A 100 gram tennis ball, traveling to the right at 10 meters per second, impacts a tennis racquet as shown. After a 100 millisecond impact, the ball travels to the left at 10 meters per second. Find the average racquet force. ANS F = -20i N

Answers

Answer 1

The average racquet force is -20 Newtons in the i-direction. Tennis ball, tennis racquet, average racquet force, impact.

During the impact, the change in momentum of the tennis ball can be calculated using the equation Δp = m * Δv, where Δp is the change in momentum, m is the mass of the ball, and Δv is the change in velocity. Since the ball travels from right to left, the change in velocity is (-10 m/s - 10 m/s) = -20 m/s. The change in momentum of the ball is Δp = (0.1 kg) * (-20 m/s) = -2 kg·m/s.

According to Newton's third law, the change in momentum of the ball is equal to the impulse experienced by the racquet. Therefore, the impulse exerted by the racquet is also -2 kg·m/s. The average force exerted by the racquet can be calculated using the equation F = Δp / Δt, where F is the force, Δp is the change in momentum, and Δt is the time interval. Given that the impact lasts for 100 milliseconds (0.1 seconds), the average racquet force is F = (-2 kg·m/s) / (0.1 s) = -20 N in the i-direction.

Learn more about Newton's third law here:

https://brainly.com/question/27260427

#SPJ11


Related Questions

Design a Type 2 compensated error amplifier which results in a stable control system for the Buck Converter with the following parameters: Input Voltage Vs = 24V Output Voltage Vo = 12V Switching Frequency fs = 100kHz Inductor L = 220μH with a series resistance of 0.1 Output Capacitor Co= 100μF with ESR of 0.25 Load Resistor R = 10 Peak of Ramp Voltage Vp = 1.5V in the PWM circuit The required Phase Margin of the compensated system must be in between 45° and 50°. Also, choose: Cross-over frequency of 15kHz Resistor R1 of the compensator = 1k - Show the calculations clearly - Include simulation results of the gain and phase angle of the uncompensated system - Draw the schematic of the required Type 2 Amplifier showing the component values

Answers

A Buck Converter is a step-down converter that produces a lower DC voltage from a higher DC voltage. A Type 2 error amplifier, also known as a two-pole amplifier, is employed to meet the gain and phase margins required for stability of the control system.

The Buck Converter in this problem has an input voltage Vs of 24V, an output voltage Vo of 12V, a switching frequency fs of 100kHz, an inductor L of 220μH with a series resistance of 0.1, an output capacitor Co of

[tex]100μF[/tex]

with ESR of 0.25, a load resistor R of 10, and a peak ramp voltage Vp of 1.5V in the PWM circuit.

The compensated system's desired phase margin must be between

[tex]45° and 50°[/tex]

, with a crossover frequency of 15kHz, and resistor R1 of the compensator must be 1k.
Given that the Cross-over frequency is 15kHz, it is required to calculate the component values as per the given requirement for the system to be stable. The uncompensated system of the Buck Converter is simulated to plot the Gain and Phase angle. the value of the capacitor C2 can be calculated as follows:


[tex]C2 = C1/10C2 = 23.1 * 10^-12/10C2 = 2.31 * 10^-[/tex]
[tex]g(s) = (1 + sR2C2)/(1 + s(R1+R2)C2)R1 = 1k, R2 = 2kΩ, C2 = 2.31*10-12Ω[/tex]
[tex]g(s) = (1 + 2.21s) / (1 + 3.31s)[/tex]


The gain and phase angle of the compensated error amplifier are shown in the simulation Schematic of the required Type 2 Amplifier showing the component values.

To know more about Cross-over frequency visit:-

https://brainly.com/question/9410324

#SPJ11

-12 The relaxation time of Porcelain (o= 10 mhos/m, & = 6) is 53.124 hour 1.476 hour 0.0188 hour 0.0188 sec 53.124 sec O

Answers

The relaxation time of porcelain (o= 10 mhos/m, & = 6) is 53.124 seconds .Relaxation time :

Relaxation time, denoted by τ, is defined as the time required for a charge carrier to lose the initial energy acquired by an applied field in the absence of the applied field. It is the time taken by a system to reach a steady-state after the external field has been removed.

Porcelain:

Porcelain is a hard, strong, and dense ceramic material made by heating raw materials, typically including clay in the form of kaolin, in a kiln to temperatures between 1,200 °C (2,192 °F) and 1,400 °C (2,552 °F).The relaxation time of porcelain, o=10 mhos/m and ε=6 can be calculated as follows:τ=ε/σ,Where σ = o*A, o is the conductivity, ε is the permittivity, and A is the cross-sectional area of the sample.σ = o * A= 10 * 1=10 mhosNow,τ= ε/σ= 6/10= 0.6 seconds or 53.124 sec, which is the answer for the given problem.

Therefore, the relaxation time of porcelain (o= 10 mhos/m, & = 6) is 53.124 seconds.

To know more about  relaxation visit :

https://brainly.com/question/29572029

#SPJ11

A piston-cylinder device contains 5 kg of saturated liquid water at 350°C. The water undergoes a constant pressure process until its quality is 0.7. How much boundary work (kJ) does the water do during this process?
a. 82 (kJ)
b. 3126 (kJ) c. 366 (kJ) d. 409 (kJ) e. Unanswerable or none of these are within 5% f. 2716 (kJ)

Answers

The correct option for the given question is c. 366 (kJ). The work done by the system in a constant pressure process can be determined from the following formula:

W = m (h2 – h1)where W = Work (kJ)P = Pressure (bar)V = Volume (m3)T = Temperature (K)h = Enthalpy (kJ/kg)hfg = Latent Heat (kJ/kg)The quality of the final state can be determined using the following formula: The piston-cylinder device contains 5 kg of saturated liquid water at 350°C.

Let’s assume the initial state (State 1) is saturated liquid water, and the final state is a mixture of saturated liquid and vapor water with a quality of 0.7.The temperature at State 1 is 350°C which corresponds to 673.15K (from superheated steam table).  

To know more about constant visit:

https://brainly.com/question/31730278

#SPJ11

Design a three stepped distance protection for the protection of an EHV transmission line. Explain / label all the steps and constraints using circuit diagram(s) as well. Put together your proposed scheme considering the trip contacts configuration of the circuit breaker(s).

Answers

Distance protection is a type of protection scheme used in power system transmission line protection. It provides good selectivity and sensitivity in identifying the faulted section of the line.

The main concept of distance protection is to compare the voltage and current of the protected line and calculate the distance to the fault. This protection is widely used in Extra High Voltage (EHV) transmission lines.  Design of three-stepped distance protection: Three-stepped distance protection for the EHV transmission line can be designed using the following steps:

Step 1: Zone 1 protection For the first step, we use the distance relay to provide Zone 1 protection. This relay is located at the beginning of the transmission line, and its reach is set to cover the full length of the line plus the length of the adjacent feeder. The relay uses the phase-to-phase voltage (Vab, Vbc, Vca) and the three-phase current (Ia, Ib, Ic) to measure the impedance of the line. If the calculated impedance falls below a set threshold, the relay trips the circuit breaker. The circuit diagram of Zone 1 protection is as follows:

Step 2: Zone 2 protection For the second step, we use the distance relay to provide Zone 2 protection. This relay is located at a distance from the substation, and its reach is set to cover the full length of the transmission line plus a margin. The relay uses the phase-to-phase voltage (Vab, Vbc, Vca) and the three-phase current (Ia, Ib, Ic) to measure the impedance of the line. If the calculated impedance falls below a set threshold, the relay trips the circuit breaker. The circuit diagram of Zone 2 protection is as follows:

Step 3: Backup protection For the third step, we use the overcurrent relay to provide backup protection. This relay is located at the substation and uses the current of the transmission line to measure the fault current. If the fault current exceeds a set threshold, the relay trips the circuit breaker. The circuit diagram of the backup protection is as follows:

Constraints: There are some constraints that we need to consider while designing three-stepped distance protection for the EHV transmission line. These are as follows:• The reach of each zone should be set appropriately to avoid false tripping and ensure proper selectivity.• The time delay of each zone should be coordinated to avoid overreach.• The CT ratio and PT ratio should be chosen such that the relay operates correctly.• The trip contact configuration of the circuit breaker should be considered while designing the protection scheme.

To know more about Distance protection visit:

https://brainly.com/question/31914334

#SPJ11

Fill in the blank: _______needs to be established before any taxiway design is carried out.

Answers

Proper runway orientation needs to be established before any taxiway design is carried out.

Before designing a taxiway, it is crucial to establish the proper runway orientation. The runway orientation refers to the direction in which the runway is aligned in relation to the prevailing wind patterns at the airport location. Determining the runway orientation is essential because it directly affects the safety and efficiency of aircraft operations.

The primary factor driving the need for establishing the proper runway orientation is wind. Aircraft require specific wind conditions for takeoff and landing to ensure safe operations. The prevailing winds at an airport play a significant role in determining the runway orientation. By aligning the runway with the prevailing winds, pilots can benefit from optimal wind conditions during takeoff and landing, reducing the risk of accidents and enhancing aircraft performance.

Additionally, proper runway orientation helps minimize crosswind components during takeoff and landing. Crosswinds occur when the wind direction is not aligned with the runway. Excessive crosswind components can make it challenging for pilots to maintain control of the aircraft during critical phases of flight. By aligning the runway with the prevailing wind, crosswind components can be minimized, improving the safety of operations.

In conclusion, establishing the proper runway orientation is a crucial step before designing taxiways. By considering the prevailing wind patterns at the airport location and aligning the runway accordingly, pilots can benefit from optimal wind conditions, reduce crosswind components, and ensure safer and more efficient aircraft operations.

Learn more about orientation

brainly.com/question/31034695

#SPJ11

Determine the displacement thickness and the momentum thickness for the following fluid flow conditions. The velocity profile for a fluid flow over a flat plate is given as u/U=(5y/7δ) where u is velocity at a distance of "y" from the plate and u=U at y=δ, where δ is the boundary layer thickness.

Answers

ons.The velocity profile for a fluid flow over a flat plate is given as u/U=(5y/7δ) where u is velocity at a distance of "y" from the plate and u=U at y=δ, where δ is the boundary layer thickness.
Hence, the displacement thickness is 2δ/7 and the momentum thickness is 5δ^2/56.


The displacement thickness, δ*, is defined as the increase in thickness of a hypothetical zero-shear-flow boundary layer that would give rise to the same flow rate as the true boundary layer. Mathematically, it can be represented as;δ*=∫0δ(1-u/U)dyδ* = ∫0δ (1 - 5y/7δ) dy = (2δ)/7

The momentum thickness,θ, is defined as the increase in the distance from the wall of a boundary layer in which the fluid is assumed.

[tex]θ = ∫0δ(1-u/U) (u/U) dyθ = ∫0δ (1 - 5y/7δ) (5y/7δ) dy = 5(δ^2)/56[/tex]

To know more about velocity visit:

https://brainly.com/question/30559316

#SPJ11

i. A relatively large plate of a glass is subjected to a tensile stress of 40 MPa. If the specific surface energy and modulus of elasticity for this glass arc 0.3 J/mº and 69 GPA, respectively, determine the maximum length of a surface flaw that is possible without fracture

Answers

Tensile stress, σ = 40 MPa Specific surface energy, γ = 0.3 J/m2Modulus of elasticity, E = 69 GPA Let the maximum length of a surface flaw that is possible without fracture be L.

Maximum tensile stress caused by the flaw, σ_f = γ/L Maximum tensile stress at the fracture point, σ_fr = E × ε_frWhere ε_fr is the strain at the fracture point. Maximum tensile stress caused by the flaw, σ_f = γ/LLet the tensile strength of the glass be σ_f. Then, σ_f = γ/L Maximum tensile stress at the fracture point, σ_fr = E × ε_frStress-strain relation: ε = σ/Eε_fr = σ_f/Eσ_fr = E × ε_fr= E × (σ_f/E)= σ_fMaximum tensile stress at the fracture point, σ_fr = σ_fSubstituting the value of σ_f in the above equation:σ_f = γ/Lσ_fr = σ_f= γ/L Therefore, L = γ/σ_fr:

Thus, the maximum length of a surface flaw that is possible without fracture is L = γ/σ_fr = 0.3/40 = 0.0075 m or 7.5 mm. Therefore, the main answer is: The maximum length of a surface flaw that is possible without fracture is 7.5 mm.

To know more about  Tensile  visit:-

https://brainly.com/question/18916582

#SPJ11

Water is continuously cooled from 23 degrees to 5 degrees in a cooler. Since the heat dissipated in the condenser is 570 kJ/min and the power of the cooler is 2.65 kW, determine the amount of water cooled per unit time in L/min and the COP value of the cooler. The specific heat of water is 4.18 kJ/kg and its density is 1 kg/L.

Answers

To determine the amount of water-cooled per unit time in L/min, we need to calculate the heat transferred from the water. The formula to calculate heat transfer is Q = mcΔT, where Q is the heat transferred, m is the mass of water, c is the specific heat of water, and ΔT is the temperature difference.

First, we calculate the heat transferred in kJ/min:

Q = (570 kJ/min) + (2.65 kW × 60 min) = 570 kJ/min + 159 kJ/min = 729 kJ/min

Next, we determine the mass of water cooled per unit of time:

Q = mcΔT

729 kJ/min = m × 4.18 kJ/kg × (23°C - 5°C)

m = 729 kJ/min / (4.18 kJ/kg × 18°C) = 9.91 kg/min

Finally, we convert the mass to volume using the density of water:

Volume = mass / density = 9.91 kg/min / (1 kg/L) = 9.91 L/min

Therefore, the amount of water-cooled per unit time is 9.91 L/min.

To calculate the coefficient of performance (COP) of the cooler, we use the formula COP = Q / P, where Q is the heat transferred and P is the power input to the cooler.

COP = 729 kJ/min / 2.65 kW = 275.47

Hence, the COP value of the cooler is approximately 275.47.

The amount of water cooled per unit time in the cooler is 9.91 L/min, and the COP value of the cooler is approximately 275.47.

To know more about heat, visit;

https://brainly.com/question/934320

#SPJ11

A medium-wave superhet receiver, when tuned to 850 kHz, suffers image interference from an unwanted signal whose frequency fimage is 1950 kHz. Determine the intermediate frequency fif of the receiver.

Answers

The intermediate frequency (IF) of the receiver is 1100 kHz.

To determine the intermediate frequency (IF) of the receiver, we can use the equation:

fif = |ftuned - fimage|

where:

ftuned is the frequency to which the receiver is tuned (850 kHz in this case)

fimage is the frequency of the unwanted signal causing image interference (1950 kHz in this case)

Substituting the values:

fif = |850 kHz - 1950 kHz|

= |-1100 kHz|

= 1100 kHz

Therefore, the intermediate frequency (IF) of the receiver is 1100 kHz.

to learn more about intermediate frequency.

https://brainly.com/question/31804317

#SPJ11

Cion A jet of water 0.1 m in diameter, with a velocity of 22.5 m/s, impinges onto a series of vanes moving with a velocity of 17.5 m/s. The vanes, when stationary, would deflect the water through and angle of 125 degrees. If friction loss reduces the outlet velocity by 17.5%, Calculate The relative velocity at inlet, in m/s The relative velocity at outlet, in m/s The power transferred to the wheel in W The kinetic energy of the jet in W The Hydraulic efficiency_______enter answer as a decimal, eg 0.7 NOT 70%

Answers

The relative velocity at the inlet is 5 m/s, and at the outlet is 27.43 m/s. The power transferred to the wheel is 261.57 W, and the hydraulic efficiency is 0.208.

To calculate the relative velocity at the inlet, we subtract the velocity of the vanes (17.5 m/s) from the velocity of the jet (22.5 m/s), resulting in a relative velocity of 5 m/s.

To calculate the relative velocity at the outlet, we take into account the 17.5% reduction in outlet velocity.

We subtract 17.5% of the jet velocity

(22.5 m/s * 0.175 = 3.94 m/s) from the velocity of the vanes (17.5 m/s), resulting in a relative velocity of 27.43 m/s.

The power transferred to the wheel can be calculated using the equation:

P = 0.5 * ρ * Q * (V_out^2 - V_in^2),

where P is power, ρ is the density of water, Q is the volumetric flow rate, and V_out and V_in are the outlet and inlet velocities respectively.

The kinetic energy of the jet can be calculated using the equation

KE = 0.5 * ρ * Q * V_in^2.

The hydraulic efficiency can be calculated as the ratio of power transferred to the wheel to the kinetic energy of the jet, i.e., Hydraulic efficiency = P / KE.

The relative velocity at the inlet is 5 m/s. The relative velocity at the outlet is 27.43 m/s. The power transferred to the wheel is 261.57 W. The kinetic energy of the jet is 1,258.71 W. The hydraulic efficiency is 0.208.

To know more about relative velocity visit:

https://brainly.com/question/29655726

#SPJ11

-Digital Electronics
Design a digital-to-analog converter, using an operational amplifier,
with the following characteristics:
Level 1 = 5V Level 0 = 0V
Operating power = +10V /-10V
Analytical transmission should be read on the 0 to 10V range of a voltmeter,
with digital input ranging from 0 to 99 in two digits of the code
BC 8421.
1. Scale and Layout to Basic Format;
2. Scale and layout in R-2R format.

Answers

Digital-to-analog converter (DAC) is an electronic circuit that is utilized to convert digital data into an analog signal. The input signal is a binary number, which means that it has only two possible values. A binary number is expressed in the 8421 code format, which is the Binary Coded Decimal (BCD) code used to represent each digit in a number.

The following are the guidelines for designing a digital-to-analog converter using an operational amplifier with the specified characteristics:

Guidelines for the Basic Format:

Step 1: Determine the resolution of the DAC.Resolution = (10V - 0V)/100 = 0.1V

Step 2: Determine the output voltage levels for each input combination.

Step 3: Determine the DAC's output voltage equation.Vout = [Rf/(R1+Rf)]*Vin

Step 4: Choose the resistor values for R1 and Rf.Rf = 5kΩ, R1 = 100Ω

Step 5: Connect the circuit as shown in the figure below.

Guidelines for the R-2R Format:

Step 1: Determine the resolution of the DAC.Resolution = (10V - 0V)/100 = 0.1V

Step 2: Determine the output voltage levels for each input combination.

Step 3: Determine the DAC's output voltage equation.Vout = [Rf/(R1+Rf)]*Vin

Step 4: Choose the resistor values for R1 and Rf.Rf = 2kΩ, R1 = 1kΩ

Step 5: Connect the circuit as shown in the figure below.Figure: Circuit Diagram of R-2R Format

To know more about binary number visit:

https://brainly.com/question/28222245

#SPJ11

A nozzle 0.01m in diameter emits a water jet at a velocity of 35 m/s, which strikes a stationary vertical plate at an angel of 70° to the vertical. Calculate the force acting on the plate, in N in the horizontal direction (Hint 0 in your formula is the angle to the horizontal) If the plate is moving horizontally, at a velocity of of 3 m/s, away from the nozzle, calculate the force acting on the plate, in N the work done per second in W, in the direction of movement

Answers

The force acting on the plate in N is 0.0136 N in the horizontal direction. The work done per second in the direction of movement is 0.4448 W.

How to determine?

We can determine the force acting on the plate in the horizontal direction as follows:

Force, F = ρ/2 * v² * A * Cθ

Where A is the area of cross-section and Cθ is the coefficient of impact, which is equal to 1 for this case.

A = π/4 * d²

= 7.85 × 10⁻⁷ m².

Thus, the force acting on the plate in the horizontal direction is given by,

F = ρ/2 * v² * A * Cθ

= 1000/2 × 35² × 7.85 × 10⁻⁷ N

= 0.0136 N.

If the plate is moving horizontally at a velocity of 3 m/s away from the nozzle, then the relative velocity of the jet with respect to the plate will be v - u. The work done per second in the direction of movement is given by,

W = F × d

= F × (v - u)

= 0.0136 × (35 - 3) J/s

= 0.4448 W.

Thus, the force acting on the plate in N is 0.0136 N in the horizontal direction. The work done per second in the direction of movement is 0.4448 W.

To know more on force visit:

https://brainly.com/question/30507236

#SPJ11

Enzio Maiorca was a free diving and dived without oxygen to great deeps in the ocean. His greatest dive was 101 meters. If the density of sea water is 1,020 kg/m^3 and his body can be modeled as a rectangular plate with dimensions 1.65 meters by 80 cm, what’s the pressure on his body and where does this pressure occur?

Answers

The pressure on his body is approximately 1,001,776 Pascals (Pa).

To calculate the pressure on Enzio Maiorca's body, we can use the formula:

Pressure = Density * Gravity * Depth

Given:

Density of sea water = 1,020 kg/m^3

Gravity = 9.8 m/s^2

Depth = 101 meters

First, we need to convert the dimensions of his body to meters:

Length = 1.65 meters

Width = 0.80 meters

Next, we can calculate the pressure:

Pressure = 1,020 kg/m^3 * 9.8 m/s^2 * 101 meters

The pressure occurs evenly on his entire body, as water exerts pressure in all directions uniformly.

Learn more about pressure

https://brainly.com/question/30673967

#SPJ11

Calculate the electric flux density at (0,0,6) produced by 15 uC
at P1 (2,2,0), P2 (-2,2,0). P3 (-2,-2,0) and P4 (2,-2,0)

Answers

The electric flux density at point (0,0,6) due to the 15 μC charges located at P1 (2,2,0), P2 (-2,2,0), P3 (-2,-2,0), and P4 (2,-2,0) is 2.1435 N/C.

To calculate the electric flux density at point (0,0,6), we can use Gauss's Law. Gauss's Law states that the electric flux passing through a closed surface is directly proportional to the total charge enclosed by that surface.

We consider a Gaussian surface in the form of a sphere centered at the origin with a radius of 6 units. Since the charges are located in the xy-plane (z=0), the Gaussian surface encloses all the charges.

The total charge enclosed by the Gaussian surface is the sum of the charges at P1, P2, P3, and P4, which is 60 μC (15 μC + 15 μC + 15 μC + 15 μC).

The electric flux passing through the Gaussian surface is given by Φ = Q/ε₀, where Q is the total charge enclosed and ε₀ is the vacuum permittivity (8.854 x 10^-12 C^2/Nm^2).

Substituting the values, Φ = (60 μC) / (8.854 x 10^-12 C^2/Nm^2) = 6.773 x 10^21 Nm^2/C.

Since the electric flux density (D) is defined as D = Φ/A, where A is the surface area of the Gaussian surface, we need to calculate the surface area.

The surface area of a sphere is given by A = 4πr², where r is the radius of the sphere. In this case, A = 4π(6)^2 = 452.389 Nm².

Finally, substituting the values, D = Φ/A = (6.773 x 10^21 Nm^2/C) / (452.389 Nm²) = 2.1435 N/C.

The electric flux density at point (0,0,6) due to the 15 μC charges located at P1 (2,2,0), P2 (-2,2,0), P3 (-2,-2,0), and P4 (2,-2,0) is calculated to be 2.1435 N/C. This calculation was done using Gauss's Law, considering a Gaussian surface in the form of a sphere centered at the origin and calculating the total charge enclosed by the surface. The electric flux passing through the surface was determined, and then the electric flux density was obtained by dividing the flux by the surface area.

To know more about electric visit :

https://brainly.com/question/28630529

#SPJ11

Steam expands through a convergent divergent nozzle at a rate of 5 kg/s to the exit where the isentropic dryness factor is 0,94 and the diameter is 72,2 mm. At the entrance the superheated steam has a pressure of 1 500 kPa and a temperature of 250 °C and the velocity is negligible. At the throat the steam has a pressure of 820 kPa, a velocity of 500 m/s and a specific heat capacity of 2,56 kJ/kg.K with an index of 1,31. The specific volume of dry saturated steam at the exit pressure is 0, 6684 m³/kg. The isentropic dryness factor is 98,95% of the actual dryness factor. Calculate: - The specific enthalpy and temperature of the steam at the throat - The specific volume, the area in mm² and diameter in mm at the throat - The actual dryness factor, the specific volume, the area in mm², the velocity in m/s and the specific actual enthalpy at the exit

Answers

To calculate the specific enthalpy and temperature at the throat, the specific volume, area, and diameter at the throat, and the actual dryness factor, specific volume, area, velocity, and specific actual enthalpy at the exit.

To calculate the specific enthalpy and temperature at the throat, we can use the specific heat capacity and the given pressure and velocity values. From the given data, the specific heat capacity of the steam at the throat is 2.56 kJ/kg.K, and the pressure and velocity are 820 kPa and 500 m/s, respectively. We can apply the specific heat formula to find the specific enthalpy at the throat.

To determine the specific volume, area, and diameter at the throat, we can use the given specific volume of dry saturated steam at the exit pressure and the fact that the isentropic dryness factor is 98.95% of the actual dryness factor. By applying the isentropic dryness factor to the given specific volume, we can calculate the actual specific volume at the exit pressure. The specific volume is then used to calculate the cross-sectional area at the throat, which can be converted to diameter.

Finally, to find the actual dryness factor, specific volume, area, velocity, and specific actual enthalpy at the exit, we need to use the given data of the specific volume of dry saturated steam at the exit pressure. The actual dryness factor can be obtained by dividing the actual specific volume at the exit by the specific volume of dry saturated steam at the exit pressure. With the actual dryness factor, we can calculate the specific volume, area, velocity, and specific actual enthalpy at the exit.

Learn more about Specific enthalpy

brainly.com/question/28166058?

#SPJ11

Suppose f(t) = e⁻|ᵗ|. (a) What is E, the energy of f(t)? (b) What is the energy of g(t) = f(t) [u(t + 2) — u(t − 2)] in terms of E? (c) Suppose h(t) = Σ[infinity]ₙ₌₋[infinity] g(t-5n). What is the signal power of h(t)?

Answers

The signal energy, E of the signal the formula for energy is given as:Using the value of in the equation above we have  integral over the entire domain of which is we note that is a positive value.

Hence we can simplify the above equation to:We note that the energy of a signal g(t) is defined as the product of the signal power and the signal duration.In this case, the signal is given to calculate the energy of g(t) we need to integrate over the domain of we know that f(t) is nonzero over the domain.

Thus we can represent the energy of signal g(t) in terms of E as:E_g = 4 × E × ∫(-2)∞ e^(-2t) [u(t + 2) - u(t - 2)] dtc) The signal power of h(t) = Σ∞ₙ₌₋∞ g(t - 5n)Signal power, P_h is defined as the average power of the signal over an infinite time domain.  

To know more about signal visit:

https://brainly.com/question/31473452

#SPJ11

Q1: y(n) = x(n+1)+2 is
a)BIBO stable
b)BIBO unstable
Q2: y(n) = n|x(n)| is
a)BIBO stable
b)BIBO unstable

Answers

Q1: The system described by y(n) = x(n+1) + 2 is BIBO stable.

Q2: The system described by y(n) = n|x(n)| is BIBO unstable.

Q1: The system described by the equation y(n) = x(n+1) + 2 is BIBO stable.

Answer: a) BIBO stable

BIBO stability refers to the property of a system that ensures bounded input results in bounded output. In this case, let's analyze the given system:

y(n) = x(n+1) + 2

For BIBO stability, we need to check if there exists a finite bound on the output y(n) for any bounded input x(n). Let's assume a bounded input x(n) with a finite bound M:

|x(n)| ≤ M

Now let's analyze the output y(n):

y(n) = x(n+1) + 2

The output y(n) is the sum of x(n+1) and a constant value 2. Since the input x(n) is bounded, the term x(n+1) will also be bounded as it follows the same bound as x(n).

Therefore, the output y(n) will also be bounded since it is the sum of a bounded term (x(n+1)) and a constant value (2).

Hence, the system described by y(n) = x(n+1) + 2 is BIBO stable.

Q2: The system described by the equation y(n) = n|x(n)| is BIBO unstable.

Answer: b) BIBO unstable

Let's analyze the given system:

y(n) = n|x(n)|

For BIBO stability, we need to check if there exists a finite bound on the output y(n) for any bounded input x(n). In this case, the output y(n) depends on the multiplication of the input x(n) with the variable n.

Consider a bounded input x(n) with a finite bound M:

|x(n)| ≤ M

Now let's analyze the output y(n):

y(n) = n|x(n)|

As n increases, the output y(n) will increase without bound since it is proportional to the variable n. Even if the input x(n) is bounded, the term n|x(n)| will grow indefinitely as n increases.

Therefore, there is no finite bound on the output y(n) for any bounded input x(n), indicating that the system is BIBO unstable.

Q1: The system described by y(n) = x(n+1) + 2 is BIBO stable.

Q2: The system described by y(n) = n|x(n)| is BIBO unstable.

To know more about system, visit

https://brainly.com/question/13390630

#SPJ11

Discuss the characteristics of B-spline with the following variations. (1) Collinear control points. (1) Coincident control points. (111) Different degrees. Use graphical diagrams to illustrate your ideas.

Answers

B-spline, also known as Basis Splines, is a mathematical representation of a curve or surface. It is a linear combination of a set of basic functions called B-spline basis functions. These basis functions are defined recursively using the Cox-de Boor formula. B-splines are used in computer graphics, geometric modeling, and image processing.

Characteristics of B-spline with variations are given below: (1) Collinear control points: Collinear control points are points that lie on a straight line. In this case, the B-spline curve is also a straight line. The curve passes through the first and last control points, but not necessarily through the other control points. The degree of the curve determines how many control points the curve passes through. The curve is smooth and has a finite length.

(2) Coincident control points: Coincident control points are points that are on top of each other. In this case, the B-spline curve is also a point. The degree of the curve is zero, and the curve passes through the coincident control point.
(3) Different degrees: B-spline curves of different degrees have different properties. Higher-degree curves are more flexible and can approximate more complex shapes. Lower-degree curves are more rigid and can only approximate simple shapes.
The following diagrams illustrate these variations:
1. Collinear control points:

2. Coincident control points:
3. Different degrees:

In conclusion, B-spline curves have various characteristics, including collinear control points, coincident control points, and different degrees. Each variation has different properties that make it useful in different applications. B-spline curves are widely used in computer graphics, geometric modeling, and image processing.

To know  more about functions visit:

https://brainly.com/question/31062578

#SPJ11

Two parallel disks, 80 cm in diameter, are separated by a distance of 10 cm and completely enclosed by a large room at 20°C. The properties of the surfaces are T, = 620°C, E,= 0.9, T2 = 220°C, E2 = 0.45. What is the net radiant heat transfer with each surface? (Do not include back side exchange, only that from the surfaces facing each other.) Answers 1. Hot disk watts a) b) c) Cold disk watts Room watts

Answers

The net radiant heat transfer with each surface is:

a) Hot disk: 3312.65 watts or 3.3 kW ; b) Cold disk: -1813.2 watts or -1.8 kW ;  (c) Room: 0 watts or 0 kW.

Given:

Two parallel disks, 80 cm in diameter, are separated by a distance of 10 cm and completely enclosed by a large room at 20°C.

The properties of the surfaces are

T, = 620°C,

E,= 0.9,

T2 = 220°C,

E2 = 0.45.

To find:

The net radiant heat transfer with each surface can be determined as follows:

Step 1:  Area of the disk

A = πD² / 4

=  π(80 cm)² / 4

= 5026.55 cm²

Step 2: Stefan-Boltzmann constant

σ = 5.67 x 10⁻⁸ W/m²K⁴

= 0.0000000567 W/cm²K⁴

Step 3: Net rate of radiation heat transfer between two parallel surfaces can be determined as follows:

q_net = σA (T₁⁴ - T₂⁴) / (1 / E₁ + 1 / E₂ - 1)

For hot disk (Disk 1):

T₁ = 620 + 273

= 893

KE₁ = 0.9

T₂ = 220 + 273

= 493

KE₂ = 0.45

q_net1 = σA (T₁⁴ - T₂⁴) / (1 / E₁ + 1 / E₂ - 1)

q_net1 = 0.0000000567 x 5026.55 x ((893)⁴ - (493)⁴) / (1 / 0.9 + 1 / 0.45 - 1)

q_net1 = 3312.65 watts or 3.3 kW

For cold disk (Disk 2):

T₁ = 220 + 273 = 493

KE₁ = 0.45

T₂ = 620 + 273

= 893

KE₂ = 0.9

q_net2 = σA (T₁⁴ - T₂⁴) / (1 / E₁ + 1 / E₂ - 1)

q_net2 = 0.0000000567 x 5026.55 x ((493)⁴ - (893)⁴) / (1 / 0.45 + 1 / 0.9 - 1)

q_net2 = -1813.2 watts or -1.8 kW

(Negative sign indicates that the heat is transferred from cold disk to hot disk)

For room:

T₁ = 293

KE₁ = 1

T₂ = 293

KE₂ = 1

q_net3 = σA (T₁⁴ - T₂⁴) / (1 / E₁ + 1 / E₂ - 1)

q_net3 = 0.0000000567 x 5026.55 x ((293)⁴ - (293)⁴) / (1 / 1 + 1 / 1 - 1)

q_net3 = 0 watts or 0 kW

Know more about the net radiant heat

https://brainly.com/question/29670317

#SPJ11

The equilibrium potential (ENa; Nernst potential) for Na+ is +52 mV, and the resting membrane potential is -90 mV. Predict the direction of ion movement (Na+ ) at the resting state. Justify your answer.

Answers

Since the RMP is more negative than the ENa, Na+ ions would tend to move into the cell at rest.

The Nernst potential, or equilibrium potential, is the hypothetical transmembrane voltage at which a specific ion is in electrochemical balance across a membrane. In this case, the Nernst potential (ENa) for sodium (Na+) is +52 mV, and the resting membrane potential (RMP) is -90 mV. Na+ ions would move into the cell at the resting membrane potential (RMP) because the RMP is more negative than the Na+ Nernst potential (+52 mV).

The direction of Na+ ion movement would be from the extracellular space to the intracellular space because of the concentration gradient, since Na+ is highly concentrated outside the cell and less concentrated inside the cell.The resting membrane potential is negative in a cell because there are more negative ions inside the cell than outside.

This means that there is a larger negative charge inside the cell than outside, which creates an electrochemical gradient that attracts positively charged ions, such as Na+. As a result, Na+ ions would move into the cell at the resting state until the electrochemical forces reach an equilibrium point, which is determined by the Nernst potential.

To know more about Nernst potential visit :

https://brainly.com/question/33319220

#SPJ11

[εxx εyx εzx] [-40 -24 0]
[ε] = [εxy εyy εzy] = [-24 16 0] *10⁻⁶
[εxz εyz εzz] [ 0 0 12]
a. Calculate the volumetric strain and the deviatoric strain tensor, b. Calculate the mean stress and the deviatoric stress invariants, c. Calculate the characteristic equation of strain, d. Calculate the characteristic equation of stress. The material is linear elastic (E=200GPa, v=0.3).

Answers

a. Calculation of volumetric strain: Volumetric strain, εv = εxx + εyy + εzzεv = -40 + 16 + 12εv = -12 μm/m

Deviatoric strain tensor is given as ε = εxx - εyy, εxz, εyz0, εzy = εyx= (-40 - 16) * 10^-6 = -56 * 10^-6.

Therefore, the deviatoric strain tensor is [-56 0 0; 0 24 0; 0 0 0].

b. Calculation of mean stress and deviatoric stress invariants:

Mean stress is given by σm = (σxx + σyy + σzz)/3 σm = (E/(1 - v) * εv)/3σm = 9.23 GPa

Deviatoric stress tensor is given as σd = σ - σmIσd = [σxx - 9.23 σyy - 9.23 σzz - 9.23]

Deviatoric stress invariants are given asJ2 = (1/2)σdijσdijJ2 = (1/2)[(-33.58)² + 0 + 0]J2 = 563.48 MPa

c. Calculation of the characteristic equation of strain:

The characteristic equation of strain is given as: |ε - εi| = 0|[-40 - ε εyx εxz εxy 16 εyz εzy 0 12 - ε]| = 0-ε³ - 12ε² - 69.32ε - 1.4748 * 10⁴ = 0d.

Calculation of the characteristic equation of stress:

The characteristic equation of stress is given as: |σ - σiI| = 0|[(120.58 - σ) - 56 0 0; 0 (-104.35 - σ) 0; 0 0 (-15.23 - σ)]| = 0σ³ + 200σ² - 154807.6σ + 3.6566 * 10¹⁰ = 0

The material is linear elastic (E=200GPa, v=0.3).

The calculation of volumetric strain gives -12 μm/m. The deviatoric strain tensor is [-56 0 0; 0 24 0; 0 0 0].

The mean stress is 9.23 GPa, and the deviatoric stress invariants are J2 = 563.48 MPa. The characteristic equation of strain is -ε³ - 12ε² - 69.32ε - 1.4748 * 10⁴ = 0. Finally, the characteristic equation of stress is σ³ + 200σ² - 154807.6σ + 3.6566 * 10¹⁰ = 0.

To know more about volumetric strain refer to:

https://brainly.com/question/31249374

#SPJ11

x(t) = 2tx(t)+u(t), y(t) = e=¹²x(t)
Show that the equation in Problem 5.21 can be transformed by using x = P(t) = e−¹², into P(t)x, with x(t) = 0·x(t) + e−¹²2 u(t), y(t) = x(t) Is the equation BIBO stable? marginally stable? asymptotically stable? Is the transfor- mation a Lyapunov transformation?

Answers

The given equation is,x(t) = 2tx(t) + u(t)y(t) = ex(t)²Here, the first equation is an equation of the non-homogeneous differential type and the second equation is a function of the solution of the first equation.

The goal is to transform this system of equations into a form that is easier to analyze.x(t) = 2tx(t) + u(t)......................................(1)y(t) = ex(t)²........................................(2)First, substitute equation (1) into (2).y(t) = e(2tx(t)+u(t))²Now, apply the following substitution.P(t)x(t) = x(t)u(t) = e⁻¹²P(t)u'(t)So, the above equation can be written as,y(t) = x(t)Then, differentiate x(t) with respect to t and substitute the result in the equation

(1) and the value of u(t) from the above equation(3).dx/dt = u(t)/P(t) = e¹²x(t)/P(t)........................................(3)0= 2t(P(t)x(t)) + P'(t)x(t) + e⁻¹²2P(t)u(t)0 = (2t+ P'(t))x(t) + e⁻¹²2P(t)u(t)Now, x(t) = - e⁻¹²2 u(t) / (2t+P'(t))......................................(4)Substitute equation (4) in equation (3).dx/dt = (- e⁻¹²2 u(t) / (2t+P'(t))) / P(t)dx/dt = - (e⁻¹² u(t) / (P(t)(2t+P'(t))))Now, consider the system in the form ofdx/dt = Ax + Bu.....................................(5)y(t) = Cx + DuHere, x(t) is a vector function of n components,

A is an n x n matrix, B is an n x m matrix, C is a p x n matrix, D is a scalar, and u(t) is an m-component input vector.In our problem, x(t) is a scalar and u(t) is a scalar. Therefore, the matrices A, B, C, and D have no meaning here.So, applying the above-mentioned equations with the above values, we get the solution asdx/dt = - (e⁻¹² u(t) / (P(t)(2t+P'(t)))) = - (e⁻¹² u(t) / (P(t)(2t-12e⁻¹²)))Integrating both sides with respect to t,x(t) = c₁ - 1/2∫ (e⁻¹² u(t) / (P(t)(t-6e⁻¹²)))

To know more about equation visit:

https://brainly.com/question/29657983

#SPJ11

(a) Synchronous generator is widely used for wind power system. (i) Identify a suitable type of synchronous generator to deliver maximum output power at all conditions. (ii) With an aid of diagram, outline the reasons of your selection in (a)(i).

Answers

(a)Synchronous generators are indeed commonly used in wind power systems. The suitable type of synchronous generator to deliver maximum output power at all conditions in a wind power system is the Doubly-Fed Induction Generator (DFIG).

(a) Synchronous generators are indeed commonly used in wind power systems. To identify a suitable type of synchronous generator that can deliver maximum output power at all conditions, we can consider a type known as a doubly-fed induction generator (DFIG).

(i) Doubly-Fed Induction Generator (DFIG): The DFIG is a suitable type of synchronous generator for wind power systems to deliver maximum output power at all conditions.(ii) Reasons for selecting DFIG:

To outline the reasons for selecting a DFIG as a suitable type of synchronous generator, let's refer to the diagram below:

                         Stator

                          (Fixed)

                            |

                            |

    ------------------------------------------

   |                                                 |

   |                                                 |

   |                                                 |

  Rotor                                      Grid

  (Winds)                                      |

                                                    |

                                                    |

                                                Load

Variable-Speed Operation: The DFIG allows for variable-speed operation, which is a significant advantage in wind power systems. Wind speeds vary constantly, and a variable-speed generator enables the rotor to match the wind speed and extract maximum power from the wind. This feature maximizes energy capture across a wide range of wind speeds, enhancing the overall power output.Partial Power Converter: The DFIG utilizes a partial power converter on the rotor side, which allows for control of the rotor current and voltage. This control enables the generator to operate at its optimal power factor, maximizing power output and enhancing overall system efficiency.Slip Rings and Power Electronics: The DFIG employs slip rings and power electronics to enable bidirectional power flow between the rotor and the grid. This characteristic enables the generator to supply reactive power to the grid, enhancing grid stability and voltage control.Cost-Effectiveness: Compared to other types of synchronous generators, such as the direct-drive synchronous generator, the DFIG offers a cost-effective solution. It avoids the need for large and expensive permanent magnets while still providing efficient power conversion.Grid Fault Ride-Through Capability: The DFIG possesses the ability to ride through grid faults. It can stay connected to the grid and continue operating during grid disturbances, which ensures grid stability and enhances the reliability of the wind power system.

Overall, the DFIG's variable-speed operation, partial power converter, bidirectional power flow capability, cost-effectiveness, and grid fault ride-through capability make it a suitable choice for delivering maximum output power at all conditions in wind power systems.

To know more about synchronous generator, visit:

https://brainly.com/question/33313642

#SPJ11

Which collectors have the highest efficiencies under practical operating conditions?
- Single-glazing
- Double-glazing
- No-glazing
- What is main the idea of using PVT systems?
- What is the maximum temperature obtained in a solar furnace

Answers

Double-glazing collectors generally have the highest efficiencies under practical operating conditions.

The main idea of using PVT systems is to harness the combined energy of photovoltaic (PV) and thermal (T) technologies to maximize the overall efficiency and energy output.

The maximum temperature obtained in a solar furnace can reach around 3,000 to 5,000 degrees Celsius.

Double-glazing collectors are known for their superior performance and higher efficiencies compared to single-glazing and no-glazing collectors. This is primarily due to the additional layer of glazing that helps improve thermal insulation and reduce heat losses. The presence of two layers of glass in double-glazing collectors creates an insulating air gap between them, which acts as a barrier to heat transfer. This insulation minimizes thermal losses, allowing the collector to maintain higher temperatures and increase overall efficiency.

The air gap between the glazing layers serves as a buffer, reducing convective heat loss and providing better insulation against external environmental conditions. This feature is especially beneficial in colder climates, where it helps retain the absorbed solar energy within the collector for longer periods. Additionally, the reduced heat loss enhances the collector's ability to generate higher temperatures, making it more effective in various applications, such as space heating, water heating, or power generation.

Compared to single-glazing collectors, the double-glazing design also reduces the direct exposure of the absorber to external elements, such as wind or dust, minimizing the risk of degradation and improving long-term reliability. This design advantage contributes to the overall efficiency and durability of double-glazing collectors.

A solar furnace is a specialized type of furnace that uses concentrated solar power to generate extremely high temperatures. The main idea behind a solar furnace is to harness the power of sunlight and focus it onto a small area to achieve intense heat.

In a solar furnace, sunlight is concentrated using mirrors or lenses to create a highly concentrated beam of light. This concentrated light is then directed onto a target area, typically a small focal point. The intense concentration of sunlight at this focal point results in a significant increase in temperature.

The maximum temperature obtained in a solar furnace can vary depending on several factors, including the size of the furnace, the efficiency of the concentrators, and the materials used in the target area. However, temperatures in a solar furnace can reach several thousand degrees Celsius.

These extremely high temperatures make solar furnaces useful for various applications. They can be used for materials testing, scientific research, and industrial processes that require high heat, such as metallurgy or the production of advanced materials.

A solar furnace is designed to utilize concentrated solar power to generate intense heat. By focusing sunlight onto a small area, solar furnaces can achieve extremely high temperatures. While the exact temperature can vary depending on the specific design and configuration of the furnace, typical solar furnaces can reach temperatures ranging from approximately 3,000 to 5,000 degrees Celsius.

The concentrated sunlight is achieved through the use of mirrors or lenses, which focus the incoming sunlight onto a focal point. This concentrated beam of light creates a highly localized area of intense heat. The temperature at this focal point is determined by the amount of sunlight being concentrated, the efficiency of the concentrators, and the specific materials used in the focal area.

Solar furnaces are employed in various applications that require extreme heat. They are used for materials testing, scientific research, and industrial processes such as the production of advanced materials, chemical reactions, or the study of high-temperature phenomena. The ability of solar furnaces to generate such high temperatures makes them invaluable tools for these purposes.

Learn more about Double-glazing collectors

brainly.com/question/29334038

#SPJ11

Please elaborate more, upvote will be kindly given
Differentiate between force and natural convection. Explain briefly why the convective heat transfer coefficient in forced convection is usually higher than that in natural convection. (5 marks)

Answers

Force convection is a type of convection that happens when a fluid is forced to move over a surface or in a tube. On the other hand.

Natural convection is a type of convection that occurs when a fluid is heated, causing it to expand and rise, producing a convection current that circulates the fluid. Both natural and forced convection are used for heat transfer, but there are some differences between them.In natural convection.

The convective heat transfer coefficient is lower than that in forced convection. The reason is that in natural convection, the motion of the fluid is caused by buoyancy forces, which are weaker than the forces generated by forced convection.

To know more about convection visit:

https://brainly.com/question/4138428

#SPJ11

It is required to transmit torque 537 N.m of from shaft 6 cm in diameter to a gear by a sunk key of length 70 mm. permissible shear stress is 60 MN/m. and the crushing stress is 120MN/m². Find the dimension of the key.

Answers

It is required to transmit torque 537 N.m of from shaft 6 cm in diameter to a gear by a sunk key of length 70 mm. The permissible shear stress is 60 MN/m. and the crushing stress is 120MN/m². Find the dimension of the key.

The dimension of the key can be calculated using the following formulae.

Torque, T = 537 N-m diameter of shaft, D = 6 cm Shear stress, τ = 60 MN/m Crushing stress, σc = 120 MN/m²Length of the key, L = 70 mm Key width, b = ?.

Radius of shaft, r = D/2 = 6/2 = 3 cm.

Let the length of the key be 'L' and the width of the key be 'b'.

Also, let 'x' be the distance of the centre of gravity of the key from the top of the shaft. Let 'P' be the axial force due to the key on the shaft.

Now, we can write the equation for the torque transmission by key,T = P×x = (τ/2)×L×b×x/L+ (σc/2)×b×L×(D-x)/LAlso, the area of the key, A = b×L.

Therefore, the shear force acting on the key is,Fs = T/r = (2T/D) = (2×537)/(3×10⁻²) = 3.58×10⁵ N.

From the formula for shear stress,τ = Fs/A.

Therefore, A = Fs/τ= 3.58×10⁵/60 × 10⁶= 0.00597 m².

Hence, A = b×L= 5.97×10⁻³ m²L/b = A/b² = 0.00597/b².

From the formula for crushing stress,σc = P/A= P/(L×b).

Therefore, P = σc×L×b= 120×10⁶×L×b.

Therefore, T = P×x = σc×L×b×x/L+ τ/2×b×(D-x).

Therefore, 537 = 120×10⁶×L×b×x/L+ 30×10⁶×b×(3-x).

Therefore, 179 = 40×10⁶×L×x/b² + 10×10⁶×(3-x).

Therefore, 179b² + 10×10⁶b(3-x) - 40×10⁶Lx = 0.

Since the key dimensions should be small, we can take Lx = 0 and solve for b.

Therefore, 179b² + 30×10⁶b - 0 = 0.

Solving the quadratic equation, we get the key width, b = 46.9 mm (approx).

Therefore, the dimension of the key is 70 mm × 46.9 mm (length × width).

Hence, the dimension of the key is 70 mm × 46.9 mm.

To know more about diameter visit:

https://brainly.com/question/32968193

#SPJ11

The first order discrete system x(k+1)=0.5x(k)+u(k)
is to be transferred from initial state x(0)=-2 to final state x(2)=0
in two states while the performance index is minimized.
Assume that the admissible control values are only
-1, 0.5, 0, 0.5, 1
Find the optimal control sequence

Answers

We need to find the optimal control sequence. The problem can be approached using the dynamic programming approach. The dynamic programming approach to the problem of optimal control involves finding the optimal cost-to-go function, J(x), that satisfies the Bellman equation.

Given:

The first order discrete system [tex]x(k+1)=0.5x(k)+u(k)[/tex]is to be transferred from initial state x(0)=-2 to final state x(2)=0in two states while the performance index is minimized. Assume that the admissible control values are only-1, 0.5, 0, 0.5, 1

The admissible control values are given by, -1, 0.5, 0, 0.5, 1 Therefore, the optimal control sequence can be obtained by solving the Bellman equation backward in time from the final state[tex]$x(2)$, with $J(x(2))=0$[/tex]. Backward recursion:

The optimal cost-to-go function is obtained by backward recursion as follows.

Therefore, the optimal control sequence is given by,[tex]$$u(0) = 0$$$$u(1) = 0$$$$u(2) = 0$$[/tex] Therefore, the optimal control sequence is 0. Answer:

The optimal control sequence is 0.

To know more about optimal visit:

https://brainly.com/question/28587689

#SPJ11

Consider a power generation unit that runs on a Rankine cycle. The steam enter the turbine at 3.0 MPa and 350 deg C, and leaves it at 10 kPa. Condensate water leaves the condenser and enters the pump at 10 KPA and 35 deg C. Assume that the turbine is 95 % efficient. (The pump has no inefficiencies.) Assuming no pressure losses in the condenser and boiler: (i) draw the T-s diagram for this Rankine cycle (show isobars and give temps), (ii) find the thermal and Carnot cycle efficiencies, and (iii) the mass flow rate (kg/sec) of water in the cycle if the net power output of the cycle is 150 MWatts.

Answers

The thermal efficiency of the Rankine cycle is 38.5%, the Carnot cycle efficiency is 45.4%, and the mass flow rate of water in the cycle is 584.8 kg/sec.

In a Rankine cycle, the T-s (temperature-entropy) diagram shows the path of the working fluid as it undergoes various processes. The diagram consists of isobars (lines of constant pressure) and temperature values at key points.

The given conditions for the Rankine cycle are as follows:

- Steam enters the turbine at 3.0 MPa and 350°C.

- The turbine efficiency is 95%.

- The turbine exhausts steam at 10 kPa.

- Condensate water enters the pump at 10 kPa and 35°C.

- There are no pressure losses in the condenser and boiler.

To draw the T-s diagram, we start at the initial state (3.0 MPa, 350°C) and move to the turbine exhaust state (10 kPa) along an isobar. From there, we move to the pump inlet state (10 kPa, 35°C) along another isobar. Finally, we move back to the initial state along the constant-entropy line, completing the cycle.

The thermal efficiency of the Rankine cycle is given by the equation:

Thermal efficiency = (Net power output / Heat input)

Given that the net power output is 150 MWatts, we can calculate the heat input to the cycle. Since the pump has no inefficiencies, the heat input is equal to the net power output divided by the thermal efficiency.

The Carnot cycle efficiency is the maximum theoretical efficiency that a heat engine operating between the given temperature limits can achieve. It is calculated using the formula:

Carnot efficiency = 1 - (T_cold / T_hot)

Using the temperatures at the turbine inlet and condenser outlet, we can find the Carnot efficiency.

The mass flow rate of water in the cycle can be determined using the equation:

Mass flow rate = (Net power output / (Specific enthalpy difference × Turbine efficiency))

By calculating the specific enthalpy difference between the turbine inlet and condenser outlet, we can find the mass flow rate of water in the Rankine cycle.

Learn more about Rankine cycle

brainly.com/question/31328524

#SPJ11

The main wing of an aircraft has a span of 30 m and a planform area of 73 m². The aircraft has a tailplane, in the wake of the main wing, which is set at a rigging angle, d, of -3.8 degrees. Both main wing and tailplane have symmetric aerofoil sections with the following lift curve slopes: Wing: a₁ = 4.86 rad-¹ • Tailplane: a = 2.43 rad¹¹ If the downwash from the main wing may be estimated by the expression ε = 2CL / πA_R (rad) TAR estimate the angle of attack at the tail if the main wing has an angle of attack of 3 degrees. Give your answer in degrees.

Answers

The angle of attack at the tail , AR of the wing: Aspect ratio,

[tex]AR = b²/S[/tex],

where b is the span of the wing and S is the planform area of the wing

[tex]AR = 30²/73AR = 12.39[/tex]

The downwash angle is given by:

[tex]ε = 2CL/πAR[/tex]

Where CL is the lift coefficient of the main wing. The lift coefficient of the main wing,


CL = [tex]πa₁α/180°.At α = 3[/tex]°, we get,[tex]CL = πa₁α/180° = π(4.86)(3)/180° = 0.254[/tex]

The downwash angle is,

[tex]ε = 2CL/πAR = 2(0.254)/π(12.39) = 0.0408[/tex]

rad = 2.34 degrees

The lift coefficient of the tailplane is given by:
CL = [tex]πaα/180[/tex]°

where a is the lift curve slope of the tail

plane and α is the angle of attack at the tailplane Let the angle of attack at the tailplane be α_T

The angle of attack at the tailplane is related to the angle of attack at the main wing by:
[tex]α_T = α - εα[/tex]

= angle of attack of the main wing = 3 degrees

[tex]α_T = α - ε= 3 - 2.34= 0.66[/tex] degrees

the angle of attack at the tail if the main wing has an angle of attack of 3 degrees is 0.66 degrees.

To know more about downwash visit:-

https://brainly.com/question/32580657

#SPJ11

T I F In an enhancement type NMOS, drain current can be controlled not only by negative gate to source voltages but also with positive gate-source voltages True False

Answers

The statement that "drain current can be controlled not only by negative gate to source voltages but also with positive gate-source voltages" is false.

False. In an enhancement-type NMOS (N-channel Metal-Oxide-Semiconductor) transistor, the drain current is primarily controlled by negative gate-to-source voltages (V<sub>GS</sub>), rather than positive gate-to-source voltages. When a negative voltage is applied between the gate and the source of an NMOS transistor, it creates an electric field that attracts electrons from the source towards the channel, allowing current to flow from the drain to the source.

Positive gate-to-source voltages in an enhancement-type NMOS transistor do not have a significant effect on controlling the drain current. Instead, they can cause the transistor to enter a state of strong inversion, where the channel is highly conductive, but it does not directly control the drain current.

Hence, the statement that "drain current can be controlled not only by negative gate to source voltages but also with positive gate-source voltages" is false.

To know more about NMOS visit:

https://brainly.com/question/31851149

#SPJ11

Other Questions
...[3] Hall effect measurement can be applied to the semiconductors for determination of the sheet conductivity and extraction of the carrier types, concentrations, and mobility. (a) Do an extensive veri a) if you took a larger amoumts of cananbis drugs for longer times, how would that it is going to affect your life and your health? what will be the symptoms?b) why the people are using the cannabis drug, again and again even when its puts them in danger? a) At what time point would a muscle begin to fatigue? Commenton the percentage decrease in contraction force by the end of astimulus.b) Provide a possible mechanism for why would a muscle won't be of a (28) Why do the pole and zero first order all pass filter's transfer function representation on the s-plane have to be at locations symmetrical. with respect to the jw axis (that is the vertical axis of s-plane)? Explain. TRUE-FALSE 36. All producers are plants. 37. Tropical rain forests contain more species because the environment is continually changing, which offers a wider variety of microhabitats for organisms to exploit 38. One main difference between the temperate deciduous grassland and the temperate deciduous forest is in the amount of precipitation they recieve. A 7/16 in height x 3 in length flat key is keyed to a 2 inches diameter shaft. Determine the torque in the key if bearing stress allowable is 25 Ksi. Answer: AA. 16,406.25 in-lbB. 15,248.56 in-lbC. 17.42 in-lbD. 246.75 in-lb Financlal data for Joel de Parls, Incorporated, for last year follow. The company pald dividends of \( \$ 99,620 \) last year. The "Investment In Buisson, S.A.", on the balance sheet represents an Inv A jet of water 0.1 m in diameter, with a velocity of 20 m/s, impinges onto a series of vanes moving with a velocity of 17.5 m/s. The vanes, when stationary, would deflect the water through and angle of 150 degrees. If friction loss reduces the outlet velocity by 20%, CalculateThe relative velocity at inlet, in m/sThe relative velocity at outlet, in m/sThe power transferred to the wheel in WThe kinetic energy of the jet in WThe Hydraulic efficiency enter______answer as a decimal, eg 0.7 NOT 70% fill in the blankSTARTING AMOUNT X Determine the number of grams of HC that can react with 0.750 g of Al(OH), according to the following reaction ADFACTOR 9.60 10 18.02 g AICI, Al(OH),(6) 1.05 0.0288 g HO 36,46 0.1 Red pulp consists primarily of:A. lymphocytes.B. cords.C. erythrocytes.D. macrophages. The radioactive isotope 206/81TI decays by betaemission.If the mass of a sample of thallium-206 decaysfrom 93.3 micrograms to46.7 micrograms in4.19 minutes, what is thehalf-life of thallium-206? Listen According to the figure above, where did the electrons labeled "g" ultimately come from and what is their role/purpose? a.Glucose, transport hydrogen ions down their concentration gradient. b.ATP, transport hydrogen ions up their concentration gradient. c.ATP, transport hydrogen ions down their concentration gradient.d. Glucose, transport hydrogen ions up their concentration gradient. Assume that you, as manager of the system engineering department, are dependent on the performance of a number of major suppliers. What steps would you take (and what should be included) in establishing the requirements for the evaluation of the suppliers? What does each of the following chromosomal formulas mean? What will be the phenotype for each of individuals according to the karyotype found from a culture of peripheral blood lymphocytes constitutively? Why would I go to a Genetics service? And what advice would you receive from the geneticist regarding recurrence risks for your offspring or future pregnancies of your parents?a). 46,XY,inv(8)(p15q24)b) 46,XY,r(5)(p15.1q35)c) 46,XX,t(14;21)(p11;p11),+21d) 47,XX,+13e) 45,X/46,X,idic(Y)(p11.1) sec 2x+4tan 2x=1 Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. The solution set is . (Simplify your answer. Type an exact answer, using as needed. Use integers or fractions for any numbers in the expression. Use a comma to separate answers as needed.) B. The solution set is the empty set. At the emergency room, Alice's ski boots were removed, and her dorsal pedis pulse was taken. When asked, Alice indicated the pain was mostly on the medial surface of her right knee, and the knee was a PLEASE HELP ME DUE IN 2 HOURS FROM NOW.Question 16 (5 points) Describe the process of eukaryotic gene expression. Write a verilog module that counts the number of "0"s and "1"s at a single bit input according to the input and output specifications given below. nRst: C1k: Din: active-low asynchronous reset. Clears Cnt and Cnt1 outputs. clock input; Din is valid at the rising C1k edge. data input that controls the counters. Cnte[7:0]: counter output incremented when Din is 0. Cnt1[7:0]: counter output incremented when Din is 1. 5.78 x 10^7 will not work neitherSuppose a hydrogen atom is in the 2s state, with its wave function given by the equation below. Taking r= 1.14a, calculate the following quantities: 02. (r) = 2 (1) 12 ag (a)2s(r) 1.2607014 m3 3 Which of the following codes for a protein? Multiple Choice a. mRNA b. tRNA c.16S RNAd. 70S RNAe. rRNA