Answer:
The height at point of release is 10.20 m
Explanation:
Given:
Spring constant : K= 5 x 10 to the 3rd power n/m
compression x = 0.10 m
Mass of block m= 0.250 kg
Here spring potential energy converted into potential energy,
mgh = 1/2 kx to the 2 power
For finding at what height it rise,
0.250 x 9.8 x h = 1/2 x 5 x 10 to the 3 power x (0.10)to the 2 power) - ( g= 9.8 m/8 to the 2 power
h= 10.20
Therefore, the height at point of release is 10.20 m
Order the layers, with the oldest at the bottom and most recent at the top.
someone plz help will give brainliest if correct
Answer:
adbce i think
Explanation:
In class, Kelsey stops paying attention to the lesson and begins to focus on tapping her pencil on her desk. Her teacher slowly walks to Kelsey’s desk and gently takes her pencil from her. How would behaviorist B.F. Skinner MOST likely describe this response?
Answer:
I think it might be negative reinforcement.
Explanation:
Answer:
negative reinforcement
Explanation:
(6.MS-ETS2-1(MA).) The electrons in __________ move about more freely than the electrons in insulators which is why this type of material can be used to create electric circuits.
A) conductors
B) insulators
C) magnets
Answer:
A) conductors
Explanation:
A conductor can be defined as any material or object that allows the free flow of current or electrons (charge) in one or more directions in an electrical circuit. Some examples of a conductor are metals, tungsten, copper, aluminum, iron, graphite, etc.
Basically, the main purpose of a conductor in physics is to provide a low-resistance path between electrical circuits or components. This low-resistance path is to ensure that the electrical components allows the free flow of electrons and thus, enabling charge transfer.
Hence, the electrons in conductors move about more freely than the electrons in insulators which is why this type of material can be used to create electric circuits because it would significantly provide a low-resistance path between the electric circuits.