8. Suppose Betty saves $200 each month in her 401(k) account. How much less will her monthly take-home pay be? (Assume a combined 20% state and federal income tax rate, as in the example.)

Answers

Answer 1

Note: Check the file attached below for the complete question

Answer:

Betty's monthly take home is $20 less

Step-by-step explanation:

Betty's monthly income = $2300

Betty's monthly savings = $200

Amount left after savings = $2300 - $200

Amount left after savings = $2100

Federal and State Income tax rate = 20% = 0.2

Tax amount paid = $420

Monthly take home = $2100 - $420

Monthly take home = $1680

Compared to $150 per month savings, Betty's monthly take home is $20 less

8. Suppose Betty Saves $200 Each Month In Her 401(k) Account. How Much Less Will Her Monthly Take-home

Related Questions

angle ∠DAC= angle ∠BAD. What is the length of BD? Round to one decimal place.

Answers

Answer: 3.9

Step-by-step explanation: Khan Academy

The length of BD if The angle ∠ DAC is equal to the angle ∠ BAD is 3.92.

What is the triangle?

Three straight lines coming together create a triangle. There are three sides and three corners on every triangle (angles). A triangle's vertex is the intersection of two of its sides. Any one of a triangle's three sides can serve as its base, however typically the bottom side is used.

Given:

The angle ∠ DAC = angle ∠ BAD

As we can see that the triangle BAD and triangle DAC are similar By SAS similarity,

AC / AB = CD / BD  (By the proportional theorem of similarity)

5.6 / 5.1 = 4.3 / BD

1.09 = 4.3 / BD

BD = 4.3 / 1.09

BD = 3.92

Thus, the length of BD is 3.92.

To know more about Triangles:

https://brainly.com/question/16886469

#SPJ2

Please answer this question I give brainliest thank you! Number 8

Answers

Answer:

The third options

Step-by-step explanation:

Counting we can see that 10 students went to two or less states, and 10 went to three or more

Answer: half of the students has visited 2 or fewer states.

Explanation: if we count the total amount of students in the survey we can determine that there was a total of 20 students. Half of 20 is 10. Option three is true because if we count the amount of students who have visited 2 or fewer a states it adds up to 10 making that statement true

The amount of pollutants that are found in waterways near large cities is normally distributed with mean 8.5 ppm and standard deviation 1.4 ppm. 18 randomly selected large cities are studied. Round all answers to two decimal places.
A. xBar~ N( ____) (____)
B. For the 18 cities, find the probability that the average amount of pollutants is more than 9 ppm.
C. What is the probability that one randomly selected city's waterway will have more than 9 ppm pollutants?
D. Find the IQR for the average of 18 cities.Q1 =
Q3 =
IQR:
2. X ~ N(30,10). Suppose that you form random samples with sample size 4 from this distribution. Let xBar be the random variable of averages. Let ΣX be the random variable of sums. Round all answers to two decimal places.
A. xBar~ N(___) (____)
B. P(xBar<30) =
C. Find the 95th percentile for the xBar distribution.
D. P(xBar > 36)=
E. Q3 for the xBar distribution =

Answers

Answer:

1)

A) [tex]\frac{}{X}[/tex] ~ N(8.5;0.108)

B) P([tex]\frac{}{X}[/tex] > 9)= 0.0552

C) P(X> 9)= 0.36317

D) IQR= 0.4422

2)

A) [tex]\frac{}{X}[/tex] ~ N(30;2.5)

B) P( [tex]\frac{}{X}[/tex]<30)= 0.50

C) P₉₅= 32.60

D) P( [tex]\frac{}{X}[/tex]>36)= 0

E) Q₃: 31.0586

Step-by-step explanation:

Hello!

1)

The variable of interest is

X: pollutants found in waterways near a large city. (ppm)

This variable has a normal distribution:

X~N(μ;σ²)

μ= 8.5 ppm

σ= 1.4 ppm

A sample of 18 large cities were studied.

A) The sample mean is also a random variable and it has the same distribution as the population of origin with exception that it's variance is affected by the sample size:

[tex]\frac{}{X}[/tex] ~ N(μ;σ²/n)

The population mean is the same as the mean of the variable

μ= 8.5 ppm

The standard deviation is

σ/√n= 1.4/√18= 0.329= 0.33 ⇒σ²/n= 0.33²= 0.108

So: [tex]\frac{}{X}[/tex] ~ N(8.5;0.108)

B)

P([tex]\frac{}{X}[/tex] > 9)= 1 - P([tex]\frac{}{X}[/tex] ≤ 9)

To calculate this probability you have to standardize the value of the sample mean and then use the Z-tables to reach the corresponding value of probability.

Z= [tex]\frac{\frac{}{X} - Mu}{\frac{Sigma}{\sqrt{n} } } = \frac{9-8.5}{0.33}= 1.51[/tex]

Then using the Z table you'll find the probability of

P(Z≤1.51)= 0.93448

Then

1 - P([tex]\frac{}{X}[/tex] ≤ 9)= 1 - P(Z≤1.51)= 1 - 0.93448= 0.0552

C)

In this item, since only one city is chosen at random, instead of working with the distribution of the sample mean, you have to work with the distribution of the variable X:

P(X> 9)= 1 - P(X ≤ 9)

Z= (X-μ)/δ= (9-8.5)/1.44

Z= 0.347= 0.35

P(Z≤0.35)= 0.63683

Then

P(X> 9)= 1 - P(X ≤ 9)= 1 - P(Z≤0.35)= 1 - 0.63683= 0.36317

D)

The first quartile is the value of the distribution that separates the bottom 2% of the distribution from the top 75%, in this case it will be the value of the sample average that marks the bottom 25% symbolically:

Q₁: P([tex]\frac{}{X}[/tex]≤[tex]\frac{}{X}[/tex]₁)= 0.25

Which is equivalent to the first quartile of the standard normal distribution. So first you have to identify the first quartile for the Z dist:

P(Z≤z₁)= 0.25

Using the table you have to identify the value of Z that accumulates 0.25 of probability:

z₁= -0.67

Now you have to translate the value of Z to a value of [tex]\frac{}{X}[/tex]:

z₁= ([tex]\frac{}{X}[/tex]₁-μ)/(σ/√n)

z₁*(σ/√n)= ([tex]\frac{}{X}[/tex]₁-μ)

[tex]\frac{}{X}[/tex]₁= z₁*(σ/√n)+μ

[tex]\frac{}{X}[/tex]₁= (-0.67*0.33)+8.5=  8.2789 ppm

The third quartile is the value that separates the bottom 75% of the distribution from the top 25%. For this distribution, it will be that value of the sample mean that accumulates 75%:

Q₃: P([tex]\frac{}{X}[/tex]≤[tex]\frac{}{X}[/tex]₃)= 0.75

⇒ P(Z≤z₃)= 0.75

Using the table you have to identify the value of Z that accumulates 0.75 of probability:

z₃= 0.67

Now you have to translate the value of Z to a value of [tex]\frac{}{X}[/tex]:

z₃= ([tex]\frac{}{X}[/tex]₃-μ)/(σ/√n)

z₃*(σ/√n)= ([tex]\frac{}{X}[/tex]₃-μ)

[tex]\frac{}{X}[/tex]₃= z₃*(σ/√n)+μ

[tex]\frac{}{X}[/tex]₃= (0.67*0.33)+8.5=  8.7211 ppm

IQR= Q₃-Q₁= 8.7211-8.2789= 0.4422

2)

A)

X ~ N(30,10)

For n=4

[tex]\frac{}{X}[/tex] ~ N(μ;σ²/n)

Population mean μ= 30

Population variance σ²/n= 10/4= 2.5

Population standard deviation σ/√n= √2.5= 1.58

[tex]\frac{}{X}[/tex] ~ N(30;2.5)

B)

P( [tex]\frac{}{X}[/tex]<30)

First you have to standardize the value and then look for the probability:

Z=  ([tex]\frac{}{X}[/tex]-μ)/(σ/√n)= (30-30)/1.58= 0

P(Z<0)= 0.50

Then

P( [tex]\frac{}{X}[/tex]<30)= 0.50

Which is no surprise since 30 y the value of the mean of the distribution.

C)

P( [tex]\frac{}{X}[/tex]≤ [tex]\frac{}{X}[/tex]₀)= 0.95

P( Z≤ z₀)= 0.95

z₀= 1.645

Now you have to reverse the standardization:

z₀= ([tex]\frac{}{X}[/tex]₀-μ)/(σ/√n)

z₀*(σ/√n)= ([tex]\frac{}{X}[/tex]₀-μ)

[tex]\frac{}{X}[/tex]₀= z₀*(σ/√n)+μ

[tex]\frac{}{X}[/tex]₀= (1.645*1.58)+30= 32.60

P₉₅= 32.60

D)

P( [tex]\frac{}{X}[/tex]>36)= 1 - P( [tex]\frac{}{X}[/tex]≤36)= 1 - P(Z≤(36-30)/1.58)= 1 - P(Z≤3.79)= 1 - 1 = 0

E)

Q₃: P([tex]\frac{}{X}[/tex]≤[tex]\frac{}{X}[/tex]₃)= 0.75

⇒ P(Z≤z₃)= 0.75

z₃= 0.67

z₃= ([tex]\frac{}{X}[/tex]₃-μ)/(σ/√n)

z₃*(σ/√n)= ([tex]\frac{}{X}[/tex]₃-μ)

[tex]\frac{}{X}[/tex]₃= z₃*(σ/√n)+μ

[tex]\frac{}{X}[/tex]₃= (0.67*1.58)+30= 31.0586

Q₃: 31.0586

What is the result of −18⋅16 2/3? Enter the result as an improper fraction and as a mixed number.

Answers

Answer:

-30000/100

300 0/1

Step-by-step explanation:

We have the following numbers -18 and 16 2/3, the first is an integer and the second is a mixed number, the first thing is to pass the mixed number to a decimal number.

16 2/3 = 16.67

We do the multiplication:

−18⋅16 2/3 = -300

We have an improper fraction is a fraction in which the numerator (top number) is greater than or equal to the denominator (bottom number), therefore it would be:

-30000/100

How mixed number would it be:

300 0/1

Suppose that four microchips in a production run of sixty are defective. A sample of six is to be selected to be checked for defects. (a) How many different samples can be chosen

Answers

Answer:

50,063,860 different samples can be chosen

Step-by-step explanation:

The order in which the microchips are chosen is not important. So we use the combinations formula to solve this question.

Combinations formula:

[tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.

[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]

How many different samples can be chosen

We choose 6 microchips from a set of 60. So

[tex]C_{60,6} = \frac{60!}{6!(60-6)!} = 50063860[/tex]

50,063,860 different samples can be chosen

A research organization keeps track of what citizens think is the most important problem facing the country today. They randomly sampled a number of people in 2003 and again in 2009 using a different random sample of people in 2009 than in 2003 and asked them to choose the most important problem facing the country today from the following​ choices, war,​ economy, health​ care, or other. Which of the following is the correct test to use to determine if the distribution of​ "problem facing this country​today" is different between the two different​ years?

A.

Use a​ chi-square test of homogeneity.

B.

Use a paired​ t-test.

C.

Use a​ two-sample z-test for proportions.

D.

Use a​ chi-square goodness-of-fit test.

Answers

Answer:

Step-by-step explanation:

From the information given, the population is divided into sub groups. Each group would consist of citizens picking a particular choice as the most important problem facing the country. The choices are the different categories. In this case, the null hypothesis would state that the distribution of proportions for all categories is the same in each population. The alternative hypothesis would state that the distributions is different. Therefore, the correct test to use to determine if the distribution of​ "problem facing this country ​today" is different between the two different​ years is

A) Use a​ chi-square test of homogeneity.

In the multiplication sentence below, which numbers are the factors? Check
all that apply.
10 x 8 = 80
A. 80
B. 8.
I C. 10

Answers

b and c are the factors because they make the product

Answer:

10 and 8

Step-by-step explanation:

10 and 8 are the factors in this equation because factors are the numbers that are mutiplied together to get the product (The answer to a mutiplication problem) Therefore the factors in this equation are 10 and 8 because those are the numbers that are mutiplied together to get the product.

pls helppppp with my math​

Answers

Answer:

[tex]\frac{1}{6}[/tex]

Step-by-step explanation:

Answer:

Step-by-step explanation:

[tex]\frac{5}{6}-\frac{2}{3}=\frac{5}{6}-\frac{2*2}{3*2}\\\\=\frac{5}{6}-\frac{4}{6}\\\\=\frac{5-4}{6}\\\\=\frac{1}{6}[/tex]

Number of multiples of 7 between 200 and 1000

Answers

Answer:

114

Step-by-step explanation:

Answer:

144Step-by-step explanation:

Someone flips five coins, but you don’t see the outcome. The person reports that no tails are showing. What is the probability that the person flipped 5 heads?

Answers

Answer:

0.03125 = 3.125% probability that the person flipped 5 heads

Step-by-step explanation:

For each coin, there are only two possible outcomes. Either it was heads, or it was tails. The result of a coin toss is independent of other coin tosses. So we use the binomial probability distribution to solve this question.

Binomial probability distribution

The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.

[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]

In which [tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.

[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]

And p is the probability of X happening.

Five coins:

This means that n = 5.

Fair coin:

Equally as likely to be heads or tails, so p = 0.5.

What is the probability that the person flipped 5 heads?

This is P(X = 5).

[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]

[tex]P(X = 5) = C_{5,5}.(0.5)^{5}.(0.5)^{0} = 0.03125[/tex]

0.03125 = 3.125% probability that the person flipped 5 heads

Antipsychotic drugs are widely prescribed for conditions such as schizophrenia and bipolar disease. An article reported on body composition and metabolic changes for individuals who had taken various antipsychotic drugs for short periods of time. (a) The sample of 41 individuals who had taken aripiprazole had a mean change in total cholesterol (mg/dL) of 3.55, and the estimated standard error sD n was 3.478. Calculate a confidence interval with confidence level approximately 95% for the true average increase in total cholesterol under these circumstances. (Round your answers to two decimal places.)

Answers

Answer:

95% for the true average increase in total cholesterol under these circumstances

(-2.306 , 9.406)

Step-by-step explanation:

Step(i):-

Given sample size 'n' =41

Mean of the sample(x⁻)  = 3.55

The estimated standard error

                                             [tex]S.E = \frac{S.D}{\sqrt{n} }[/tex]

Given  estimated standard error ( S.E) = 3.478

Level of significance ∝=0.05

Step(ii):-

95% for the true average increase in total cholesterol under these circumstances

[tex](x^{-} - t_{0.05} S.E ,x^{-} + t_{0.05} S.E)[/tex]

Degrees of freedom

ν= n-1 = 41-1 =40

t₀.₀₅ = 1.6839

95% for the true average increase in total cholesterol under these circumstances

[tex](x^{-} - t_{0.05} S.E ,x^{-} + t_{0.05} S.E)[/tex]

( 3.55 - 1.6839 ×3.478 ,3.55 + 1.6839 ×3.478 )

(3.55 - 5.856 , 3.55 + 5.856)

(-2.306 , 9.406)

Conclusion:-

95% for the true average increase in total cholesterol under these circumstances

(-2.306 , 9.406)

The mean number of hours of part-time work per week for a sample of 317 teenagers is 29. If the margin of error for the population mean with a 95% confidence interval is 2.1, construct a 95% confidence interval for the mean number of hours of part-time work per week for all teenagers.

Answers

Answer:

The degrees of freedom are given by:

[tex]df=n-1=317-1=316[/tex]

And replaicing we got:

[tex]29-2.1=26.9[/tex]    

[tex]29+2.1=31.1[/tex]    

The 95% confidence interval would be between 26.9 and 31.1

Step-by-step explanation:

Information given

[tex]\bar X= 29[/tex] represent the sample mean

[tex]\mu[/tex] population mean

s represent the sample standard deviation

[tex] ME= 2.1[/tex] represent the margin of error

n represent the sample size  

Solution

The confidence interval for the mean is given by the following formula:

[tex]\bar X \pm t_{\alpha/2}\frac{s}{\sqrt{n}}[/tex]   (1)

And this formula is equivalent to:

[tex] \bar X \pm ME[/te]x

The degrees of freedom are given by:

[tex]df=n-1=317-1=316[/tex]

And replaicing we got:

[tex]29-2.1=26.9[/tex]    

[tex]29+2.1=31.1[/tex]    

The 95% confidence interval would be between 26.9 and 31.1

Find the area of a triangle that has the base of 5 inches and a height of 3 3/4 inches

Answers

Answer:

9.375 in^2

Step-by-step explanation:

Find the area of the smaller sector.
A
6 in
030°
Area = [? ]in?
B
Round your answer to the nearest hundredth.

Answers

Answer:

9.42 in²

Step-by-step explanation:

The area of whole circle S=pi*R²    , where pi is appr. 3.14,  R= 6 in

S= 3.14*6² =113.04 in²

The area of smaller sector is Ssec=S/360*30=113,04/12=9.42 in²

The area of the smaller sector with a central angle of 30 degrees and a radius of 6 inches is 9.42478 square inches.

To find the area of a sector, you can use the formula:

Area of sector = (θ/360) × π × r²

where θ is the central angle in degrees, r is the radius of the sector.

The central angle is 30 degrees and the radius is 6 inches.

Plugging these values into the formula:

Area of sector = (30/360) × π × 6²

= (1/12) × π × 36

= (1/12) × 3.14159 × 36

= 9.42478 square inches

To learn more on Area of sector click:

https://brainly.com/question/29055300

#SPJ2

Nicola runs a small pottery cafe. Customers choose from a range of ceramics which they paint and personalise.

Nicola wants to make as much profit as possible on the sale of ceramic plates. She pays £1.28 for each plate. What is the most profit Nicola can make on one plate.

Answers

Answer:

Bb

Step-by-step explanation:

Two thousand dollars is deposited into a savings account at 8.5​% interest compounded continuously. ​(a) What is the formula for​ A(t), the balance after t​ years? ​(b) What differential equation is satisfied by​ A(t), the balance after t​ years? ​(c) How much money will be in the account after 5 ​years? ​(d) When will the balance reach ​$3000​? ​(e) How fast is the balance growing when it reaches ​$3000​?

Answers

Answer:

a)[tex]A(t)=2000e^{0.085t}[/tex]

b)[tex]A'(t)=170e^{0.085t}[/tex]

c)$3059.1808

d)t=4.77 years

e) The balance growing is $254.99/year

Step-by-step explanation:

We are given that Two thousand dollars is deposited into a savings account at 8.5​% interest compounded continuously.

Principal = $2000

Rate of interest = 8.5%

a) What is the formula for​ A(t), the balance after t​ years? ​

Formula [tex]A(t)=Pe^{rt}[/tex]

So,[tex]A(t)=2000e^{0.085t}[/tex]

B)What differential equation is satisfied by​ A(t), the balance after t​ years?

So, [tex]A'(t)=2000 \times 0.085 e^{0.085t}[/tex]

[tex]A'(t)=170e^{0.085t}[/tex]

c)How much money will be in the account after 5 ​years? ​

Substitute t = 5 in the formula "

[tex]A(t)=2000e^{0.085t}\\A(5)=2000e^{0.085(5)}\\A(5)=3059.1808[/tex]

d)When will the balance reach ​$3000​?

Substitute A(t)=3000

So, [tex]3000=2000e^{0.085t}[/tex]

t=4.77

The balance reach $3000 in 4.77 years

e)How fast is the balance growing when it reaches ​$3000​?

Substitute the value of t = 4.77 in derivative formula :

[tex]A'(t)=170e^{0.085t}\\A'(t)=170e^{0.085 \times 4.77}\\A'(t)=254.99[/tex]

Hence the balance growing is $254.99/year

Pet Place sells pet food and supplies including a popular bailed hay for horses. When the stock of this hay drops to 20 bails, a replenishment order is placed. The store manager is concerned that sales are being lost due to stock outs while waiting for a replenishment order. It has been previously determined that demand during the lead-time is normally distributed with a mean of 15 bails and a standard deviation of 6 bails. The manager would like to know the probability of a stockout during replenishment lead-time. In other words, what is the probability that demand during lead-time will exceed 20 bails

Answers

Answer:

The probability that demand during lead-time will exceed 20 bails is 0.2033.

Step-by-step explanation:

We are given that it has been previously determined that demand during the lead-time is normally distributed with a mean of 15 bails and a standard deviation of 6 bails.

Let X = demand during the lead-time

So, X ~ Normal([tex]\mu=15, \sigma^{2} = 6^{2}[/tex])

The z-score probability distribution for the normal distribution is given by;

                               Z  =  [tex]\frac{X-\mu}{\sigma}[/tex]  ~ N(0,1)

where, [tex]\mu=[/tex] population mean demand = 15 bails

           [tex]\sigma[/tex] = standard deviation = 6 bails

Now, the probability that demand during lead-time will exceed 20 bails is given by = P(X > 20 bails)

       P(X > 20 bails) = P( [tex]\frac{X-\mu}{\sigma}[/tex] > [tex]\frac{20-15}{6}[/tex] ) = P(Z > 0.83) = 1 - P(Z [tex]\leq[/tex] 0.83)

                                                             = 1 - 0.7967 = 0.2033

A grocery store manager notices that this month her store sold a total of 597 gallons of ice cream, which represents a decrease of 15% from last month. On the other hand, her store sold 617 pounds of broccoli this month, which represents an increase of 21% from last month. How much ice cream and broccoli did the store sell last month? Round your answers to the nearest integer.

Answers

Answer:

(a)The total sales of ice-cream last month is 702 gallons.

(b)The total sales of broccoli last month is 510 pounds.

Step-by-step explanation:

Part A

Total Sales of gallons of ice cream this month = 597

Since it represents a decrease of 15% of last month's sales

Let the total sales of ice-cream last month =x

Then:

(100-15)% of x =597

85% of x=597

0.85x=597

x=597/0.85

x=702 (to the nearest integer)

The total sales of ice-cream last month is 702 gallons.

Part B

Total Sales of broccoli this month = 617 pounds

Since it represents an increase of 21% of last month's sales

Let the total sales of ice-cream last month =y

Then:

(100+21)% of y =617

121% of y=617

1.21y=617

y=617/1.21

y=510 (to the nearest integer)

The total sales of broccoli last month is 510 pounds.

6. Factor the expression.
9b2 + 48b + 64
A (3b + 8)2
B (-3b + 8)2
C (-3b - 82
D (3b - 8)2
70%​

Answers

Answer:

A. [tex](3b+8)^2[/tex]

Step-by-step explanation:

[tex]9b^2+48b +64\\=(3b)^2 + 2\times 3b\times 8 +(8)^2\\=(3b+8)^2[/tex]

3z/10 - 4 = -6
someone help?

Answers

Answer:

[tex]z=-\frac{20}{3}[/tex]

Step-by-step explanation:

[tex]\frac{3z}{10}-4=-6\\\\\frac{3z}{10}-4+4=-6+4\\\\\frac{3z}{10}=-2\\\\\frac{10\cdot \:3z}{10}=10\left(-2\right)\\\\3z=-20\\\\\frac{3z}{3}=\frac{-20}{3}\\\\z=-\frac{20}{3}[/tex]

Best Regards!

ali's typing rate between 8:00 am and noon is 48 words per minute . after lunch a lunch break, Ali's typing rate between 1:00 pm and 4:00 pm is 2,040 words per hour . what is Ali's average typing rate per minute for the whole time she works?

Answers

Answer:

41 word/min

Step-by-step explanation:

Before noon Ali works:

4 hours= 4*60 min= 240 min

She types:

240*48= 11520 words

After lunch she works:

4 hours

She types:

4*2040= 8160 words

Total Ali works= 4+4= 8 hours= 480 min

Total Ali types= 11520+8160= 19680 words

Average typing rate= 19680 words/480 min= 41 word/min

HELP ASAP!!!The first picture is what each variables equal too

Answers

Answer:

Just replace the variables with the number

d5

c4 (uh oh)

a2

b-3

f-7

d-c = 5 - 4 = 1

1/3 - 4(ab+f)

2 x -3 = -6

-6 + -7 = -13

-13 x 4 = -52

1/3 - -52 = 1/3 + 52 =

52 1/3

Hope this helps

Step-by-step explanation:

HELP ASAP GIVING BRANLIST!!

Answers

Answer:

Question 1: 3 - 5 hours.

Question 2: 0 - 1 hour

Step-by-step explanation:

Question 1: As you can see in the diagram, the guy is moving really slowly and is almost stuck, therefore, it is 3 - 5  hours.

Question 2:  In hours 0 - 1, you can see that the graph is the closest to vertical as it gets.

PLEASE ANSWER FAST !!!
What is the range of the function g for given domain ?

Answers

Answer:

The answer is B

Step-by-step explanation:

Hope this helps.. if not im sorry :(

What is the slope of the line with the two
points A(-4, 8) and B(-9, 12)?

Answers

Answer:

slope = -4/5

Step-by-step explanation:

A line passes two points (x1, y1) and (x2, y2).

The slope of this line can be calculate by the formula:

s = (y2 - y1)/(x2 - x1)

=>The line that passes A(-4, 8) and B(-9, 12) has the slope:

s = (12 - 8)/(-9 - -4) = 4/(-5) = -4/5

Hope this helps!

The World Issues club has decided to donate 60% of all their fundraising activities this year to Stephen Lewis Foundation. This foundation was created to help ease the pain of HIV/AIDS in Africa. Lewis, a Canadian, works for the United Nations trying to determine ways to stop the spread of this deadly disease from crippling an entire continent. Choose a variable to represent the money earned during fundraising activities and the revenue generated for the foundation Use these variables to create an equation that will determine the amount of money the foundation will receive. In their latest bake sale, the club raised $72. Calculate the amount the foundation will receive. At the end of the year, the World Issues Club mailed a cheque to the foundation for $850. How much money did they fundraise in total?

Answers

Answer:

$43.20$1416.67

Step-by-step explanation:

Let the money earned during fundraising activities =x

Since the World Issues club has decided to donate 60% of all their fundraising activities this year to Stephen Lewis Foundation.

The amount of money the foundation will receive

=60% of x

= 0.6x

In the bake sale, the club raised $72.

Therefore, the amount the foundation will receive =0.6*72=$43.20

At the end of the year, the World Issues Club mailed a cheque to the foundation for $850.

Therefore:

0.6x=850

x=850/0.6

x=$1416.67

The total amount of money the club raised is $1416.67.

Pleassseee hhheeelllppp

Answers

Answer/Step-by-step explanation:

When solving problems like this, remember the following:

1. + × + = +

2. + × - = -

3. - × + = -

4. - × - = +

Let's solve:

a. (-4) + (+10) + (+4) + (-2)

Open the bracket

- 4 + 10 + 4 - 2

= - 4 - 2 + 10 + 4

= - 6 + 14 = 8

b. (+5) + (-8) + (+3) + (-7)

= + 5 - 8 + 3 - 7

= 5 + 3 - 8 - 7

= 8 - 15

= - 7

c. (-19) + (+14) + (+21) + (-23)

= - 19 + 14 + 21 - 23

= - 19 - 23 + 14 + 21

= - 42 + 35

= - 7

d. (+5) - (-10) - (+4)

= + 5 + 10 - 4

= 15 - 4 = 11

e. (-3) - (-3) - (-3)

= - 3 + 3 + 3

= - 3 + 9

= 6

f. (+26) - (-32) - (+15) - (-8)

= 26 + 32 - 15 + 8

= 26 + 32 + 8 - 15

= 66 - 15

= 51

The production department has installed a new spray machine to paint automobile doors. As is common with most spray guns, unsightly blemishes often appear because of improper mixtures or other problems. A worker counted the number of blemishes on each door. Most doors had no blemishes; a few had one; a very few had two; and so on. The average number was 0.5 per door. The distribution of blemishes followed the Poisson distribution. Out of 10,000 doors painted, about how many would have no blemishes

Answers

Answer:

The numbers of doors that will have no blemishes will be about 6065 doors

Step-by-step explanation:

Let the number of counts by the  worker of each blemishes on the door be (X)

The distribution of blemishes followed the Poisson distribution with parameter  [tex]\lambda =0.5[/tex] / door

The probability mass function on of a poisson distribution Is:

[tex]P(X=x) = \dfrac{e^{- \lambda } \lambda ^x}{x!}[/tex]

[tex]P(X=x) = \dfrac{e^{- \ 0.5 }( 0.5)^ x}{x!}[/tex]

The probability that no blemishes occur is :

[tex]P(X=0) = \dfrac{e^{- \ 0.5 }( 0.5)^ 0}{0!}[/tex]

[tex]P(X=0) = 0.60653[/tex]

P(X=0) = 0.6065

Assume the number of paints on the door by q = 10000

Hence; the number of doors that have no blemishes  is = qp

=10,000(0.6065)

= 6065

Consider random samples selected from the population of all female college soccer players in the United States. Assume the mean height of female college soccer players in the United States is 66 inches and the standard deviation is 3.5 inches. Which do you expect to have less variability (spread): a sampling distribution with sample size n

Answers

Answer:

Option C is correct.

The sampling distribution with sample size n=100 will have less variability.

Step-by-step explanation:

Complete Question

Consider random samples selected from the population of all female college soccer players in the United States. Assume the mean height of female college soccer players in the United States is 66 inches and the standard deviation is 3.5 inches. Which do you expect to have less variability (spread): a sampling distribution with sample size n = 100 or a sample size of n = 20.

A. Both sampling distributions will have the same variability.

B.The sampling distribution with sample size n=20 will have less variability

C. The sampling distribution with sample size n =100 will have less variability

Solution

The central limit theorem allows us to say that as long as

- the sample is randomly selected from the population distribution with each variable independent of each other and with the sample having an adequate enough sample size.

- the random sample is normal or almost normal which is guaranteed if the population distribution that the random sample was extracted from is normal or approximately normal,

1) The mean of sampling distribution (μₓ) is approximately equal to the population mean (μ)

μₓ = μ = 66 inches

2) The standard deviation of the sampling distribution or the standard error of the sample mean is related to the population standard deviation through

σₓ = (σ/√N)

where σ = population standard deviation = 3.5 inches

N = Sample size

And the measure of variability for a sampling distribution is the magnitude of the standard deviation of the sampling distribution.

For sampling distribution with sample size n = 100

σₓ = (3.5/√100) = 0.35 inch

For sampling distribution with sample size n = 20

σₓ = (3.5/√20) = 0.7826 inch

The standard deviation of the sampling distribution with sample size n = 20 is more than double that of the sampling distribution with sample size n = 100, hence, it is evident that the bigger the sample size, the lesser the standard deviation of the sampling distribution and the lesser the variability that the sampling distribution shows.

Hope this Helps!!!

Find the following measure for this figure.
Volume =

Answers

Answer:

91 2/3 pi cubic units

Step-by-step explanation:

The formula for the volume of cone is [tex]\dfrac{1}{3}\pi r^2 h[/tex]. Plugging in the given numbers, you get:

[tex]\dfrac{1}{3}\cdot \pi \cdot 5^2 \cdot 11= 91 \ 2/3 \pi[/tex]

Hope this helps!

Answer:

[tex]Volume=\frac{1}{3} \,275\,\pi[/tex] cubic units

Notice that this answer doesn't agree with any of the first three in the list provided via the screenshot

Step-by-step explanation:

Recall the formula for the volume of a cone:

[tex]Volume=\frac{1}{3} Base\,*\,Height[/tex]

In this case the Height is 11 units, and they also give us the radius of the circular base (5 units) from which we can find the circle's base area:

[tex]Area_{circle} = \pi\,R^2\\Area_{circle}=\pi\,(5)^2\\Area_{circle}=25 \pi[/tex]

therefore the total volume becomes:

[tex]Volume=\frac{1}{3} Base\,*\,Height\\Volume=\frac{1}{3} 25\,\pi\,*\,11\\\\Volume=\frac{1}{3} \,275\,\pi[/tex]

Other Questions
ABC has been translated right to create triangle XYZ. Based on this information, which of the following is a true statement? answers: A) B) C) A C D) B X Each term in the sequence below is 9 more than 1/3 the previous term. What is the value of y-x? 81, 36, x, y,... Plz explain A large amount of peanuts was divided equally into 6 small bags. The total number of peanuts, p, was 342 which statement can be used to write an expression and then find the number of peanuts that ended up in each bag What kind of materials is nylon Please HELP!!!!!!!!!!!!!!!!! What type of enzyme can activate another enzyme by adding a phosphate from ATP? (555) (555555) The mass number of Fo? is 56. How many neutrons are there in a single Fo? atom?28305658 Suppose the demand for macaroni is inelastic, the supply of macaroni is elastic, the demand for cigarettes is inelastic, and the supply of cigarettes is elastic. If a tax were levied on the sellers of both of these commodities, we would expect that the burden of Line j is a straight line. Line j is a straight line. 2 lines come out of the line to form 4 angles. From top left, clockwise, the angles are: x, y, z, w. Which equation represents the relationship between the measures of Angle w and Angle z? Measure of angle w = measure of angle z Measure of angle w + measure of angle z = 90 degrees Measure of angle w + measure of angle z = 100 degrees Measure of angle w + measure of angle z = 180 degrees A person is standing on an elevator initially at rest at the first floor of a high building. The elevator then begins to ascend to the sixth floor, which is a known distance h above the starting point. The elevator undergoes an unknown constant acceleration of magnitude a for a given time interval T. Then the elevator moves at a constant velocity for a time interval 4T. Finally the elevator brakes with an acceleration of magnitude a, (the same magnitude as the initial acceleration), for a time interval T until stopping at the sixth floor. onceptual Connection: For each situation, identify the possible root cause(s) of the activity cost (such as plant layout, process design, and product design). a. A manual insertion process takes 30 minutes and 8 pounds of material to produce a product. Automating the insertion process requires 15 minutes of machine time and 7.5 pounds of material. The cost per labor hour is $12, the cost per machine hour is $8, and the cost per pound of materials is $10. b. With its original design, a gear requires 8 hours of setup time. By redesigning the gear so that the number of different grooves needed is reduced by 50%, the setup time is reduced by 75%. The cost per setup hour is $50. c. A product currently requires 6 moves. By redesigning the manufacturing layout, the number of moves can be reduced from 6 to 0. The cost per move is A boy carries a 2 kg bag and walks 8m on a level road to his house. How much work has he done by carrying the bag? a. 4 J b. 16 J c. zero Alexandra and her children went into a movie theater and will buy bags of popcornand drinks. She must buy at most 12 bags of popcorn and drinks altogether. Write aninequality that would represent the possible values for the number of bags of popcornpurchased, b, and the number of drinks purchased, d. Your worksheet has the value 27 in cell B3. What value isreturned by the function =MOD(B3,6)? In the equation E = mc2, what does c represent? Gilbert Company generated sales revenues of $1,800,000 in 2017. Its cost of goods sold amounted to $990,000. Calculate Gilbert's gross profit percentage. Supporting Materials Cost of goods sold / Group of answer choices 55% 45% 222% 182% As a financial advisor, what will you tell your client, Ryan, he should be willing to pay for an investment property that he plans to buy today and hold for 5 years and then sell, given the following cash flows and the fact that he expects 9% on any investment he makes? Inflows Outflows Net InitialOutlay $0 Year 1 $45,000 $55,000 10,000Year 2 55,000 20,000 35,000Year 3 55,000 20,000 35,000Year 4 255,000 235,00 220,000A. $189, 910.29. B. $194, 589.33. C. $178, 656, 73. D. $191, 231, 57. Cedar waxwings are one species of bird that is adapted towithstand our cold winters. Bird watchers in Barrie providecedar waxwings with seeds at birdfeeders during wintermonths. K/UTI(a) Would the seeds alter the carrying capacity of theecosystem? Explain.(b) Provide a hypothesis that explains why bird watchers havenoted an increase in the falcon population in recent years. how do you write 25 x 10^6 in standard form