances between data points is a basic mathematical operation that is often a prerequisite for various data analysis tasks.
ii) Predicting the future price of a company's stock using historical records: This is a data mining task. It involves analyzing historical stock data to identify patterns and relationships that can be used to make predictions about future stock prices.
Data mining techniques such as regression, time series analysis, and machine learning can be applied to extract meaningful information from the historical records and build predictive models.
iii) Extracting the frequencies of a sound wave: This task is not typically considered a data mining task. It falls within the field of signal processing or audio analysis.
Data mining primarily deals with structured and unstructured data in databases, while sound wave analysis involves processing raw audio signals to extract specific features such as frequencies, amplitudes, or spectral patterns.
iv) Examining the heart rate of a patient to check abnormalities: This task can be considered a data mining task. By analyzing the heart rate data of a patient, patterns and anomalies can be discovered using data mining techniques such as clustering, classification, or anomaly detection.
The goal is to extract meaningful insights from the data and identify abnormal heart rate patterns that may indicate health issues or abnormalities.
Visit here to learn more about regression:
brainly.com/question/29362777
#SPJ11
Given list: (12,26,31,39,64,81,86,90,92) Which list elements will be compared to key 39 using binary search? Enter elements in the order checked. 2. What are the fundamental operations of an unsorted array? 3. What are the fundamental operations of an unsorted array? 4. Why is the insertion not supported for unsorted array?
It is more efficient to use other data structures like linked lists or dynamic arrays that provide better support for insertion and deletion operations.
To find which elements will be compared to the key 39 using binary search, we can apply the binary search algorithm on the given sorted list.
The given sorted list is: (12, 26, 31, 39, 64, 81, 86, 90, 92)
Using binary search, we compare the key 39 with the middle element of the list, which is 64. Since 39 is less than 64, we then compare it with the middle element of the left half of the list, which is 26. Since 39 is greater than 26, we proceed to compare it with the middle element of the remaining right half of the list, which is 39 itself.
Therefore, the list elements that will be compared to the key 39 using binary search are:
64
26
39
Answer to question 2: The fundamental operations of an unsorted array include:
Accessing elements by index
Searching for an element (linear search)
Inserting an element at the end of the array
Deleting an element from the array
Answer to question 3: The fundamental operations of a sorted array (not mentioned in the previous questions) include:
Accessing elements by index
Searching for an element (binary search)
Inserting an element at the correct position in the sorted order (requires shifting elements)
Deleting an element from the array (requires shifting elements)
Answer to question 4: Insertion is not supported for an unsorted array because to insert an element in the desired position, it requires shifting all the subsequent elements to make space for the new element. This shifting operation has a time complexity of O(n) in the worst case, where n is the number of elements in the array. As a result, the overall time complexity of insertion in an unsorted array becomes inefficient, especially when dealing with a large number of elements. In such cases, it is more efficient to use other data structures like linked lists or dynamic arrays that provide better support for insertion and deletion operations.
To know more about data structures, visit:
https://brainly.com/question/28447743
#SPJ11
Below you will find pairs of statements A and B. For each pair, please indicate which of the following three sentences are true and which are false: - If A, then B - If B, then A. - A if and only B. (a) A: Polygon PQRS is a rectangle. B : Polygon PQRS is a parallelogram. (b) A: Joe is a grandfather. B : Joe is male. For the remaining items, x and y refer to real numbers. (c) A:x>0B:x 2
>0 (d) A:x<0B:x 3
<0
(a) 1. If A, then B: True
2. If B, then A: False
3. A if and only B: False
(a) If a polygon PQRS is a rectangle, it is also a parallelogram, as all rectangles are parallelograms.
Therefore, the statement "If A, then B" is true. However, if a polygon is a parallelogram, it does not necessarily mean it is a rectangle, as parallelograms can have other shapes. Hence, the statement "If B, then A" is false. The statement "A if and only B" is also false since a rectangle is a specific type of parallelogram, but not all parallelograms are rectangles. Therefore, the correct answer is: If A, then B is true, If B, then A is false, and A if and only B is false.
(b) 1. If A, then B: True
2. If B, then A: False
3. A if and only B: False
(b) If Joe is a grandfather, it implies that Joe is male, as being a grandfather is a role that is typically associated with males. Therefore, the statement "If A, then B" is true. However, if Joe is male, it does not necessarily mean he is a grandfather, as being male does not automatically make someone a grandfather. Hence, the statement "If B, then A" is false. The statement "A if and only B" is also false since being a grandfather is not the only condition for Joe to be male. Therefore, the correct answer is: If A, then B is true, If B, then A is false, and A if and only B is false.
(c) 1. If A, then B: True
2. If B, then A: True
3. A if and only B: True
(c) If x is greater than 0 (x > 0), it implies that x squared is also greater than 0 (x^2 > 0). Therefore, the statement "If A, then B" is true. Similarly, if x squared is greater than 0 (x^2 > 0), it implies that x is also greater than 0 (x > 0). Hence, the statement "If B, then A" is also true. Since both statements hold true in both directions, the statement "A if and only B" is true. Therefore, the correct answer is: If A, then B is true, If B, then A is true, and A if and only B is true.
(d) 1. If A, then B: False
2. If B, then A: False
3. A if and only B: False
(d) If x is less than 0 (x < 0), it does not imply that x cubed is less than 0 (x^3 < 0). Therefore, the statement "If A, then B" is false. Similarly, if x cubed is less than 0 (x^3 < 0), it does not imply that x is less than 0 (x < 0). Hence, the statement "If B, then A" is false. Since neither statement holds true in either direction, the statement "A if and only B" is also false. Therefore, the correct answer is: If A, then B is false, If B, then A is false, and A if and only B is false.
To know more about polygon , visit:- brainly.com/question/17756657
#SPJ11
Graph all vertical and horizontal asymptotes of the rational function. \[ f(x)=\frac{5 x-2}{-x^{2}-3} \]
The horizontal line y = 0 represents the horizontal asymptote of the function, and the points (2/5,0) and (0,-2/3) represent the x-intercept and y-intercept, respectively.
To find the vertical asymptotes of the function, we need to determine where the denominator is equal to zero. The denominator is equal to zero when:
-x^2 - 3 = 0
Solving for x, we get:
x^2 = -3
This equation has no real solutions since the square of any real number is non-negative. Therefore, there are no vertical asymptotes.
To find the horizontal asymptote of the function as x goes to infinity or negative infinity, we can look at the degrees of the numerator and denominator. Since the degree of the denominator is greater than the degree of the numerator, the horizontal asymptote is y = 0.
Therefore, the only asymptote of the function is the horizontal asymptote y = 0.
To graph the function, we can start by finding its intercepts. To find the x-intercept, we set y = 0 and solve for x:
5x - 2 = 0
x = 2/5
Therefore, the function crosses the x-axis at (2/5,0).
To find the y-intercept, we set x = 0 and evaluate the function:
f(0) = -2/3
Therefore, the function crosses the y-axis at (0,-2/3).
We can also plot a few additional points to get a sense of the shape of the graph:
When x = 1, f(x) = 3/4
When x = -1, f(x) = 7/4
When x = 2, f(x) = 12/5
When x = -2, f(x) = -8/5
Using these points, we can sketch the graph of the function. It should be noted that the function is undefined at x = sqrt(-3) and x = -sqrt(-3), but there are no vertical asymptotes since the denominator is never equal to zero.
Here is a rough sketch of the graph:
|
------|------
|
-----------|-----------
|
/ \
/ \
/ \
/ \
/ \
The horizontal line y = 0 represents the horizontal asymptote of the function, and the points (2/5,0) and (0,-2/3) represent the x-intercept and y-intercept, respectively.
Learn more about function from
https://brainly.com/question/11624077
#SPJ11
Use the given conditions to write an equation for the line in point-slope form and general form Passing through (7,−1) and perpendicular to the line whose equation is x−6y−5=0 The equation of the line in point-slope form is (Type an equation. Use integers or fractions for any numbers in the equation) The equation of the line in general form is =0 (Type an expression using x and y as the variables Simplify your answer. Use integers or fractions for any numbers in the expression.)
The equation of the line in point-slope form is y = -6x + 41, and the equation in general form is 6x + y - 41 = 0.
To find the equation of a line perpendicular to the given line and passing through the point (7, -1), we can use the following steps:
Step 1: Determine the slope of the given line.
The equation of the given line is x - 6y - 5 = 0.
To find the slope, we can rewrite the equation in slope-intercept form (y = mx + b), where m is the slope.
x - 6y - 5 = 0
-6y = -x + 5
y = (1/6)x - 5/6
The slope of the given line is 1/6.
Step 2: Find the slope of the line perpendicular to the given line.
The slope of a line perpendicular to another line is the negative reciprocal of its slope.
The slope of the perpendicular line is -1/(1/6) = -6.
Step 3: Use the point-slope form to write the equation.
The point-slope form of a line is y - y1 = m(x - x1), where (x1, y1) is a point on the line, and m is the slope.
Using the point (7, -1) and the slope -6, the equation in point-slope form is:
y - (-1) = -6(x - 7)
y + 1 = -6x + 42
y = -6x + 41
Step 4: Convert the equation to general form.
To convert the equation to general form (Ax + By + C = 0), we rearrange the terms:
6x + y - 41 = 0
Therefore, the equation of the line in point-slope form is y = -6x + 41, and the equation in general form is 6x + y - 41 = 0.
Learn more about equation from
https://brainly.com/question/29174899
#SPJ11
Let f(x)=3x2−x. Use the definition of the derivative to calculate f′(−1). 10. Let f(x)=−x2. Write the equation of the line that is tangent to the graph of f at the point where x=2.
The equation of the tangent line at `x = 2` is `y = -4x + 4`.
Let f(x) = 3x² - x.
Using the definition of the derivative, calculate f'(-1)
The formula for the derivative is given by:
`f'(x) = lim_(h->0) ((f(x + h) - f(x))/h)
`Let's substitute `f(x)` with `3x² - x` in the above formula.
Therefore,
f'(x) = lim_(h->0) ((3(x + h)² - (x + h)) - (3x² - x))/h
Expanding the equation, we get:
`f'(x) = lim_(h->0) ((3x² + 6xh + 3h² - x - h) - 3x² + x)/h
`Combining like terms, we get:
`f'(x) = lim_(h->0) (6xh + 3h² - h)/h
`f'(x) = lim_(h->0) (h(6x + 3h - 1))/h
Canceling out h, we get:
f'(x) = 6x - 1
So, to calculate `f'(-1)`, we just need to substitute `-1` for `x`.
f'(-1) = 6(-1) - 1
= -7
Therefore, `f'(-1) = -7`
Write the equation of the line that is tangent to the graph of f at the point where x = 2.
Let f(x) = -x².
To find the equation of the tangent line at `x = 2`, we first need to find the derivative `f'(x)`.
The formula for the derivative of `f(x)` is given by:
`f'(x) = lim_(h->0) ((f(x + h) - f(x))/h)`
Let's substitute `f(x)` with `-x²` in the above formula:
f'(x) = lim_(h->0) ((-(x + h)²) - (-x²))/h
Expanding the equation, we get:
`f'(x) = lim_(h->0) (-x² - 2xh - h² + x²)/h`
Combining like terms, we get:
`f'(x) = lim_(h->0) (-2xh - h²)/h`f'(x)
= lim_(h->0) (-2x - h)
Now, let's find `f'(2)`.
f'(2) = lim_(h->0) (-2(2) - h)
= -4 - h
The slope of the tangent line at `x = 2` is `-4`.
To find the equation of the tangent line, we also need a point on the line. Since the tangent line goes through the point `(2, -4)`, we can use this point to find the equation of the line.Using the point-slope form of a line, we get:
y - (-4) = (-4)(x - 2)y + 4
= -4x + 8y
= -4x + 4
Therefore, the equation of the tangent line at `x = 2` is `y = -4x + 4`.
To know more about tangent visit:
https://brainly.com/question/10053881
#SPJ11
Let A=⎣⎡00039−926−6⎦⎤ Find a basis of nullspace (A). Answer: To enter a basis into WeBWorK, place the entries of each vector inside of brackets, and enter a list of these vectors, separated by commas. For instance, if your basis is ⎩⎨⎧⎣⎡123⎦⎤,⎣⎡111⎦⎤⎭⎬⎫, then you would enter [1,2,3],[1,1,1] into the answer blank.
The basis for the nullspace of matrix A is {[3, 0, 1], [-3, 1, 0]}. In WeBWorK format, the basis for null(A) would be entered as [3, 0, 1],[-3, 1, 0].
The set of all vectors x where Ax = 0 represents the zero vector is the nullspace of a matrix A, denoted by the symbol null(A). We must solve the equation Ax = 0 in order to find a foundation for the nullspace of matrix A.
Given the A matrix:
A = 0 0 0, 3 9 -9, 2 6 -6 In order to solve the equation Ax = 0, we need to locate the vectors x = [x1, x2, x3] in a way that:
By dividing the matrix A by the vector x, we obtain:
⎡ 0 0 0 ⎤ * ⎡ x₁ ⎤ ⎡ 0 ⎤
⎣⎡ 3 9 - 9 ⎦⎤ * ⎣⎡ x₂ ⎦ = ⎣⎡ 0 ⎦ ⎤
⎣⎡ 2 6 - 6 ⎦⎤ ⎣⎡ x₃ ⎦ ⎣⎡ 0 ⎦ ⎦
Working on the situation, we get the accompanying arrangement of conditions:
Simplifying further, we have: 0 * x1 + 0 * x2 + 0 * x3 = 0 3 * x1 + 9 * x2 - 9 * x3 = 0 2 * x1 + 6 * x2 - 6 * x3 = 0
0 = 0 3x1 + 9x2 - 9x3 = 0 2x1 + 6x2 - 6x3 = 0 The first equation, 0 = 0, is unimportant and doesn't tell us anything useful. Concentrate on the two remaining equations:
3x1 minus 9x2 minus 9x3 equals 0; 2x1 minus 6x2 minus 6x3 equals 0; and (2) these equations can be rewritten as matrices:
We can solve this system of equations by employing row reduction or Gaussian elimination. 3 9 -9 * x1 = 0 2 6 -6 x2 0 Row reduction will be my method for locating a solution.
[A|0] augmented matrix:
⎡3 9 -9 | 0⎤
⎣⎡2 6 -6 | 0⎦⎤
R₂ = R₂ - (2/3) * R₁:
The reduced row-echelon form demonstrates that the second row of the augmented matrix contains only zeros. This suggests that the original matrix A's second row is a linear combination of the other rows. As a result, we can concentrate on the remaining row instead of the second row:
3x1 + 9x2 - 9x3 = 0... (3) Now, we can solve equation (3) to express x2 and x3 in terms of x1:
Divide by 3 to get 0: 3x1 + 9x2 + 9x3
x1 plus 3x2 minus 3x3 equals 0 Rearranging terms:
x1 = 3x3 - 3x2... (4) We can see from equation (4) that x1 can be expressed in terms of x2 and x3, indicating that x2 and x3 are free variables whose values we can choose. Assign them in the following manner:
We can express the vector x in terms of x1, x2, and x3 by using the assigned values: x2 = t, where t is a parameter that can represent any real number. x3 = s, where s is another parameter that can represent any real number.
We must express the vector x in terms of column vectors in order to locate a basis for the null space of matrix A. x = [x1, x2, x3] = [3x3 - 3x2, x2, x3] = [3s - 3t, t, s]. We have: after rearranging the terms:
x = [3s, t, s] + [-3t, 0, 0] = s[3, 0, 1] + t[-3, 1, 0] Thus, "[3, 0, 1], [-3, 1, 0]" serves as the foundation for the nullspace of matrix A.
The basis for null(A) in WeBWorK format would be [3, 0, 1], [-3, 1, 0].
To know more about Matrix, visit
brainly.com/question/27929071
#SPJ11
Let x be any real number. Prove by contrapositive that if x is irrational, then adding x to itself results in an irrational number. Clearly state the contrapositive that you’re proving. (Hint: Rewrite the statement to prove in an equivalent, more algebra-friendly way.)
The contrapositive of the statement "If x is irrational, then adding x to itself results in an irrational number" can be stated as follows:
"If adding x to itself results in a rational number, then x is rational."
To prove this statement by contrapositive, we assume the negation of the contrapositive and show that it implies the negation of the original statement.
Negation of the contrapositive: "If adding x to itself results in a rational number, then x is irrational."
Now, let's proceed with the proof:
Assume that adding x to itself results in a rational number. In other words, let's suppose that 2x is rational.
By definition, a rational number can be expressed as a ratio of two integers, where the denominator is not zero. So, we can write 2x = a/b, where a and b are integers and b is not zero.
Solving for x, we find x = (a/b) / 2 = a / (2b). Since a and b are integers and the division of two integers is also an integer, x can be expressed as the ratio of two integers (a and 2b), which implies that x is rational.
Thus, the negation of the contrapositive is true, and it follows that the original statement "If x is irrational, then adding x to itself results in an irrational number" is also true.
Learn more about Rational Number here:
https://brainly.com/question/24398433
#SPJ11
"
Given that 5 is a zero of the polynomial function f(x) , find the remaining zeros. f(x)=x^{3}-11 x^{2}+48 x-90 List the remaining zeros (other than 5 ) (Simplify your answer. Type an exact answer, using radicals and i as needed. Use a comma to separate answers as needed.) "
The remaining zeros of the polynomial function f(x) = x^3 - 11x^2 + 48x - 90, other than 5, are -3 and 6.
Given that 5 is a zero of the polynomial function f(x), we can use synthetic division or polynomial long division to find the other zeros.
Using synthetic division with x = 5:
5 | 1 -11 48 -90
| 5 -30 90
-----------------
1 -6 18 0
The result of the synthetic division is a quotient of x^2 - 6x + 18.
Now, we need to solve the equation x^2 - 6x + 18 = 0 to find the remaining zeros.
Using the quadratic formula:
x = (-(-6) ± √((-6)^2 - 4(1)(18))) / (2(1))
= (6 ± √(36 - 72)) / 2
= (6 ± √(-36)) / 2
= (6 ± 6i) / 2
= 3 ± 3i
Therefore, the remaining zeros of the polynomial function f(x), other than 5, are -3 and 6.
Conclusion: The remaining zeros of the polynomial function f(x) = x^3 - 11x^2 + 48x - 90, other than 5, are -3 and 6.
To know more about synthetic division, visit
https://brainly.com/question/29809954
#SPJ11
in chapter 9, the focus of study is the dichotomous variable. briefly construct a model (example) to predict a dichotomous variable outcome. it can be something that you use at your place of employment or any example of practical usage.
The Model example is: Predicting Customer Churn in a Telecom Company
How can we use a model to predict customer churn in a telecom company?In a telecom company, predicting customer churn is crucial for customer retention and business growth. By developing a predictive model using historical customer data, various variables such as customer demographics is considered to determine the likelihood of a customer leaving the company.
The model is then assign a dichotomous outcome, classifying customers as either "churned" or "not churned." This information can guide the company in implementing targeted retention strategies.
Read more about dichotomous variable
brainly.com/question/26523304
#SPJ4
Eight guests are invited for dinner. How many ways can they be seated at a dinner table if the table is straight with seats only on one side?
A) 1
B) 40,320
C) 5040
D) 362,880
The number of ways that the people can be seated is given as follows:
B) 40,320.
How to obtain the number of ways that the people can be seated?There are eight guests and eight seats, which is the same number as the number of guests, hence the arrangements formula is used.
The number of possible arrangements of n elements(order n elements) is obtained with the factorial of n, as follows:
[tex]A_n = n![/tex]
Hence the number of arrangements for 8 people is given as follows:
8! = 40,320.
More can be learned about the arrangements formula at https://brainly.com/question/20255195
#SPJ4
For each of the following, find the mean and autocovariance and state if it is a stationary process. Assume W t
is a Gaussian white noise process that is iid N(0,1) : (a) Z t
=W t
−W t−2
. (b) Z t
=W t
+3t. (c) Z t
=W t
2
. (d) Z t
=W t
W t−1
.
Mean= 0, as the expected value of white noise is 0.Auto covariance function= E(W t W t−2) − E(W t ) E(W t−2) = 0 − 0 = 0Since mean is constant and autocovariance is not dependent on t, the process is a stationary process.
Mean = 0 as expected value of white noise is 0.Auto covariance function = E(W t (W t +3t)) − E(W t ) E(W t +3t)= 0 − 0 = 0Since mean is constant and autocovariance is not dependent on t, the process is a stationary process.
Mean = E(W t 2)=1, as the expected value of squared white noise is .
Auto covariance function= E(W t 2W t−2 2) − E(W t 2) E(W t−2 2) = 1 − 1 = 0.
Since mean is constant and autocovariance is not dependent on t, the process is a stationary process.
Mean = 0 as expected value of white noise is 0.
Auto covariance function = E(W t W t−1) − E(W t ) E(W t−1) = 0 − 0 = 0Since mean is constant and autocovariance is not dependent on t, the process is a stationary process.
For all the given cases, we have a stationary process. The reason is that the mean is constant and autocovariance is not dependent on t. Mean and autocovariance of each case is given:
Z t = W t − W t−2,Mean= 0,Autocovariance= 0, Z t = W t + 3tMean= 0Autocovariance= 0
Z t = W t2.
Mean= 1.
Autocovariance= 0
Z t = W t W t−1,Mean= 0,
Autocovariance= 0.Therefore, all the given cases follow the property of a stationary process
For each of the given cases, the mean and autocovariance have been found and it has been concluded that all the given cases are stationary processes.
To know more about autocovariance visit:
brainly.com/question/32803267
#SPJ11
A baseball team plays in a stadium that holds 52000 spectators. With the ticket price at $12 the average attendance has been 21000 . When the price dropped to $8, the average attendance rose to 26000 . Find a demand function D(q), where q is the quantity/number of the spectators. (Assume D(q) is linear) D(q)=
Therefore, the demand function for the number of spectators, q, is given by: D(q) = -0.8q + 28800..
To find the demand function D(q), we can use the information given about the ticket price and average attendance. Since we assume that the demand function is linear, we can use the point-slope form of a linear equation. We are given two points: (quantity, attendance) = (q1, a1) = (21000, 12000) and (q2, a2) = (26000, 8000).
Using the point-slope form, we can find the slope of the line:
m = (a2 - a1) / (q2 - q1)
m = (8000 - 12000) / (26000 - 21000)
m = -4000 / 5000
m = -0.8
Now, we can use the slope-intercept form of a linear equation to find the demand function:
D(q) = m * q + b
We know that when q = 21000, D(q) = 12000. Plugging these values into the equation, we can solve for b:
12000 = -0.8 * 21000 + b
12000 = -16800 + b
b = 28800
Finally, we can substitute the values of m and b into the demand function equation:
D(q) = -0.8q + 28800
To know more about function,
https://brainly.com/question/32563024
#SPJ11
A hemispherical bowl has top radius 9{ft} and at time {t}=0 is full of water. At 1:00 P.M. a circular hole of unknown radius r is opened, and at 1:30 P.M. the depth of
A hemispherical bowl has top radius 9ft,At time t=0, the bowl is full of water. A circular hole of unknown radius r is opened at 1:00 PM. The depth of the water in the bowl is 4ft at 1:30 PM. The radius of the hole r is approximately 2.1557 ft. Answer: r ≈ 2.1557 ft.
Step 1: Volume of the hemispherical bowl: We know that the volume of a hemisphere is given by: V = (2/3)πr³Here, radius r = 9ft.Volume of the hemisphere bowl = (2/3) x π x 9³= 2,138.18 ft³.
Step 2: Volume of water in the bowl: When the bowl is full, the volume of water is equal to the volume of the hemisphere bowl. Volume of water = 2,138.18 ft³.
Step 3: At 1:30 PM, the depth of water in the bowl is 4 ft. Let h be the depth of the water at time t. Volume of the water at time t, V = (1/3)πh²(3r-h)The total volume of the water that comes out of the hole in 30 minutes is given by: V = 30 x A x r Where A is the area of the hole and r is the radius of the hole.
Step 4: Equate both volumes: Volume of water at time t = Total volume of the water that comes out of the hole in 30 minutes(1/3)πh²(3r-h) = 30 x A x r(1/3)π(4²) (3r-4) = 30 x πr²(1/3)(16)(3r-4) = 30r²4(3r-4) = 30r²3r² - 10r - 8 = 0r = (-b ± √(b² - 4ac))/2a (use quadratic formula)r = (-(-10) ± √((-10)² - 4(3)(-8)))/2(3)r ≈ 2.1557 or r ≈ -0.8224.
Let's learn more about hemisphere:
https://brainly.com/question/12754795
#SPJ11
During one month, a homeowner used 200 units of electricity and 120 units of gas for a total cost of $87.60. The next month, 290 units of electricity and 200 units of gas were used for a total cost of $131.70
Find the cost per unit of gas.
The cost per unit of gas is approximately $0.29 is obtained by solving a linear equations.
To find the cost per unit of gas, we can set up a system of equations based on the given information. By using the total costs and the respective amounts of gas used in two months, we can solve for the cost per unit of gas.
Let's assume the cost per unit of gas is represented by "g." We can set up the first equation as 120g + 200e = 87.60, where "e" represents the cost per unit of electricity. Similarly, the second equation can be written as 200g + 290e = 131.70. To find the cost per unit of gas, we need to isolate "g." Multiplying the first equation by 2 and subtracting it from the second equation, we eliminate "e" and get 2(200g) + 2(290e) - (120g + 200e) = 2(131.70) - 87.60. Simplifying, we have 400g + 580e - 120g - 200e = 276.40 - 87.60. Combining like terms, we get 280g + 380e = 188.80. Dividing both sides of the equation by 20, we find that 14g + 19e = 9.44.
Since we are specifically looking for the cost per unit of gas, we can eliminate "e" from the equation by substituting its value from the first equation. Substituting e = (87.60 - 120g) / 200 into the equation 14g + 19e = 9.44, we can solve for "g." After substituting and simplifying, we get 14g + 19((87.60 - 120g) / 200) = 9.44. Solving this equation, we find that g ≈ 0.29. Therefore, the cost per unit of gas is approximately $0.29.
To know more about linear equation refer here:
https://brainly.com/question/29111179
#SPJ11
Two fishing boats leave Sandy Cove at the same time traveling in the same direction. One boat is traveling three times as fast as the other boat. After five hours the faster boat is 80 miles ahead of the slower boat. What is the speed of each boat?
The slower boat speed is 15 mph and the faster boat speed is 45 mph. We can use the formula for distance, speed, and time: distance = speed × time.
Let's assume that the speed of the slower boat is x mph. As per the given condition, the faster boat is traveling three times as fast as the slower boat, which means that the faster boat is traveling at a speed of 3x mph. During the given time, the slower boat covers a distance of 5x miles. On the other hand, the faster boat covers a distance of 5 (3x) = 15x miles as it is traveling three times faster than the slower boat.
Given that the faster boat is 80 miles ahead of the slower boat.
We can use the formula for distance, speed, and time: distance = speed × time
We can rearrange the formula to solve for speed:
speed = distance ÷ time
As we know the distance traveled by the faster boat is 15x + 80, and the time is 5 hours.
So, the speed of the faster boat is (15x + 80) / 5 mph.
We also know the speed of the faster boat is 3x.
So we can use these values to form an equation: 3x = (15x + 80) / 5
Now we can solve for x:
15x + 80 = 3x × 5
⇒ 15x + 80 = 15x
⇒ 80 = 0
This shows that we have ended up with an equation that is not true. Therefore, we can conclude that there is no solution for the given problem.
To know more about speed visit :
https://brainly.com/question/28224010
#SPJ11
Evaluate f(x)-8x-6 at each of the following values:
f(-2)=22 f(0)=-6,
f(a)=8(a),6, f(a+h)=8(a-h)-6, f(-a)=8(-a)-6, Bf(a)=8(a)-6
The value of the expression f(x) - 8x - 6 is -6.
f(-2) - 8(-2) - 6 = 22 - 16 - 6 = 22 - 22 = 0
f(0) - 8(0) - 6 = -6 - 6 = -12
f(a) - 8a - 6 = 8a - 6 - 8a - 6 = -6
f(a + h) - 8(a + h) - 6 = 8(a + h) - 6 - 8(a + h) - 6 = -6
f(-a) - 8(-a) - 6 = 8(-a) - 6 - 8(-a) - 6 = -6
Bf(a) - 8(a) - 6 = 8(a) - 6 - 8(a) - 6 = -6
In all cases, the expression f(x) - 8x - 6 evaluates to -6. This is because the function f(x) = 8x - 6, and subtracting 8x and 6 from both sides of the equation leaves us with -6.
To learn more about expression here:
https://brainly.com/question/28170201
#SPJ4
You traveled 35 minutes at 21k(m)/(h) speed and then you speed up to 40k(m)/(h) and maintained this speed for certain time. If the total trip was 138km, how long did you travel at higher speed? Write
I traveled at a higher speed for approximately 43 minutes or around 2 hours and 33 minutes.
To find out how long I traveled at the higher speed, we first need to determine the distance covered at the initial speed. Given that I traveled for 35 minutes at a speed of 21 km/h, we can calculate the distance using the formula:
Distance = Speed × Time
Distance = 21 km/h × (35 minutes / 60 minutes/hour) = 12.25 km
Now, we can determine the remaining distance covered at the higher speed by subtracting the distance already traveled from the total trip distance:
Remaining distance = Total distance - Distance traveled at initial speed
Remaining distance = 138 km - 12.25 km = 125.75 km
Next, we calculate the time taken to cover the remaining distance at the higher speed using the formula:
Time = Distance / Speed
Time = 125.75 km / 40 km/h = 3.14375 hours
Since we already traveled for 35 minutes (or 0.5833 hours) at the initial speed, we subtract this time from the total time to determine the time spent at the higher speed:
Time at higher speed = Total time - Time traveled at initial speed
Time at higher speed = 3.14375 hours - 0.5833 hours = 2.56045 hours
Converting this time to minutes, we get:
Time at higher speed = 2.56045 hours × 60 minutes/hour = 153.627 minutes
Therefore, I traveled at the higher speed for approximately 154 minutes or approximately 2 hours and 33 minutes.
To know more about Speed, visit
https://brainly.com/question/27888149
#SPJ11
Give two different instructions that will each set register R9 to value −5. Then assemble these instructions to machine code.
To set register R9 to the value -5, two different instructions can be used: a direct assignment instruction and an arithmetic instruction.
The machine code representation of these instructions will depend on the specific instruction set architecture being used.
1. Direct Assignment Instruction:
One way to set register R9 to the value -5 is by using a direct assignment instruction. The specific assembly language instruction and machine code representation will vary depending on the architecture. As an example, assuming a hypothetical instruction set architecture, an instruction like "MOV R9, -5" could be used to directly assign the value -5 to register R9. The corresponding machine code representation would depend on the encoding scheme used by the architecture.
2. Arithmetic Instruction:
Another approach to set register R9 to -5 is by using an arithmetic instruction. Again, the specific instruction and machine code representation will depend on the architecture. As an example, assuming a hypothetical architecture, an instruction like "ADD R9, R0, -5" could be used to add the value -5 to register R0 and store the result in R9. Since the initial value of R0 is assumed to be 0, this effectively sets R9 to -5. The machine code representation would depend on the encoding scheme and instruction format used by the architecture.
It is important to note that the actual assembly language instructions and machine code representations may differ depending on the specific instruction set architecture being used. The examples provided here are for illustrative purposes and may not correspond to any specific real-world instruction set architecture.
Learn more about arithmetic instructions here:
brainly.com/question/30465019
#SPJ11
Point a b c and d are coordinate on the coordinate grid, the coordinate are A= (-6,5) B= (6,5) C= (-6,-5) D= (6,-5) what’ the area and perimeter
The area of the rectangle is,
A = 187.2 units²
The perimeter of the rectangle is,
P = 55.2 units
We have to give that,
Point a b c and d are coordinated on the coordinate grid,
Here, the coordinates are,
A= (-6,5)
B= (6,5)
C= (-6,-5)
D= (6,-5)
Since, The distance between two points (x₁ , y₁) and (x₂, y₂) is,
⇒ d = √ (x₂ - x₁)² + (y₂ - y₁)²
Hence, The distance between two points A and B is,
⇒ d = √ (6 + 6)² + (5 - 5)²
⇒ d = √12²
⇒ d = 12
The distance between two points B and C is,
⇒ d = √ (6 + 6)² + (- 5 - 5)²
⇒ d = √12² + 10²
⇒ d = √144 + 100
⇒ d = 15.6
The distance between two points C and D is,
⇒ d = √ (6 + 6)² + (5 - 5)²
⇒ d = √12²
⇒ d = 12
The distance between two points A and D is,
⇒ d = √ (6 + 6)² + (- 5 - 5)²
⇒ d = √12² + 10²
⇒ d = √144 + 100
⇒ d = 15.6
Here, Two opposite sides are equal in length.
Hence, It shows a rectangle.
So, the Area of the rectangle is,
A = 12 × 15.6
A = 187.2 units²
And, Perimeter of the rectangle is,
P = 2 (12 + 15.6)
P = 2 (27.6)
P = 55.2 units
To learn more about the rectangle visit:
https://brainly.com/question/2607596
#SPJ4