A 0.6 kg metal sphere oscillates at the end of a vertical spring. As the spring stretches from 0.12 m to 0.23 m (relative to its unstrained length), the speed of the sphere decreases from 5.7(m/s) to 4.8 m/s. What is the spring constant of the spring?
Hint: Find expressions for the spring’s elastic potential energy and kinetic energy at both locations, and then use conservation of energy.
A) 174.6 (N/M)
B) 149.2 (N/m)
C) 128.9 (N/m)
D) 166.9 (N/m)

Answers

Answer 1

The spring constant of the spring is 128.9 N/m.

Calculation:

Determine the change in elastic potential energy:

ΔPE = PE_final - PE_initial

PE_final = 0.5 * k * x_final^2 (where k is the spring constant and x_final is the final displacement of the spring)

PE_initial = 0.5 * k * x_initial^2 (where x_initial is the initial displacement of the spring)ΔPE = 0.5 * k * (x_final^2 - x_initial^2)

Determine the change in kinetic energy:

ΔKE = KE_final - KE_initial

KE_final = 0.5 * m * v_final^2 (where m is the mass of the sphere and v_final is the final velocity of the sphere)

KE_initial = 0.5 * m * v_initial^2 (where v_initial is the initial velocity of the sphere)ΔKE = 0.5 * m * (v_final^2 - v_initial^2)

Apply conservation of energy:

ΔPE = -ΔKE0.5 * k * (x_final^2 - x_initial^2) = -0.5 * m * (v_final^2 - v_initial^2)

Substitute the given values and solve for k:

k * (x_final^2 - x_initial^2) = -m * (v_final^2 - v_initial^2)k = -m * (v_final^2 - v_initial^2) / (x_final^2 - x_initial^2)

Given values:

m = 0.6 kg

v_final = 4.8 m/s

v_initial = 5.7 m/s

x_final = 0.23 m

x_initial = 0.12 mk = -0.6 * (4.8^2 - 5.7^2) / (0.23^2 - 0.12^2)

= -0.6 * (-3.45) / (0.0689 - 0.0144)

≈ 128.9 N/m

Therefore, the spring constant of the spring is approximately 128.9 N/m (Option C).

To know more about spring constant click here.

brainly.com/question/14159361

#SPJ11


Related Questions

200 kV photons in an incident beam will be attenuated by 1.5 mm of lead barrier. If there are 250,000 photons in the said beam.... How much photons will be left after it passes through the lead barrier. Show all solutions (5 points)

Answers

Approximately 245,163 photons will remain after the 200 kV photon beam passes through a 1.5 mm lead barrier. The calculation is based on the exponential decay of radiation intensity using the linear attenuation coefficient of lead at 200 keV.

To calculate the number of photons that will be left after passing through a lead barrier, we need to use the concept of the exponential decay of radiation intensity.

The equation for the attenuation of radiation intensity is given by:

[tex]I = I_0 \cdot e^{-\mu x}[/tex]

Where:

I is the final intensity after attenuation

I₀ is the initial intensity before attenuation

μ is the linear attenuation coefficient of the material (in units of 1/length)

x is the thickness of the material

In this case, we are given:

Initial intensity (I₀) = 250,000 photons

Lead thickness (x) = 1.5 mm = 0.0015 m

Photon energy = 200 kV = 200,000 eV

First, we need to convert the photon energy to the linear attenuation coefficient using the mass attenuation coefficient (μ/ρ) of lead at 200 keV.

Let's assume that the mass attenuation coefficient of lead at 200 keV is μ/ρ = 0.11 cm²/g. Since the density of lead (ρ) is approximately 11.34 g/cm³, we can calculate the linear attenuation coefficient (μ) as follows:

μ = (μ/ρ) * ρ

  = (0.11 cm²/g) * (11.34 g/cm³)

  = 1.2474 cm⁻¹

Now, let's calculate the final intensity (I) using the equation for attenuation:

[tex]I = I_0 \cdot e^{-\mu x}\\ \\= 250,000 \cdot e^{-1.2474 \, \text{cm}^{-1} \cdot 0.0015 \, \text{m}}[/tex]

  ≈ 245,163 photons

Therefore, approximately 245,163 photons will be left after the beam passes through the 1.5 mm lead barrier.

Note: The calculation assumes that the attenuation follows an exponential decay model and uses approximate values for the linear attenuation coefficient and lead density at 200 keV. Actual values may vary depending on the specific characteristics of the lead material and the incident radiation.

To know more about the exponential decay refer here,

https://brainly.com/question/17172619#

#SPJ11

A standing wave is set up on a string of length L, fixed at both ends. If 5-loops are observed when the wavelength is 1 = 1.5 m, then the length of the string is:

Answers

A standing wave is set up on a string of length L, fixed at both ends. If 5-loops are observed when the wavelength is 1 = 1.5 m, then the length of the string is 3.75 meters.

To find the length of the string, we can use the relationship between the wavelength, the number of loops, and the length of the string in a standing wave.

The general formula is given by:

wavelength = 2L / n

Where:

   wavelength is the distance between two consecutive loops or the length of one loop,

   L is the length of the string, and

   n is the number of loops observed.

In this case, the given wavelength is 1.5 m and the number of loops observed is 5. Let's substitute these values into the formula:

1.5 = 2L / 5

To solve for L, we can cross-multiply:

1.5 × 5 = 2L

7.5 = 2L

Dividing both sides of the equation by 2:

L = 7.5 / 2

L = 3.75

Therefore, the length of the string is 3.75 meters.

To learn more about wavelength visit: https://brainly.com/question/10750459

#SPJ11

3. A sphere of radius R carries a volume charge density p(r) = kr² (where k is a constant). Find the energy of the configuration.

Answers

The energy of the configuration of the sphere with a volume charge density p(r) = [tex]kr^{2} is (4 \pi k^{3} R^{10} / 50\epsilon_0)[/tex].

To find the energy of the configuration of a sphere with a volume charge density given by p(r) =[tex]kr^{2}[/tex], where k is a constant, we can use the energy equation for a system of charges:

U = (1/2) ∫ V ρ(r) φ(r) dV

In this case, since the charge density is given as p(r) =[tex]kr^{2}[/tex], we can express the total charge Q contained within the sphere as:

Q = ∫ V ρ(r) dV

= ∫ V k [tex]r^{2}[/tex] dV

Since the charge density is proportional to [tex]r^{2}[/tex], we can conclude that the charge within each infinitesimally thin shell of radius r and thickness dr is given by:

dq = k [tex]r^{2}[/tex] dV

=[tex]k r^{2} (4\pi r^{2} dr)[/tex]

Integrating the charge from 0 to R (the radius of the sphere), we can find the total charge Q:

Q = ∫ 0 to R k[tex]r^2[/tex] (4π[tex]r^2[/tex] dr)

= 4πk ∫ 0 to R[tex]r^4[/tex] dr

= 4πk [([tex]r^5[/tex])/5] evaluated from 0 to R

= (4πk/5) [tex]R^5[/tex]

Now that we have the total charge, we can find the electric potential φ(r) at a point r on the sphere. The electric potential due to a charged sphere at a point outside the sphere is given by:

φ(r) = (kQ / (4πε₀)) * (1 / r)

Where ε₀ is the permittivity of free space.

Substituting the value of Q, we have:

φ(r) = (k(4πk/5) [tex]R^5[/tex] / (4πε₀)) * (1 / r)

= ([tex]k^{2}[/tex] / 5ε₀)[tex]R^5[/tex] * (1 / r)

Now, we can substitute ρ(r) and φ(r) into the energy equation:

U = (1/2) ∫ [tex]V k r^{2} (k^{2} / 5\epsilon_0) R^5[/tex]* (1 / r) dV

=[tex](k^{3} R^5 / 10\epsilon_0)[/tex]∫ V [tex]r^{2}[/tex] dV

=[tex](k^{3} R^5 / 10\epsilon_0)[/tex] ∫ V[tex]r^{2}[/tex] (4π[tex]r^{2}[/tex] dr)

Integrating over the volume of the sphere, we get:

U = [tex](k^{3} R^5 / 10\epsilon_0)[/tex] * 4π ∫ 0 to R [tex]r^4[/tex]dr

= [tex](k^{3} R^5 / 10\epsilon_0)[/tex] * [tex]4\pi [(r^5)/5][/tex]evaluated from 0 to R

=[tex](k^{3} R^5 / 10\epsilon_0)[/tex]* 4π * [([tex]R^5[/tex])/5]

=[tex](4 \pi k^{3} R^{10} / 50\epsilon_0)[/tex]

To know more about energy equation, here

brainly.com/question/29007160

#SPJ4

Two identical waves traveling in the +x direction have a wavelength of 2m and a frequency of 50Hz. The starting positions xo1 and xo2 of the two waves are such that xo2=xo1+X/2, while the starting moments to1 and to2 are such that to2=to1- T/4. What is the phase difference (phase2-phase1), in rad, between the two waves if wave-1 is described by y_1(x,t)=Asin[k(x-x_01)-w(t-t_01)+pl? 0 11/2 3m/2 None of the listed options

Answers

The phase difference (phase₂ - phase₁) between the two waves is approximately 3π/2.

To find the phase difference between the two waves, we need to compare the phase terms in their respective wave equations.

For wave-1, the phase term is given by:

ϕ₁ = k(x - x₀₁) - ω(t - t₀₁)

For wave-2, the phase term is given by:

ϕ₂ = k(x - x₀₂) - ω(t - t₀₂)

Substituting the given values:

x₀₂ = x₀₁ + λ/2

t₀₂ = t₀₁ - T/4

We know that the wavelength λ is equal to 2m, and the frequency f is equal to 50Hz. Therefore, the wave number k can be calculated as:

k = 2π/λ = 2π/2 = π

Similarly, the angular frequency ω can be calculated as:

ω = 2πf = 2π(50) = 100π

Substituting these values into the phase equations, we get:

ϕ₁ = π(x - x₀₁) - 100π(t - t₀₁)

ϕ₂ = π(x - (x₀₁ + λ/2)) - 100π(t - (t₀₁ - T/4))

Simplifying ϕ₂, we have:

ϕ₂ = π(x - x₀₁ - λ/2) - 100π(t - t₀₁ + T/4)

Now we can calculate the phase difference (ϕ₂ - ϕ₁):

(ϕ₂ - ϕ₁) = [π(x - x₀₁ - λ/2) - 100π(t - t₀₁ + T/4)] - [π(x - x₀₁) - 100π(t - t₀₁)]

          = π(λ/2 - T/4)

Substituting the values of λ = 2m and T = 1/f = 1/50Hz = 0.02s, we can calculate the phase difference:

(ϕ₂ - ϕ₁) = π(2/2 - 0.02/4) = π(1 - 0.005) = π(0.995) ≈ 3π/2

Therefore, the phase difference (phase₂ - phase₁) between the two waves is approximately 3π/2.

Know more about wave equations:

https://brainly.com/question/4692600

#SPJ4

10. [0/8.33 Points] DETAILS PREVIOUS ANSWERS OSUNIPHYS1 13.4.WA.031. TUTORIAL. Two planets P, and P, orbit around a star Sin crcular orbits with speeds v.46.2 km/s, and V2 = 59.2 km/s respectively (6) If the period of the first planet P, 7.60 years, what is the mass of the star it orbits around? x kg 5 585010 (b) Determine the orbital period of Py: yr

Answers

(a) The mass of the star that P1 orbits is 5.85 x 10^30 kg.

(b) The orbital period of P2 is 9.67 years.

The mass of a star can be calculated using the following formula:

M = (v^3 * T^2) / (4 * pi^2 * r^3)

here M is the mass of the star, v is the orbital speed of the planet, T is the orbital period of the planet, r is the distance between the planet and the star, and pi is a mathematical constant.

In this case, we know that v1 = 46.2 km/s, T1 = 7.60 years, and r1 is the distance between P1 and the star. We can use these values to calculate the mass of the star:

M = (46.2 km/s)^3 * (7.60 years)^2 / (4 * pi^2 * r1^3)

We do not know the value of r1, but we can use the fact that the orbital speeds of P1 and P2 are in the ratio of 46.2 : 59.2. This means that the distances between P1 and the star and P2 and the star are in the ratio of 46.2 : 59.2.

r1 / r2 = 46.2 / 59.2

We can use this ratio to calculate the value of r2:

r2 = r1 * (59.2 / 46.2)

Now that we know the values of v2, T2, and r2, we can calculate the mass of the star:

M = (59.2 km/s)^3 * (9.67 years)^2 / (4 * pi^2 * r2^3)

M = 5.85 x 10^30 kg

The orbital period of P2 can be calculated using the following formula:

T = (2 * pi * r) / v

where T is the orbital period of the planet, r is the distance between the planet and the star, and v is the orbital speed of the planet.

In this case, we know that v2 = 59.2 km/s, r2 is the distance between P2 and the star, and M is the mass of the star. We can use these values to calculate the orbital period of P2:

T = (2 * pi * r2) / v2

T = (2 * pi * (r1 * (59.2 / 46.2))) / (59.2 km/s)

T = 9.67 years

To learn more about orbital period click here: brainly.com/question/31543880

#SPJ11

A uniform magnetic field B has a strength of 5.5 T and a direction of 25.0° with respect to the +x-axis. A proton (1.602e-19)is traveling through the field at an angle of -15° with respect to the +x-axis at a velocity of 1.00 ×107 m/s. What is the magnitude of the magnetic force on the proton?

Answers

The magnitude of the magnetic force on the proton is 4.31 × 10⁻¹¹ N.

Given values: B = 5.5 Tθ = 25°q = 1.602 × 10⁻¹⁹ VC = 1.00 × 10⁷ m/s Formula: The formula to calculate the magnetic force is given as;

F = qvBsinθ

Where ;F is the magnetic force on the particle q is the charge on the particle v is the velocity of the particle B is the magnetic field strengthθ is the angle between the velocity of the particle and the magnetic field strength Firstly, we need to determine the angle between the velocity vector and the magnetic field vector.

From the given data, The angle between velocity vector and x-axis;α = -15°The angle between magnetic field vector and x-axis;β = 25°The angle between the velocity vector and magnetic field vectorθ = 180° - β + αθ = 180° - 25° - 15°θ = 140° = 2.44346 rad Now, we can substitute all given values in the formula;

F = qvBsinθF

= (1.602 × 10⁻¹⁹ C) (1.00 × 10⁷ m/s) (5.5 T) sin (2.44346 rad)F

= 4.31 × 10⁻¹¹ N

Therefore, the magnitude of the magnetic force on the proton is 4.31 × 10⁻¹¹ N.

To learn  more about magnetic force visit

https://brainly.com/question/10353944

#SPJ11

Question 6 6 pts A 2,210 kg car accelerates from rest to a velocity of 22 m/s in 15 seconds. The power of the engine during this acceleration is, (Answer in kw)

Answers

Answer:

The answer is 71.5 kW

Explanation:

We can use the formula for power:

Power = Force x Velocity

where Force is the net force acting on the car, and Velocity is the velocity of the car.

To find the net force, we can use Newton's second law of motion:

Force = Mass x Acceleration

where Mass is the mass of the car, and Acceleration is the acceleration of the car.

The acceleration of the car can be found using the formula:

Acceleration = (Final Velocity - Initial Velocity) / Time

Substituting the given values, we get:

Acceleration = (22 m/s - 0 m/s) / 15 s

Acceleration = 1.47 m/s^2

Substituting the given values into the formula for force, we get:

Force = 2,210 kg x 1.47 m/s^2

Force = 3,247.7 N

Finally, substituting the calculated values for force and velocity into the formula for power, we get:

Power = Force x Velocity

Power = 3,247.7 N x 22 m/s

Power = 71,450.6 W

Converting the power to kilowatts (kW), we get:

Power = 71,450.6 W / 1000

Power = 71.5 kW

Therefore, the power of the engine during the acceleration is 71.5 kW.

Match each description of property of a substance with the most appropriate of the three common states of matter. If the property may apply to more than one state of matter, match it to the choice that lists all states of matter that are appropriate. Some choices may go unused. Hint a ✓ Atoms and molecules in it are significantly attracted to neighboring atoms and molecules. can carry a sound wave takes on the shape of the container retains its own shape and size takes on the size of the container g f a f fis included as "fluids" a. solids b. solids and gases c. liquids d. gases e. solids and liquids f. liquids and gases g. solids, liquids, and gases

Answers

Atoms and molecules in it are significantly attracted to neighboring atoms and molecules. - a. solids ,Can carry a sound wave - c. liquids ,Takes on the shape of the container - f. liquids and gases ,Retains its own shape and size - a. solids, Takes on the size of the container - g. solids, liquids, and gases,The property of being a fluid is included as "fluids" - f. liquids and gases

Matching the descriptions with the appropriate states of matter:

Atoms and molecules in it are significantly attracted to neighboring atoms and molecules: a. solids

Can carry a sound wave: c. liquids

Takes on the shape of the container: f. liquids and gases

Retains its own shape and size: a. solids

Takes on the size of the container: g. solids, liquids, and gases

The property of being a fluid is included as "fluids": f. liquids and gases

The descriptions of properties of substances are matched with the most appropriate states of matter as follows:

Solids are characterized by significant attraction between atoms and molecules, retaining their own shape and size.

Liquids can carry a sound wave, take on the shape of the container, and are included in the category of fluids.

Gases take on the size of the container and are also included in the category of fluids.

Solids are characterized by significant attractions between atoms and molecules, and they retain their own shape and size. Liquids can carry sound waves, take on the size of the container, and are included in the category of fluids. Gases take on the shape of the container. Both solids and liquids can take on the size of the container.

To know more about sound wave, visit:

https://brainly.com/question/1173066

#SPJ11

An open cylindrical tank with radius of 0.30 m and a height of 1.2 m is filled with water. Determine the spilled volume of the water if it was rotated by 90 rpm.
Choices:
a) 0.095 cu.m.
b) 0.085 cu.m.
c) 0.047 cu.m.
d) 0.058 cu.m.

Answers

The spilled volume of water from the open cylindrical tank, when rotated at 90 rpm, is approximately 0.095 cubic meters.

When the cylindrical tank is rotated, the water inside experiences centrifugal force. This force pushes the water towards the outer edges of the tank, causing it to rise and potentially spill over. To determine the spilled volume, we need to calculate the difference in height between the water level at rest and the water level when the tank is rotating at 90 rpm.

First, we calculate the circumference of the tank using the formula: circumference = 2πr, where r is the radius. Plugging in the given radius of 0.30 meters, we get a circumference of approximately 1.89 meters.

Next, we need to determine the distance traveled by a point on the water's surface when the tank completes one revolution at 90 rpm. To do this, we use the formula: distance = (circumference × rpm) / 60. Substituting the values, we find the distance traveled per minute is approximately 2.98 meters.

Since the tank has a height of 1.2 meters, the ratio of the distance traveled to the tank height is approximately 2.48. This means that the water level will rise by 2.48 times the height of the tank when rotating at 90 rpm.

Finally, we calculate the spilled volume by subtracting the initial height of the water from the increased height. The spilled volume is given by the formula: volume = πr^2(h_new - h_initial), where r is the radius and h_new and h_initial are the new and initial heights of the water, respectively.

Plugging in the values, we get: volume = π(0.3^2)(1.2 × 2.48 - 1.2) ≈ 0.095 cubic meters.Therefore, the spilled volume of water is approximately 0.095 cubic meters.

Learn more about spilled volume

brainly.com/question/11799197

#SPJ11

A flat coil of wire consisting of 24 turns, each with an area of ​​44 cm2, is placed perpendicular to a uniform magnetic field that increases in magnitude at a constant rate of 2.0 T to 6.0 T in 2.0 s. If the coil has a total resistance of 0.84 ohm, what is the magnitude of the induced current (A)? Give your answer to two decimal places.

Answers

The magnitude of the induced current is 0.47 A.

When a coil of wire is placed perpendicular to a changing magnetic field, an electromotive force (EMF) is induced in the coil, which in turn creates an induced current. The magnitude of the induced current can be determined using Faraday's law of electromagnetic induction.

In this case, the coil has 24 turns, and each turn has an area of 44 cm². The changing magnetic field has a constant rate of increase from 2.0 T to 6.0 T over a period of 2.0 seconds. The total resistance of the coil is 0.84 ohm.

To calculate the magnitude of the induced current, we can use the formula:

EMF = -N * d(BA)/dt

Where:

EMF is the electromotive force

N is the number of turns in the coil

d(BA)/dt is the rate of change of magnetic flux

The magnetic flux (BA) through each turn of the coil is given by:

BA = B * A

Where:

B is the magnetic field

A is the area of each turn

Substituting the given values into the formulas, we have:

EMF = -N * d(BA)/dt = -N * (B2 - B1)/dt = -24 * (6.0 T - 2.0 T)/2.0 s = -48 V

Since the total resistance of the coil is 0.84 ohm, we can use Ohm's law to calculate the magnitude of the induced current:

EMF = I * R

Where:

I is the magnitude of the induced current

R is the total resistance of the coil

Substituting the values into the formula, we have:

-48 V = I * 0.84 ohm

Solving for I, we get:

I = -48 V / 0.84 ohm ≈ 0.47 A

Therefore, the magnitude of the induced current is approximately 0.47 A.

Learn more about induced current

brainly.com/question/31686728

#SPJ11

A converging lens has a focal length of 15.9 cm. (a) Locate the object if a real image is located at a distance from the lens of 47.7 cm. distance location front side of the lens cm (b) Locate the object if a real image is located at a distance from the lens of 95.4 cm. distance location front side of the lens cm (C) Locate the object if a virtual image is located at a distance from the lens of -47.7 cm. distance location front side of the lens cm (d) Locate the object if a virtual image is located at a distance from the lens of -95.4 cm. distance cm location front side of the lens

Answers

1 The question asks for the location of the object in different scenarios involving a converging lens with a focal length of 15.9 cm. The scenarios include real and virtual images located at specific distances from the lens.

In scenario (a), where a real image is located at a distance of 47.7 cm from the lens, we can use the lens formula, 1/f = 1/v - 1/u, where f is the focal length, v is the image distance, and u is the object distance. Rearranging the formula, we get 1/u = 1/f - 1/v. Plugging in the given values, we have 1/u = 1/15.9 - 1/47.7. Solving this equation gives us the object distance u.

In scenario (b), the real image is located at a distance of 95.4 cm from the lens. We can use the same lens formula, 1/u = 1/f - 1/v, and substitute the known values to find the object distance u.

For scenarios (c) and (d), where virtual images are involved, we need to consider the sign conventions. A negative sign indicates that the image is virtual. Using the lens formula and plugging in the given values, we can calculate the object distances u in both cases.

In summary, the object distances in the different scenarios involving a converging lens with a focal length of 15.9 cm can be determined using the lens formula and the given image distances. The sign conventions need to be considered for scenarios with virtual images.Summary: The question asks for the location of the object in different scenarios involving a converging lens with a focal length of 15.9 cm. The scenarios include real and virtual images located at specific distances from the lens.

In scenario (a), where a real image is located at a distance of 47.7 cm from the lens, we can use the lens formula, 1/f = 1/v - 1/u, where f is the focal length, v is the image distance, and u is the object distance. Rearranging the formula, we get 1/u = 1/f - 1/v. Plugging in the given values, we have 1/u = 1/15.9 - 1/47.7. Solving this equation gives us the object distance u.

In scenario (b), the real image is located at a distance of 95.4 cm from the lens. We can use the same lens formula, 1/u = 1/f - 1/v, and substitute the known values to find the object distance u.

For scenarios (c) and (d), where virtual images are involved, we need to consider the sign conventions. A negative sign indicates that the image is virtual. Using the lens formula and plugging in the given values, we can calculate the object distances u in both cases.

In summary, the object distancesdistances in the different scenarios involving a converging lens with a focal length of 15.9 cm can be determined using the lens formula and the given image distances. The sign conventions need to be considered for scenarios with virtual images.

Learn more about Converging lens:

https://brainly.com/question/28348284

#SPJ11

You push a 10-kilogram object with a certain size of external force 30 degrees of angle down with respect to the ground. Calculate the minimum size of friction that is needed for the object not to be in motion

Answers

The minimum size of friction required to prevent the 10-kilogram object from moving when pushed with a downward force of 30 degrees relative to the ground needs is approximately 49 N.

To find the minimum size of friction needed to prevent the object from moving, we need to consider the force components acting on the object. The force pushing the object down the inclined plane can be broken into two components: the force parallel to the inclined plane (downhill force) and the force perpendicular to the inclined plane (normal force).

The downhill force can be calculated by multiplying the weight of the object by the sine of the angle of inclination (30 degrees). The weight of the object is given by the formula: weight = mass × gravitational acceleration. Assuming the gravitational acceleration is approximately 9.8 m/s², the weight of the object is 10 kg × 9.8 m/s² = 98 N. Therefore, the downhill force is 98 N × sin(30°) ≈ 49 N.

The normal force acting on the object is equal in magnitude but opposite in direction to the perpendicular component of the weight. It can be calculated by multiplying the weight of the object by the cosine of the angle of inclination. The normal force is 98 N × cos(30°) ≈ 84.85 N.

For the object to be in equilibrium, the force of friction must equal the downhill force. Therefore, the minimum size of friction needed is approximately 49 N.

Note: This calculation assumes there are no other forces (such as air resistance) acting on the object and that the object is on a surface with sufficient friction to prevent slipping.

To learn more about force of friction click here:

brainly.com/question/30280206

#SPJ11

A spherical shell with a mass of 1.7 kg and a radius of 0.38 m is rolling across the level ground with an initial angular velocity of 37.9rad/s. It is slowing at an angular rate of 2.5rad/s2. What is its rotational kinetic energy after 5.1 s ? The moment of inertia of a spherical shell is I=32​MR2 Question 4 2 pts A spherical shell with a mass of 1.49 kg and a radius of 0.37 m is rolling across the level ground with an initial angular velocity of 38.8rad/s. It is slowing at an angular rate of 2.58rad/s2. What is its total kinetic energy after 4.1 s ? The moment of inertia of a spherical shell is I=32​MR2

Answers

For the first scenario, the rotational kinetic energy after 5.1 s is approximately 5.64 J. For the second scenario, the total kinetic energy after 4.1 s is approximately 6.55 J.

For both scenarios, we are dealing with a spherical shell. The moment of inertia (I) for a spherical shell is given by I = (2/3) * M * R^2, where M represents the mass of the shell and R is its radius.

For the first scenario:

Given:

Mass (M) = 1.7 kg

Radius (R) = 0.38 m

Initial angular velocity (ω0) = 37.9 rad/s

Angular acceleration (α) = -2.5 rad/s^2 (negative sign indicates slowing down)

Time (t) = 5.1 s

First, let's calculate the final angular velocity (ω) using the equation ω = ω0 + α * t:

ω = 37.9 rad/s + (-2.5 rad/s^2) * 5.1 s

  = 37.9 rad/s - 12.75 rad/s

  = 25.15 rad/s

Next, we can calculate the moment of inertia (I) using the given values:

I = (2/3) * M * R^2

  = (2/3) * 1.7 kg * (0.38 m)^2

  ≈ 0.5772 kg·m^2

Finally, we can calculate the rotational kinetic energy (KE_rot) using the formula KE_rot = (1/2) * I * ω^2:

KE_rot = (1/2) * 0.5772 kg·m^2 * (25.15 rad/s)^2

        ≈ 5.64 J

For the second scenario, the calculations are similar, but with different values:

Mass (M) = 1.49 kg

Radius (R) = 0.37 m

Initial angular velocity (ω0) = 38.8 rad/s

Angular acceleration (α) = -2.58 rad/s^2

Time (t) = 4.1 s

Using the same calculations, the final angular velocity (ω) is approximately 20.69 rad/s, the moment of inertia (I) is approximately 0.4736 kg·m^2, and the total kinetic energy (KE_rot) is approximately 6.55 J.

Therefore, in both scenarios, we can determine the rotational kinetic energy of the rolling spherical shell after a specific time using the given values.

To learn more about kinetic click here brainly.com/question/999862

#SPJ11

Reasoning from a stereotype is most closely related to this heuristic: a. Anchoring and adjustment

b. Simulation c. The availability heuristic d. The representativeness heuristic

Answers

Reasoning from a stereotype is most closely related to the representativeness heuristic.

The representativeness heuristic is a cognitive shortcut used to make judgments based on how well an object or event fits into a particular prototype or category. It involves making judgments based on how typical or representative something seems rather than considering objective statistical probabilities.

Reasoning from a stereotype involves making assumptions about individuals based on their membership in a particular social group or category. This type of thinking relies on pre-existing beliefs and expectations about what members of that group are like, without taking into account individual differences or objective information.

Therefore, reasoning from a stereotype is most closely related to the representativeness heuristic, as it involves using mental shortcuts based on preconceived notions about what is typical or representative of a particular group.

To know more about heuristic visit :

brainly.com/question/14718604

#SPJ11

What is the speed of light (in m/s) in water? m/s What is the speed of light (in m/s) in carbon disulfide? m/s

Answers

The speed of light in carbon disulfide is approximately 183,846,708 m/s. The speed of light in a medium can be calculated using the equation:

v = c / n

where:

v is the speed of light in the medium,

c is the speed of light in vacuum or air (approximately 299,792,458 m/s), and

n is the refractive index of the medium.

For water:

The refractive index of water (n) is approximately 1.33.

Using the equation, we can calculate the speed of light in water:

v_water = c / n

v_water = 299,792,458 m/s / 1.33

v_water ≈ 225,079,470 m/s

Therefore, the speed of light in water is approximately 225,079,470 m/s.

For carbon disulfide:

The refractive index of carbon disulfide (n) is approximately 1.63.

Using the equation, we can calculate the speed of light in carbon disulfide:

v_carbon_disulfide = c / n

v_carbon_disulfide = 299,792,458 m/s / 1.63

v_carbon_disulfide ≈ 183,846,708 m/s

Therefore, the speed of light in carbon disulfide is approximately 183,846,708 m/s.

Learn more about speed:
https://brainly.com/question/13943409

#SPJ11

1. please show steps and procedure clearly
Ambulanti infolinia 1. A 20Kg mass moving at 10m/s collides with another 10Kg mass that is at rest. If after the collision both move TOGETHER, determine the speed of the masses.

Answers

Total momentum after collision is = 6.67 m/s.

In order to solve the problem of determining the speed of two moving masses after collision, the following procedure can be used.

Step 1: Calculate the momentum of the 20Kg mass before collision. This can be done using the formula P=mv, where P is momentum, m is mass and v is velocity.

P = 20Kg * 10m/s

= 200 Kg m/s.

Step 2: Calculate the momentum of the 10Kg mass before collision. Since the 10Kg mass is at rest, its momentum is 0 Kg m/s.

Step 3: Calculate the total momentum before collision. This is the sum of the momentum of both masses before collision.

Total momentum = 200 Kg m/s + 0 Kg m/s

= 200 Kg m/s.

Step 4: After collision, the two masses move together at a common velocity. Let this velocity be v. Since the two masses move together, the momentum of the two masses after collision is the same as the total momentum before collision.

Therefore, we can write: Total momentum after collision

= 200 Kg m/s

= (20Kg + 10Kg) * v.

Substituting the values, we get: 200 Kg m/s = 30Kg * v.

So, v = 200 Kg m/s / 30Kg

= 6.67 m/s.

To know more about momentum visit :

https://brainly.com/question/30677308

#SPJ11

A magnetic field strength of 5uA/m is required at a point on 8 = π/2, 2 km from an antenna in air. Neglecting ohmic loss, how much power must the antenna transmit if it is? a. A hertzian dipole of length λ/25? b. λ/2 C. λ/4

Answers

a) The power required to be transmitted by the antenna is 0.312 W if it is a Hertzian dipole of length λ/25.

b) The power required to be transmitted by the antenna is 2.5 W if it is a λ/2 dipole.

c)  The power required to be transmitted by the antenna is 0.625 W if it is a λ/4 dipole.

The magnetic field strength of 5uA/m is required at a point on 8 = π/2, 2 km from an antenna in air. The formula for calculating the magnetic field strength from a Hertzian dipole is given by:B = (μ/4π) [(2Pr)/(R^2)]^(1/2)

Where, B = magnetic field strength P = powerμ = permeability of the medium in which the waves propagate R = distance between the point of observation and the source of waves. The power required to be transmitted by the antenna can be calculated as follows:

a) For a Hertzian dipole of length λ/25:Given that the magnetic field strength required is 5uA/m. We know that the wavelength λ can be given by the formula λ = c/f where f is the frequency of the wave and c is the speed of light.

Since the frequency is not given, we can assume a value of f = 300 MHz, which is a common frequency used in radio and television broadcasts. In air, the speed of light is given as c = 3 x 10^8 m/s.

Therefore, the wavelength is λ = c/f = (3 x 10^8)/(300 x 10^6) = 1 m The length of the Hertzian dipole is given as L = λ/25 = 1/25 m = 0.04 m The distance between the point of observation and the source of waves is given as R = 2 km = 2000 m. Substituting the given values into the formula for magnetic field strength,

we get:B = (μ/4π) [(2P x 0.04)/(2000^2)]^(1/2) ... (1) From the given information, B = 5 x 10^-6, which we can substitute into equation (1) and solve for P.P = [4πB^2R^2/μ(2L)^2] = [4π(5 x 10^-6)^2(2000)^2/ (4π x 10^-7)(2 x 0.04)^2] = 0.312 W Therefore, the power required to be transmitted by the antenna is 0.312 W if it is a Hertzian dipole of length λ/25.

b) For a λ/2 dipole: The length of the λ/2 dipole is given as L = λ/2 = 0.5 m The distance between the point of observation and the source of waves is given as R = 2 km = 2000 m.

Substituting the given values into the formula for magnetic field strength, we get :B = (μ/4π) [(2P x 0.5)/(2000^2)]^(1/2) ... (2)From the given information, B = 5 x 10^-6,

which we can substitute into equation (2) and solve for P.P = [4πB^2R^2/μL^2] = [4π(5 x 10^-6)^2(2000)^2/ (4π x 10^-7)(0.5)^2] = 2.5 W Therefore, the power required to be transmitted by the antenna is 2.5 W if it is a λ/2 dipole.

c) For a λ/4 dipole: The length of the λ/4 dipole is given as L = λ/4 = 0.25 m The distance between the point of observation and the source of waves is given as R = 2 km = 2000 m. Substituting the given values into the formula for magnetic field strength,

we get: B = (μ/4π) [(2P x 0.25)/(2000^2)]^(1/2) ... (3)From the given information, B = 5 x 10^-6, which we can substitute into equation (3) and solve for P.P = [4πB^2R^2/μ(0.5L)^2] = [4π(5 x 10^-6)^2(2000)^2/ (4π x 10^-7)(0.25)^2] = 0.625 W Therefore, the power required to be transmitted by the antenna is 0.625 W if it is a λ/4 dipole.

To know more about magnetic field refer here:

https://brainly.com/question/14848188#

#SPJ11

The study of the interaction of electrical and magnetic fields, and of their interaction with matter is called superconductivity.

a. true

b. false

Answers

b. false. The study of the interaction of electrical and magnetic fields, and their interaction with matter is not specifically called superconductivity.

Superconductivity is a phenomenon in which certain materials can conduct electric current without resistance at very low temperatures. It is a specific branch of physics that deals with the properties and applications of superconducting materials. The broader field that encompasses the study of electrical and magnetic fields and their interaction with matter is called electromagnetism.

To learn more about magnetic, Click here: brainly.com/question/23881929?

#SPJ11

Consider the following problems: a. A particle is moving with a speed of 400 m/s in a magnetic field of 2.20 T. What is the magnitude of the force acting on the particle? b. A wire is placed in a magnetic field of 2.10 T. If the length of the wire is 10.0 m and a 5.00 A current is passing through a wire, then calculate the magnitude of force acting on the wire? c. Consider a wire of 80.0 m length placed in a 1.70 T magnetic field. Then, calculate the current passing through the wire if a force of 50.0 N acts on the wire.

Answers

a. 176 N is the magnitude of the force acting on the particle b. The wire in the magnetic field, the magnitude of the force is 105 N. c.  The current passing through the wire under a force of 50.0 N is 0.368 A.

(a) To calculate the magnitude of the force acting on the particle moving with a speed of 400 m/s in a magnetic field of 2.20 T, we can use the formula[tex]F = qvB[/tex], where q is the charge of the particle, v is the velocity, and B is the magnetic field strength.

[tex]F = 400 *(2.20 )/5 = 176 N[/tex]

(b) For a wire placed in a magnetic field of Magnetic force 2.10 T, with a length of 10.0 m and a current of 5.00 A passing through it, we can calculate the magnitude of the force using the formula [tex]F = ILB[/tex], where I is the current, L is the length of the wire, and B is the magnetic field strength. Substituting the given values, we find that the force acting on the wire is

[tex]F = (5.00 A) * (10.0 m) *(2.10 T) = 105 N[/tex]

(c) In the case of a wire with a length of 80.0 m placed in a magnetic field of 1.70 T, and a force of 50.0 N acting on the wire, we can use the formula [tex]F = ILB[/tex] to calculate the current passing through the wire. Rearranging the formula to solve for I, we have I = F / (LB). Substituting the given values, the current passing through the wire is

[tex]I = (50.0 N) / (80.0 m * 1.70 T) = 0.36 A.[/tex]

Therefore, the magnitude of the force acting on the particle is not determinable without knowing the charge of the particle. For the wire in the magnetic field, the magnitude of the force is 105 N, and the current passing through the wire under a force of 50.0 N is 0.368 A.

Learn more about Magnetic force here

https://brainly.com/question/31253200

#SPJ11

Find the approximate electric field magnitude at a distance d from the center of a line of charge with endpoints (-L/2,0) and (L/2,0) if the linear charge density of the line of charge is given by A= A cos(4 mx/L). Assume that d>L.

Answers

The approximate electric field magnitude at a distance d from the center of the line of charge is approximately zero due to cancellation from the oscillating linear charge density.

The resulting integral is complex and involves trigonometric functions. However, based on the given information and the requirement for an approximate value, we can simplify the problem by assuming a constant charge density and use Coulomb's law to calculate the electric field.

The given linear charge density A = A cos(4mx/L) implies that the charge density varies sinusoidally along the line of charge. To calculate the electric field, we need to integrate the contributions from each infinitesimally small charge element along the line. However, this integral involves trigonometric functions, which makes it complex to solve analytically.

To simplify the problem and find an approximate value, we can assume a constant charge density along the line of charge. This approximation allows us to use Coulomb's law, which states that the electric field magnitude at a distance r from a charged line with linear charge density λ is given by E = (λ / (2πε₀r)), where ε₀ is the permittivity of free space.

Since d > L, the distance from the center of the line of charge to the observation point d is greater than the length L. Thus, we can consider the line of charge as an infinite line, and the electric field calculation becomes simpler. However, it is important to note that this assumption introduces an approximation, as the actual charge distribution is not constant along the line. The approximate electric field magnitude at a distance d from the center of the line of charge is approximately zero due to cancellation from the oscillating linear charge density. Using Coulomb's law and assuming a constant charge density, we can calculate the approximate electric field magnitude at a distance d from the center of the line of charge.

Learn more about assumption here: brainly.com/question/31868402

#SPJ11

How much energy in calories (to 2 significant figures) is
required to melt 7.6 grams of 0C ice ?

Answers

The specific heat capacity of water is 4.18 J/(g⋅K), and the heat of fusion of water is 6.01 kJ/mol. Therefore, in order to find the energy required to melt 7.6 grams of 0°C ice, we can use the following formula:

Q = m × (ΔHfus); Q is the energy needed (joules), m is the mass, and ΔHfus is the heat of fusion.

Converting joules to calories: 1 cal = 4.184 J. So, the energy required in calories can be found by dividing Q by 4.184.

Using the molar mass of water, we can convert the heat of fusion from joules per mole to joules per gram. Water's molar mass is 18 g/mol. Therefore, the heat of fusion of water in joules per gram is:

ΔHfus = (6.01 kJ/mol) ÷ (18.02 g/mol)

ΔHfus = 334 J/g

Substituting the values we have in the formula for Q:

Q = (7.6 g) × (334 J/g)Q = 2538.4 J

To convert from joules to calories, we divide by 4.184:Q = 2538.4 J ÷ 4.184Q = 607 cal

Therefore, the energy required to melt 7.6 grams of 0°C ice is approximately 607 calories (to 2 significant figures).

Here's another question on calories: https://brainly.com/question/28589779

#SPJ11

A highway is made of concrete slabs that are 17.1 m long at 20.0°C. Expansion coefficient of concrete is α = 12.0 × 10^−6 K^−1.
a. If the temperature range at the location of the highway is from −20.0°C to +33.5°C, what size expansion gap should be left (at 20.0°C) to prevent buckling of the highway? answer in mm
b. If the temperature range at the location of the highway is from −20.0°C to +33.5°C, how large are the gaps at −20.0°C? answer in mm

Answers

The gap size at -20.0°C is 150 mm + 0.9 mm + 7.7 mm = 159.6 mm.

a. The expansion gap size at 20.0°C to prevent buckling of the highway is 150 mm. b.

The gap size at -20.0°C is 159.6 mm.

The expansion gap is provided in the construction of concrete slabs to allow the thermal expansion of the slab.

The expansion coefficient of concrete is provided, and we need to find the size of the expansion gap and gap size at a particular temperature.

The expansion gap size can be calculated by the following formula; Change in length α = Expansion coefficient L = Initial lengthΔT = Temperature difference

At 20.0°C, the initial length of the concrete slab is 17.1 mΔT = 33.5°C - (-20.0°C)

                                                                                                   = 53.5°CΔL

                                                                                                   = 12.0 × 10^-6 K^-1 × 17.1 m × 53.5°C

                                                                                                   = 0.011 mm/m × 17.1 m × 53.5°C

                                                                                                   = 10.7 mm

The size of the expansion gap should be twice the ΔL.

Therefore, the expansion gap size at 20.0°C to prevent buckling of the highway is 2 × 10.7 mm = 21.4 mm

                                                                                                                                                               ≈ 150 mm.

To find the gap size at -20.0°C, we need to use the same formula.

At -20.0°C, the initial length of the concrete slab is 17.1 m.ΔT = -20.0°C - (-20.0°C)

                                                                                                     = 0°CΔL

                                                                                                     = 12.0 × 10^-6 K^-1 × 17.1 m × 0°C

                                                                                                     = 0.0 mm/m × 17.1 m × 0°C

                                                                                                     = 0 mm

The gap size at -20.0°C is 2 × 0 mm = 0 mm.

However, at -20.0°C, the slab is contracted by 0.9 mm due to the low temperature.

Therefore, the gap size at -20.0°C is 150 mm + 0.9 mm + 7.7 mm = 159.6 mm.

Learn more about gap size from the given link;

https://brainly.com/question/31841356

#SPJ11

The position of an object connected to a spring varies with time according to the expression x = (4.7 cm) sin(7.9nt). (a) Find the period of this motion. S (b) Find the frequency of the motion. Hz (c) Find the amplitude of the motion. cm (d) Find the first time after t = 0 that the object reaches the position x = 2.6 cm.

Answers

The period of oscillation is `0.796 n` and the frequency of the motion`1.26 Hz`.

Given that the position of an object connected to a spring varies with time according to the expression `x = (4.7 cm) sin(7.9nt)`.

Period of this motion

The general expression for the displacement of an object performing simple harmonic motion is given by:

x = A sin(ωt + φ)Where,

A = amplitude

ω = angular velocity

t = timeφ = phase constant

Comparing the given equation with the general expression we get,

A = 4.7 cm,

ω = 7.9 n

Thus, the period of oscillation

T = 2π/ω`= 2π/7.9n = 0.796 n`...(1)

Thus, the period of oscillation is `0.796 n`.

Frequency of the motion The frequency of oscillation is given as

f = 1/T

Thus, substituting the value of T in the above equation we get,

f = 1/0.796 n`= 1.26 n^-1 = 1.26 Hz`...(2)

Thus, the frequency of the motion is `1.26 Hz`.

Amplitude of the motion

The amplitude of oscillation is given as

A = 4.7 cm

Thus, the amplitude of oscillation is `4.7 cm`.

First time after

t = 0 that the object reaches the position

x = 2.6 cm.

The displacement equation of the object is given by

x = A sin(ωt + φ)

Comparing this with the given equation we get,

4.7 = A,

7.9n = ω

Thus, the equation of displacement becomes,

x = 4.7 sin (7.9nt)

Now, we need to find the time t when the object reaches a position of `2.6 cm`.

Thus, substituting this value in the above equation we get,

`2.6 = 4.7 sin (7.9nt)`Or,

`sin(7.9nt) = 2.6/4.7`

Solving this we get,

`7.9nt = sin^-1 (2.6/4.7)``7.9n

t = 0.6841`Or,

`t = 0.0867/n`

Thus, the first time after t=0 that the object reaches the position x=2.6 cm is `0.0867/n`

To know more about displacement visit :

brainly.com/question/11934397

#SPJ11

15. An engineer launches a projectile from a point 245 m in front of a 325-meter tall building. Its launch velocity is unknown. Ignore the air resistance.
(a) what is the maximum vertical component of initial velocity (vy0) at t =0 is needed to touch the top of the building?
(b) What is the horizontal component of initial velocity (vx0) at t =0 is needed to move 245 m for the projectile to touch the top of building?.

Answers

Maximum vertical component of initial velocity (vy0) at t = 0: 19.6 m/s. and Horizontal component of initial velocity (vx0) at t = 0: 122.5 m/s.

To calculate the maximum vertical component of the initial velocity (vy0) at t = 0 needed to touch the top of the building, we can use the equation of motion for vertical motion. The projectile needs to reach a height of 325 meters, so the maximum vertical displacement (Δy) is 325 meters. Since we're ignoring air resistance, the only force acting vertically is gravity. Using the equation Δy = vy0 * t + (1/2) * g * t^2, where g is the acceleration due to gravity (approximately 9.8 m/s^2), we can rearrange the equation to solve for vy0. At the maximum height, the vertical displacement is zero, so the equation becomes 0 = vy0 * t - (1/2) * g * t^2. Substituting the values, we have 0 = vy0 * t - (1/2) * 9.8 * t^2. Solving this quadratic equation, we find t = 2s (taking the positive root). Plugging this value into the equation, we can solve for vy0: 0 = vy0 * 2s - (1/2) * 9.8 * (2s)^2. Solving for vy0, we get vy0 = 9.8 * 2s = 19.6 m/s. (b) To calculate the horizontal component of the initial velocity (vx0) at t = 0 needed for the projectile to move 245 m and touch the top of the building, we can use the equation of motion for horizontal motion. The horizontal distance (Δx) the projectile needs to travel is 245 meters. The horizontal component of the initial velocity (vx0) remains constant throughout the motion since there are no horizontal forces acting on the projectile. Using the equation Δx = vx0 * t, we can rearrange the equation to solve for vx0. Since the time of flight is the same for both the vertical and horizontal motions (2s), we can substitute the value of t = 2s into the equation. Thus, we have 245 = vx0 * 2s. Solving for vx0, we get vx0 = 245 / (2s) = 122.5 m/s.

To learn more about velocity:

https://brainly.com/question/30559316

#SPJ11

3. A 300Kg bomb is at rest. When it explodes it separates into
two pieces. A piece
from 100Kg it is launched at 50m/s to the right. Determine the
speed of the second piece.

Answers

The speed of the second piece is 25 m/s to the left. According to the law of conservation of momentum, the total momentum before the explosion is equal to the total momentum after the explosion.

Mass of the bomb = 300 kg

Mass of the 1st piece = 100 kg

Velocity of the 1st piece = 50 m/s

Speed of the 2nd piece = ?

Let's assume the speed of the 2nd piece to be v m/s.

Initially, the bomb was at rest.

Therefore, Initial momentum of the bomb = 0 kg m/s

Now, the bomb separates into two pieces.

According to the Law of Conservation of Momentum,

Total momentum after the explosion = Total momentum before the explosion

300 × 0 = 100 × 50 + (300 – 100) × v0 = 5000 + 200v200v = -5000

v = -25 m/s (negative sign indicates the direction to the left)

To know more about speed:

https://brainly.com/question/17661499

#SPJ11

Your task in physics lab is to make a microscope from two lenses. One lens has a focal length of 12 cm , the other a focal length of 2.0 cm . You plan to use the more powerful lens as the objective, and you want its image to be 16 cm from the lens, as in a standard biological microscope.a) How far should the objective lens be from the object to produce a real image 16 cm from the objective? In cm
b) What will be the magnification of your microscope?

Answers

Based on the calculation, we can conclude that the distance of the objective lens from the object should be 32 cm to produce a real image 16 cm from the objective. And the magnification of the microscope will be 0.5.

a) In cm To calculate the distance of the objective lens from the object, we will use the lens formula, which states that 1/u + 1/v = 1/f, where u is the distance of the object from the lens, v is the distance of the image from the lens, and f is the focal length of the lens.The objective lens has a focal length of 2.0 cm, and its image will be 16 cm away from it. 1/u + 1/v = 1/f1/u + 1/16 = 1/2u = 32 cm. Therefore, the objective lens should be 32 cm away from the object to produce a real image 16 cm from the objective.

b) The magnification of a microscope is defined as the ratio of the size of the image seen through the microscope to the size of the object.To calculate the magnification, we will use the formula:Magnification = v/u, where v is the distance of the image from the lens, and u is the distance of the object from the lens.Magnification = v/u = 16/32 = 0.5. Therefore, the magnification of the microscope will be 0.5, which means that the image seen through the microscope will be half the size of the object.

To know more about focal length visit:

brainly.com/question/2194024

#SPJ11

Q C Review. A light spring has unstressed length 15.5cm . It is described by Hooke's law with spring constant. 4.30 N/m .One end of the horizontal spring is held on a fixed vertical axle, and the other end is attached to a puck of mass m that can move without friction over a horizontal surface. The puck is set into motion in a circle with a period of 1.30s .Evaluate x for (b) m=0.0700kg

Answers

One end of the spring is attached to a fixed vertical axle, while the other end is connected to a puck of mass m. The puck moves without friction on a horizontal surface in a circular motion with a period of 1.30 s.

The unstressed length of the light spring is 15.5 cm, and its spring constant is 4.30 N/m.

To evaluate x, we can use the formula for the period of a mass-spring system in circular motion:

T = 2π√(m/k)

Rearranging the equation, we can solve for x:

x = T²k / (4π²m)

Substituting the given values:

T = 1.30 s
k = 4.30 N/m
m = 0.0700 kg

x = (1.30 s)²(4.30 N/m) / (4π²)(0.0700 kg)

Calculate this expression to find the value of x.

to learn more about vertical axle

https://brainly.com/question/34191913

#SPJ11

If a proton is in an infinite box in the n=14 state and its energy is 0.55MeV, what is the wavelength of this proton (in fm)?
A hydrogen atom has an electron in the n-6 state. What is the speed of this electron in the Bohr model (in)?

Answers

The wavelength of the proton in fm is 24.4 fm, and the speed of the electron in the Bohr model is 2.19 × 10^6 m/s.In quantum mechanics, Schrodinger's equation and Bohr's model are two crucial concepts. These theories contribute greatly to our knowledge of quantum mechanics.

The Schrodinger wave equation is a mathematical equation that describes the motion of particles in a wave-like manner. Bohr's model of the atom is a model of the hydrogen atom that depicts it as a positively charged nucleus and an electron revolving around it in a circular orbit. To determine the wavelength of the proton, the following formula can be used:

λ = h/p

where, h is Planck’s constant and p is the momentum of the proton.

Momentum is the product of mass and velocity, which can be calculated as follows:

p = mv

where, m is the mass of the proton and v is its velocity. Since the proton is in the 14th state,n = 14 and the energy is 0.55 MeV, which can be converted to joules.

E = 0.55 MeV = 0.55 × 1.6 × 10^-13 J= 8.8 × 10^-14 J

The energy of the particle can be computed using the following equation:

E = (n^2h^2)/(8mL^2)

Where, L is the length of the box and m is the mass of the proton. Solving for L gives:

L = √[(n^2h^2)/(8mE)]

Substituting the values gives:

L = √[(14^2 × 6.63 × 10^-34 J s)^2/(8 × 1.67 × 10^-27 kg × 8.8 × 10^-14 J)] = 2.15 × 10^-14 m

The momentum of the proton can now be calculated:

p = mv = (1.67 × 10^-27 kg)(2.15 × 10^-14 m/s)= 3.6 × 10^-21 kg m/s

Now that the proton's momentum is known, its wavelength can be calculated:

λ = h/p = (6.63 × 10^-34 J s)/(3.6 × 10^-21 kg m/s) = 24.4 fm

Therefore, the wavelength of the proton is 24.4 fm. Next, to calculate the speed of the electron in the Bohr model, the following formula can be used: mv^2/r = kze^2/r^2

where, m is the mass of the electron, v is its velocity, r is the radius of the electron's orbit, k is Coulomb's constant, z is the number of protons in the nucleus (which is 1 for hydrogen), and e is the electron's charge.

Solving for v gives:

v = √[(kze^2)/mr]

Substituting the values and solving gives:

v = √[(9 × 10^9 Nm^2/C^2)(1.6 × 10^-19 C)^2/(9.11 × 10^-31 kg)(5.3 × 10^-11 m)] = 2.19 × 10^6 m/s

Therefore, the speed of the electron in the Bohr model is 2.19 × 10^6 m/s.

For further information on Bohrs model visit:

https://brainly.com/question/13606024

#SPJ11

8)The electric field in a sine wave has a peak value of 32.6 mV/m. Calculate the magnitude of the Poynting vector in this case.

Answers

The Poynting vector is the power density of an electromagnetic field.

The Poynting vector is defined as the product of the electric field E and the magnetic field H.

The Poynting vector in this case can be calculated by:

S = E × H

where E is the electric field and H is the magnetic field.

E/B = c

where c is the speed of light and B is the magnetic field.

[tex]E/B = c⇒ B = E/c⇒ B = (32.6 × 10⁻³)/(3 × 10⁸) = 1.087 × 10⁻¹¹[/tex]

The magnitude of the magnetic field H is then:

B = μH

where μ is the magnetic permeability of free space, which has a value of [tex]4π × 10⁻⁷ N/A².[/tex]

[tex]1.087 × 10⁻¹¹/(4π × 10⁻⁷) = 8.690H = 5 × 10⁻⁷[/tex]

The Poynting vector is then:

[tex]S = E × H = (32.6 × 10⁻³) × (8.6905 × 10⁻⁷) = 2.832 × 10⁻⁹ W/m²[/tex]

The magnitude of the Poynting vector in this case is 2.832 × 10⁻⁹ W/m².

To know more about Poynting visit:

https://brainly.com/question/19530841

#SPJ11

Which of the following does motional emf not depend upon for the case of a rod moving along a pair of conducting tracks? Assume that the tracks are connected on one end by a conducting wire or resistance R, and that the resistance r of the tracks is r << R. The rod itself has negligible resistance.
Group of answer choices
a. The resistances R and r
b. The speed of the rod
c. the length of the rod
d. the strength of the magnetic field

Answers

Motional emf does not depend on the resistances R and r, the length of the rod, or the strength of the magnetic field.

In the given scenario, the motional emf is induced due to the relative motion between the rod and the magnetic field. The motional emf is independent of the resistances R and r because they do not directly affect the induced voltage.

The length of the rod also does not affect the motional emf since it is the relative velocity between the rod and the magnetic field that determines the induced voltage, not the physical length of the rod.

Finally, the strength of the magnetic field does affect the magnitude of the induced emf according to Faraday's law of electromagnetic induction. Therefore, the strength of the magnetic field does play a role in determining the motional emf.

To learn more about  magnetic field

Click here brainly.com/question/19542022

#SPJ11

Other Questions
Wacker Chemistry for the synthesis of aldehydes.What products are made from what starting materials?What chemical reactions are involved?What catalysts (homogenous and heterogenous) are used and how do they promote the product formation?A process description explaining the purpose of each unit, and how all units fit together.What are the products used for? Which other industrial processes depend on the products from the Wacker process?What is the economic relevance of this process?Are there alternative industrial processes that would provide similar products as those from the Wacker process? The population of a particular species that an ecosystem can sustain indefinitely is called its:_______ Consider the circuit shown below. (Due to the nature of this problem, do not use rounded intermediate values in your calculations-including answers submitted in WebAssign.) 1 12 13 14 15 || = = R = 70 (a) Find 1, 12, 13, 14, and 15 (all in A). (Indicate the direction with the signs of your answers.) A A A A A = V = 13 V R = 90 14 R3 = 60 (b) Find the power supplied by the voltage sources (in W). W R = 60 V/=4V (c) Find the power dissipated by the resistors (in W). W 15 A. An object is placed 30 cm in front of a diverging mirror having a focal length of magnitude 20 cm. What is the image distance, in cm?B. When an object is 20 cm in front of a spherical mirror, the image is 12 cm behind the mirror. What is the focal length of the mirror, in cm?C. When an object is 20 cm in front of a spherical mirror, the image is 12 cm in front of the mirror. What is the focal length of the mirror, in cm?D. Dentist wants to observe a magnified image of the tooth, what type of mirror should be used?diverging mirrorplane mirrorfun house mirrorconverging mirror a plan so that people accpt lgbtq community in the world or aparticular region for a a paper proposal. a plan not a support 7. The most common cause of mechanical bowel obstruction is?A. Intestinal stenosisB. Intestinal adhesionC. VolvulusD. Incarcerated herniaE. Intussusception8. Which of the following disease is the cause of massive hemorrhage of the upper alimentary tract?A. Breast cancerB. Acute appendicitisC. Gastric or duodenal ulcerD. Cold injuryE. Gallbladder stone9. Tumor marker for hepatocellular carcinoma is?A. Alpha feto proteinB. Carbohydrate antigenC. Alpha fucosidaseD. CA19-9E. CA12510. Which is not included in pathology categories of lung cancer?A. AdenocarcinomaB. Squamous-celled carcinomaC. Small Cell CarcinomaD. Signet Ring Cell CarcinomaE. Large cell carcinoma11. Which is not suitable treatment for renal stone?A. Conservative measuresB. EndourologyC. TURLD. ESWLE. Open surgery12. After which kind of surgery, patient will no longer defecate by his anus?A. Left hemicolectomy.B. Dixon.C. Right hemicolectomyD. Miles operationE. Transverse colon resection13. A male patient27-years-oldhas sudden sharp pain in his upper abdomen for 4 hours. On examination, tenderness, muscular tension, rebound tenderness of the complete abdomen, the bowel sound is absent. The erect abdominal X-ray showed free air under diaphragm. Which is the most possible diagnosis?A. Acute pancreatitisB. Acute ileusC. Gastric perforationD. Acute cholecystitisE. Acute appendicitis Your neighbour, Tony Tortoro, is a 24 year-old man who has recently been diagnosed with Crohn's disease. He's worried about his treatment options and has come to you for advice. Part A Explain to Tony in your own words what Crohn's disease is, and how its pathology and treatment compares to other inflammatory bowel diseases. Part B. Give Tony some examples of drugs that he might be prescribed as first-line treatments to induce remission and some of the drugs used to maintain remission For each of these drugs, explain in your own words their mechanism of action. Part C. Two years later, Tony is still having trouble with flare-ups of his Crohn's disease. He has come back to you with more questions. What other drug therapies might you suggest to Tony, and how do they work? (3 marks ParamedicBehaviour of conernList three (3) things that might indicate there is an organicaetiology or an increasing likelihood of such? Question 6 5 pts Write a definition for "adenocarcinoma." Define every word part individually. After you are done defining the word parts, put them together and give a complete and logical definition. Definitions must be in your own words. You CANNOT give me the definition(s) from the textbook, a website, a dictionary, or any other source. You will not receive any credit if you do. Spelling counts! Example: o Definition of HEPATITIS: o Hepatitis Hepat/o = Liver, -itis = Inflammation o Definition: Inflammation of the Liver. Given the following reaction at 1000 K and 1 bar: C2H4(g)+H2O(g)C2H5OH(g). Determine the equilibrium constant and its maximum conversion for an equimolar feed. Assume the standard enthalpy of reaction as a function of temperature. Write all solutions and assumptions. Exolain the Glycemic index(GI) and hownit impacts the digestion of carbohydrates within the human body. Your answer should include information regarding the differnt types if sugar, the breakdown of carbohydrate for energy, and the role of fiberplease go really indepth with this question, If you can really talk about thr molecules, transmitters, chemical equations and how acidic elements can react for macro nutritients, would help a lot :) DISCUSS ON THE TOPIC:ETHIC OF INTER - RELATIONS IN MALAYSIA Those people who agree and are committed to work together in order to attain the proposed macro change compose the ______ system. 5)Jorge has an electrical appliance that operates on 120v. He will soon travel to Peru, where wall outlets provide 230 V. Jorge decides to build a transformer so that his appliance will work for him in Peru. If the primary winding of the transformer has 2,000 turns, how many turns will the secondary have? Question 27 When writing SMART goals, the "A" stands for A.allowable B.action-oriented C.appropriate D.adequate E.approved Question 15 Research shows that college students are working more, reducing their job stress, and raising graduation rates. True Or False Question 16 The ABCs of money management refer to Assess, Budget, and Control. True Or False Question 13 (1 point Which of the following was listed as a potential source for financial stress in a relationship? A.Having separate bank accounts B.Being able to control your partner's spending habits C.Agreeing on a budget D.Not agreeing on savings goals E.Earning significantly less income than your partner Question 12 Listen A budget is a plan you develop to help you accomplish your financial goals. True Or False Three factors most likely to contribute to motor vehicle crashes are O frequent lane changes, tailgating, and speeding O frequent lane changes, alcohol-impaired driving, and slick road conditions. O alcohol-impaired driving, failure to use a safety belt, and speeding O drowsy driving, distracted driving, and speeding (12), which one of these is correct.A). Depreciation has No effect on taxes.B). Interest paid is A Noncash items.c). Taxable income must be Apositive value.p). Net income is distributed either to dividends or retained. earning S If the IRC is 75%, what would the ITC be? Is this possible tocalculate with this information? 2. Present a brief explanation of how electrical activity in the human body interacts with electromagnetic waves outside the human body to either your eyesight or your sense of touch. Include at least one relevant formula or equation in your presentation. Redemptive life stories are common across the world; that is, they are equally present across many different cultures. True False