Answer:
The area is changing at 15.75 square feet per second.
Step-by-step explanation:
The triangle between the wall, the ground, and the ladder has the following dimensions:
H: is the length of the ladder (hypotenuse) = 10 ft
B: is the distance between the wall and the ladder (base) = 6 ft
L: the length of the wall (height of the triangle) =?
dB/dt = is the variation of the base of the triangle = 9 ft/s
First, we need to find the other side of the triangle:
[tex]H^{2} = B^{2} + L^{2}[/tex]
[tex] L = \sqrt{H^{2} - B^{2}} = \sqrt{(10)^{2} - B^{2}} = \sqrt{100 - B^{2}} [/tex]
Now, the area (A) of the triangle is:
[tex] A = \frac{BL}{2} [/tex]
Hence, the rate of change of the area is given by:
[tex] \frac{dA}{dt} = \frac{1}{2}[L*\frac{dB}{dt} + B\frac{dL}{dt}] [/tex]
[tex] \frac{dA}{dt} = \frac{1}{2}[\sqrt{100 - B^{2}}*\frac{dB}{dt} + B\frac{d(\sqrt{100 - B^{2}})}{dt}] [/tex]
[tex]\frac{dA}{dt} = \frac{1}{2}[\sqrt{100 - B^{2}}*\frac{dB}{dt} - \frac{B^{2}}{(\sqrt{100 - B^{2}})}*\frac{dB}{dt}][/tex]
[tex]\frac{dA}{dt} = \frac{1}{2}[\sqrt{100 - 6^{2}}*9 - \frac{6^{2}}{\sqrt{100 - 6^{2}}}*9][/tex]
[tex]\frac{dA}{dt} = 15.75 ft^{2}/s[/tex]
Therefore, the area is changing at 15.75 square feet per second.
I hope it helps you!
The rate of change (ROC) of the area with respect to (w.r.t.) time can be
found from the ROC of the area w.r.t. x and the ROC of x w.r.t. time.
At the time the ladder is 6 feet from the wall, the area is increasing at 15.75 ft.²/sec.Reasons:
The length pf the ladder = 10 feet
Rate at which the ladder is pulled from the wall, [tex]\displaystyle \frac{dx}{dt}[/tex] = 9 feet per second
Required:
The rate at which the area of the triangle formed by the ladder, the wall
and the ground, is changing at the instant the ladder is 6 feet from the wall.
Solution:
The area the triangle, A = 0.5·x·y
Where;
x = The distance of the ladder from the wall
y = The height of the ladder on the wall
By Pythagoras's theorem, we have;
10² = x² + y²
Which gives;
y = √(10² - x²)
Therefore;
The area the triangle, A = 0.5 × x × √(10² - x²)
By chain rule, we have;
[tex]\displaystyle \frac{dA}{dt} = \mathbf{\frac{dA}{dx} \times \frac{dx}{dt}}[/tex]
[tex]\displaystyle \frac{dA}{dx} = \frac{d\left(0.5 \cdot x \cdot \sqrt{10^2 - x^2} }{dx} = \mathbf{\frac{\left(x^2 - 50\right) \cdot \sqrt{100-x^2} }{x^2-100}}[/tex]
[tex]\displaystyle \frac{dA}{dx} = \frac{\left(x^2 - 50\right) \cdot \sqrt{100-x^2} }{x^2-100}[/tex]
Therefore;
[tex]\displaystyle \frac{dA}{dt} = \mathbf{\frac{\left(x^2 - 50\right) \cdot \sqrt{100-x^2} }{x^2-100} \times 9}[/tex]
When the ladder is 6 feet from the wall, we have;
x = 6
[tex]\displaystyle \frac{dA}{dt} = \frac{\left(6^2 - 50\right) \cdot \sqrt{100-6^2} }{6^2-100} \times 9 = \mathbf{15.75}[/tex]
At the time the ladder is 6 feet from the wall, the area is increasing at 15.75 ft.²/sec.
Learn more about chain rule of differentiation here:
https://brainly.com/question/20341047
a² + b² = c²
a = x
b = x
c = 9√2
please help me find the value of x, asap!
Answer:
x = 9
Step-by-step explanation:
According to Pythagoras theorem a² + b² = c²
Given that
a = x
b = x
c = 9√2
Substitute'
x² + x² = (9√2)²
2x² = 81 * 2
x² = 81
x = √81
x = 9
Hence the value of x is 9
In the figure below,
Answer:
m<GLK = 58°
Step-by-step explanation:
Given:
m<GLH = 2x + 6
m<HLJ = x
Required:
m<GLK
Solution:
First, find the value of x
m<GLH + m<HLJ = 180° => Linear Pair Theorem
Substitute
2x + 6 + x = 180
Add like terms
3x + 6 = 180
3x + 6 - 6 = 180 - 6
3x = 174
3x/3 = 174/3
x = 58
m<HLJ = x = 58°
Thus, m<HLJ and m<GLK are Vertical angles.
Therefore:
m<GLK = m<HLJ (Vertical angles theorem)
m<GLK = 58° (Substitution)
find the axis symmetry and vertex. f(x)=-1/2x2-x find the domain and range.
Answer:
the easiest way to get these numbers is to graph the function, i use desmos.
Step-by-step explanation:
the axis of symmetry is -1
the vertex is -1, 0.5
the domain is all real numbers
the range is all real numbers that are <= 0.5
please solve f(x)=2x+3
Answer:
-3÷2
Step-by-step explanation:
if you have solving for x
1st step: will be to set up the function =0
so 2x+3=0
then 2x=-3
so x= -3/2
The square pool was turned into a rectangular one and it's area was enlarged by a factor of 5 by enlarging one side of the pool by 3 meters and the other side by 14. What are the new dimensions of the pool?
[tex] \boxed{ \tt{the \: dimensions \: are : }}\\ \boxed{ \tt{b = 9 \: meters} }\\ \boxed{ \tt{l = 20 \: meters}}[/tex]
[tex]5 {s}^{2} = (3 + s) \times (14 + s) \\ 5 {s}^{2} = {s}^{2} + 17s + 42 \\ {4s}^{2} - 17s - 42 = 0 \\ s = \frac{ - ( - 17) + \sqrt{ {( - 17)}^{2} - 4(4)(42)} }{2(4)} \\ s = \frac{17 + 31}{8} \\ s = 6 \\ hence \to \:the \: dimensions \: are : \\ b = s + 3 = 6 + 3 = 9 \: meters \\ l = s + 14 = 6 + 14 = 20 \: meters[/tex]
The new dimensions of the pool are; Width = 9 and Length = 20.
What is rectangular figure?A rectangular prism is a three-dimensional shape that has two at the top and bottom and four are lateral faces.
It is given that the square pool was turned into a rectangular one and it's area was enlarged by a factor of 5 by enlarging one side of the pool by 3 meters and the other side by 14.
[tex]5s^2 = (3+s)(14 +s)\\\\5s^2 =s^2+ 17s + 42\\\\4s^2 - 17s - 42 = 0\\\\[/tex]
The root of the expression;
[tex]s = \dfrac{-(-17) + \sqrt{-17^2 - 4(4)(42)} }{2(4)} \\\\s = 6[/tex]
The dimensions are;
Width = 3 + s = 9
Length = 14 + s = 20
Learn more about the rectangle here;
https://brainly.com/question/15019502
#SPJ2
a stack of 150 pieces of paper is 2.5 cm thick how many pieces of paper are in a pile 6.5 CM thick
Find the scale factor of the height:
6.5cm / 2.5cm = 2.6
Multiply the known pages by the scale factor:
150 x 2.6 = 390 pieces of paper.
If you graphed the equation, y = -6, what kind of line would you create?
Someone help me please
Answer:
1440°
Step-by-step explanation:
the formula used for this is (n-2)×180° where n=# of sides in the polygon
Can someone help with this?!
Answer:
-12r + 8s
Explanation:
Since there is a subtraction sign in front of 16r, to combine it with 4r, it must be subtracted, resulting in -12 r (to subtract a greater number from a smaller number, subtract the smaller number from the greater number and make it negative). Since there is an addition sign in front of 3s, to combine it with 5s, the two must be added. 5s + 3s = 8s. When combined, the result is -12r + 8s.
The sum of two numbers is 80.6. One of
the numbers is 9 times the other. What
are the two numbers?
One number is 7more than twice the other number. If the sum of the two numbers is 25, find the two numbers.
Answer:
6 and 19
Step-by-step explanation:
x+2x+7=25
3x=18
x=6
the other number is 19
write 5^2 ÷ √5 as a single power of 5
The value of the given expression is 5^(3/4).
What is an Expression?In mathematics, an expression is defined as a set of numbers, variables, and mathematical operations formed according to rules dependent on the context.
The given expression can be resolved as shown below,
5² ÷ √5
[tex]= \dfrac{5^2}{\sqrt5}\\\\\\[/tex]
Using the law of exponents, [tex]\sqrt[n]{m} = m^{\frac1n}[/tex],
[tex]= \dfrac{5^2}{5^{\frac12}}\\\\\\[/tex]
Using the law of exponents, [tex]m^x\times m^y = m^{x+y}[/tex],
[tex]= {5^2} \times {5^{-\frac12}}[/tex]
Solving the powers,
[tex]= {5^{2-\frac12}}\\\\= 5^{\frac34}[/tex]
Hence, the value of the given expression is 5^(3/4).
Learn more about Expression here:
https://brainly.com/question/13947055
#SPJ5
Need help :C
A bakery in Hong Kong regularly orders carton of cranberries from Australia. The net weight (in ounces) of
cranberries of a random sample of 20 cartons were as follow:
160 170 170 190 210 240 240 240 270 280
290 290 300 420 500 520 530 610 630 650
(c) The bakery orders the cranberries from Australia with currency exchange rate of AUD 1 to HKD 5.8.
For each ounce of Australia cranberries costs AUD 2 and the fixed shipping fee of each carton is HKD
80. Find the mean, standard deviation, range, and third quartile of the payment (in HKD) of ordering a
carton of cranberries from Australia to Hong Kong.
Answer:
i) Mean = 1933.1817
ii) Range = 5684
iii) Third quartile = 6054
Step-by-step explanation:
Given data :
currency exchange rate : 1 AUD = 5.8 HKD
cost of each ounce = 2 AUD
Fixed shipping cost for each carton = 80 HKD
number of cartons = 20
next determine the total cost of the 20 cartons in HKD
= ∑(weight in ounce * cost of each ounce *exchange rate) +fixed shipping cost
= ∑ ( 160*2*5.8 + 80 ) + -------------- + (650 *2*5.8 + 80 ) ----------------- ( 1 )
= 81756 HKD
i) find the mean value ( X )
= Total cost / number of cartons
= 81756 / 20 = 4087.8
ii) Find the standard deviation
= [tex]\sqrt{\frac{(1936-4087.8)^2+-----+(7620-4087.8)^2}{20-1} }[/tex] note: std = √∑(xi-X )^2 / (n-1)
= 1933.1817
iii) Find the range
Range = highest cost - lowest cost ( values gotten from equation 1 )
= 7650 - 1936
= 5684
iv) Determine the third quartile
third quartile = 6054
attached below is the detailed solution
If cotton candy sells for $4 per bag and the booth is
open for 12 hours, how many bags does the owner
have to sell to break even?
Answer:
Here ya go ! :)
Step-by-step explanation:
Prove that: cotθ - tanθ = 2cos²θ - 1/sinθcosθ
Need help, fast!
See attachment to get your answer. Thanks.
Help me with number
4,5,6,7
Answer
number
4.D
5.B
6.C
7.BHopes this helpFind the measure of 46.
t
56°/1249
46
te
s6 = [?]
Answer:
56°
Step-by-step explanation:
1st reason= alternate angles.
2nd reason= 124 and angle 6 is co-interior angles which means that little are shoudk adds up to 180.
180-124=56
Using the formula for the difference of squares, calculate: (100 - 3)
(100 + 3).
Answer:
97
Step-by-step explanation:
Answer:
Step-by-step explanation:
Explanations are below
Step 1
(100-3) Observe the equation
Step 2
(100-3) Simplify
100-(+3)
100-3
Answer: 97
Which three lengths CANNOT be the lengths of the sides of a triangle? *
5 points
23m, 17m, 14m
O 11m, 11m, 12m
05m. 7m, 8m
Answer:
0.5m 7m 8m cannot be the lengths of the sides of a triangle.
On a standardized exam, the scores are normally distributed with a mean of 135 and a
standard deviation of 20. Find the Z-score of a person who scored 115 on the exam.
Answer:
-1
Step-by-step explanation:
mean, mu = 135.
Standard deviation = 20
X = 115
use the z score formula : [tex]z = \frac{x-mu}{standard deviation}[/tex]
to get (115-135)/20 = -1
At a baseball game, 87% of people attending were supporting the home team, while
13% were supporting the visiting team. If the total number of people attending the
game was 4400, how many people attending were supporters of the home team?
Answer:
3828 people
Step-by-step explanation:
find the average
sample 1
70
60
50
42.5
41
Answer:
52.7
Step-by-step explanation:
average=add up the number divide by the number of numbers
70+60+50+42.5+41=263.5
263.5/5=52.7
9 ft. 15 ft The volume of the figure is cubic feet. 15 ft. 15 ft
Answer:
4,050 cubic feet
Step-by-step explanation:
The figure is made up of a square pyramid and cube
Therefore:
Volume of the figure = volume of the square pyramid + volume of the cube
✔️Volume of the square pyramid = ⅓*a²h
a = 15 ft
h = 9 ft
Volume of square pyramid = ⅓*15²*9 = 675 ft³
✔️Volume of the cube = s³
s = 15 ft
Volume of the cube = 15³ = 3,375 ft³
✔️Volume of the figure = 675 + 3,375 = 4,050 cubic feet
Let U = {1, 2, 3, 4, 5, 6, 7, 8}, A = B = and C = {1, 3, 7}. Find the following. (Enter your answers as a comma-separated list.) A ∪ B
Answer: C = {1, 3, 7}
Step-by-step explanation:
Evaluate and simplify the expression when r=2 and s=3
Answer:13
Step-by-step explanation:plug in the the numbers
Answer:20
Step-by-step explanation:
I’m smart
5 + 2x = 13
Solve for x
Brain plants trees. He uses 3 parts fertilizer to plant 5 parts to soil to fill the hole around each tree.If Brain uses a total of 80 gallons of fertilizer and soil how much of the 80 gallons is fertilizer?
Answer:
Step-by-step explanation:jj
Can someone help me? I’ll reward points + brainalist
Answer:
Option A is your answer ☺️☺️☺️
If you need to construct a dog run for your dog and the total perimeter needs to be 40 feet, and you only have enough room to make it 5 feet wide, how long can you make the dog run?
PLZZZZ ASAPPPP
Answer:
15 feet
Step-by-step explanation:
if the dog run is a rectangles then the formula for the perimeter is 2h+2l
if we plug in the numbers we know we get this:
2h+2(5)=40
2h+10=40
2h=30
h=15
Manny bought 5 pounds of dog food for $8.00. At this rate, how much would 15
pounds cost? *
Answer:
24 dollars
Step-by-step explanation:
each pound is $1.60 and 15 times $1.60 equals 24
Answer:
$24
Step-by-step explanation:
5/8=15/x
cross product
8*15=5*x
120=5x
x=120/5
x=24