7. Given definitions of gm and ra as partial derivatives.

Answers

Answer 1

Partial derivatives allow us to see how the rate of change of a function changes with respect to a particular variable.

gm and ra are partial derivatives. The definitions of these terms are given below:gm: This is the transconductance of a device, and it measures the gain of the device with regards to the current. It can be expressed in units of amperes per volt or siemens. Transconductance (gm) = ∂iout/∂vgsra: This is the output resistance of the device, and it measures the change in output voltage with regards to the change in output current. It can be expressed in ohms.

Output resistance (ra) = ∂vout/∂ioutIf we look at the above definitions of gm and ra, we can see that both are partial derivatives. Partial derivatives are a type of derivative used in calculus. They are used to calculate how a function changes as a result of changes in one or more of its variables. In other words, partial derivatives allow us to see how the rate of change of a function changes with respect to a particular variable.

To know more about geometric mean visit :

https://brainly.com/question/15196370

#SPJ11


Related Questions

Determine the cross correlation sequences for the following pair of signals using the time domain formula : x(n) = {3,1} and h(n) = δ(n) + 3δ(n-2) - 5δ(n-4) [7 marks]

Answers

Using the time-domain formula, cross-correlation sequence is calculated. Cross-correlation of x(n) and h(n) can be represented as y(k) = x(-k)*h(k) or y(k) = h(-k)*x(k).

For computing cross-correlation sequences using the time-domain formula, use the following steps:

Calculate the expression for cross-correlation. In the expression, replace n with n - k.

After that, reverse the second signal. And finally, find the sum over all n values.

We use the formula as follows:

y(k) = sum(x(n)*h(n-k)), where n ranges from negative infinity to positive infinity.

Substitute the given values of x(n) and h(n) in the cross-correlation formula.

y(k) = sum(x(n)*h(n-k)) => y(k) = sum((3,1)*(δ(n) + 3δ(n-2) - 5δ(n-4))).  

We calculate y(k) as follows for each value of k: for k=0,

y(k) = 3*1 + 1*1 + 0 = 4.

For k=1,

y(k) = 3*0 + 1*0 + 3*1 = 3.

For k=2, y(k) = 3*0 + 1*3 + 0 = 3.

For k=3, y(k) = 3*0 + 1*0 + 0 = 0.

For k=4, y(k) = 3*0 + 1*0 - 5*1 = -5.

Hence, the cross-correlation sequences are

y(0) = 4, y(1) = 3, y(2) = 3, y(3) = 0, and y(4) = -5.

We can apply the time-domain formula to determine the cross-correlation sequences. We can calculate the expression for cross-correlation.

Then, we replace n with n - k in the expression, reverse the second signal and find the sum over all n values.

We use the formula as follows:

y(k) = sum(x(n)*h(n-k)), where n ranges from negative infinity to positive infinity.

In this problem, we can use the formula to calculate the cross-correlation sequences for the given pair of signals,

x(n) = {3,1} and h(n) = δ(n) + 3δ(n-2) - 5δ(n-4).

We substitute the values of x(n) and h(n) in the formula,

y(k) = sum(x(n)*h(n-k))

=> y(k) = sum((3,1)*(δ(n) + 3δ(n-2) - 5δ(n-4))).

We can compute y(k) for each value of k.

For k=0,

y(k) = 3*1 + 1*1 + 0 = 4.

For k=1, y(k) = 3*0 + 1*0 + 3*1 = 3.

For k=2, y(k) = 3*0 + 1*3 + 0 = 3.

For k=3, y(k) = 3*0 + 1*0 + 0 = 0.

For k=4, y(k) = 3*0 + 1*0 - 5*1 = -5.

Hence, the cross-correlation sequences are y(0) = 4, y(1) = 3, y(2) = 3, y(3) = 0, and y(4) = -5.

To learn more about signal

https://brainly.com/question/30431572

#SPJ11

The work function of a metal surface is 4.5 eV. If the frequency of the light incident upon it is 1.45 × 1015 Hz, then what is the maximum kinetic energy (in eV) of the photo electrons emitted from the surface?

Answers

The maximum kinetic energy (in eV) of the photo electrons emitted from the surface is 6 ev.

To calculate the maximum kinetic energy of photoelectrons emitted from a metal surface, we can use the equation:

E max​=hν−φ

Where: E max ​ is the maximum kinetic energy of photoelectrons,

h is the Planck's constant (4.135667696 × 10⁻¹⁵ eV s),

ν is the frequency of the incident light (1.45 × 10¹⁵ Hz),

φ is the work function of the metal surface (4.5 eV).

Plugging in the values:

E max ​ =(4.135667696×10⁻¹⁵  eV s)×(1.45×10¹⁵  Hz)−4.5eV

Calculating the expression:

E max ​ =5.999eV

To learn more on Work click:

https://brainly.com/question/18094932

#SPJ4

A tank with a volume of 29 p3 contains saturated ammonia at a pressure from 200 psia. Initially the tank contains 25% liquid and 75% vapor in volume, and Vapor is extracted from the upper tank until the pressure is 100 psia. Assuming that only steam comes out and that the process is adiabatic. Calculate the dough of extracted ammonia.

Answers

Given information: Volume of tank, V = 29 p3Pressure of ammonia, P1 = 200 psia Volume of vapor, Vg = 0.75V = 0.75 x 29 = 21.75 p3Volume of liquid, Vf = 0.25V = 0.25 x 29 = 7.25 p3Final pressure of ammonia, P2 = 100 psia.

To find: Mass of extracted ammonia, m .

Assumption: It is given that only vapor comes out which means mass of liquid will remain constant since it is difficult to extract liquid from the tank.

Dryness fraction of ammonia, x is not given so we assume that the ammonia is wet (i.e., x < 1).

Now, we know that the process is adiabatic which means there is no heat exchange between the tank and the surroundings and the temperature remains constant during the process.

Therefore, P1V1 = P2V2, where V1 = Vf + Vg = 7.25 + 21.75 = 29 p3.

Substituting the values, 200 × 29 = 100 × V2⇒ V2 = 58 p3.

Now, we can use steam tables to find the mass of ammonia extracted. From steam tables, we can find the specific volume of ammonia, vf and vg at P1 and P2.

Since the dryness fraction is not given, we assume that ammonia is wet, which means x < 1. The specific volume of wet ammonia can be calculated using the formula:

V = (1 - x) vf + x vg.

Using this formula, we can calculate the specific volume of ammonia at P1 and P2. At P1, the specific volume of wet ammonia is:

V1 = (1 - x) vf1 + x vg1At P2, the specific volume of wet ammonia is:

V2 = (1 - x) vf2 + x vg2where vf1, vg1, vf2, and vg2 are the specific volume of saturated ammonia at P1 and P2, respectively.

We can look up the values of vf and vg from steam tables.

From steam tables, we get: v f1 = 0.0418 ft3/lbv g1 = 4.158 ft3/lbv f2 = 0.0959 ft3/lbv g2 = 2.395 ft3/lb.

Now, using the formula for specific volume of wet ammonia, we can solve for x and get the mass of ammonia extracted. Let’s do this: X = (V2 - Vf2) / (Vg2 - Vf2).

Substituting the values:

X = (58 - 0.0959) / (2.395 - 0.0959) = 0.968m = xVg2 mVg2 = 0.968 × 2.395 × 29m = 64.5 lb (approximately).

Therefore, the mass of extracted ammonia is 64.5 lb (approx).

Answer: The mass of extracted ammonia is 64.5 lb (approx).

To know more about Volume visit:

https://brainly.com/question/28058531

#SPJ11

Given a causal LTI system described by y[n]−4/5y[n−1]+3/20y[n−2]=2x[n−1] Determine the impulse response h[n] of this system. You are NOT ALLOWED to use any transform methods (assume initial rest).

Answers

Given a causal LTI system described by `y[n] - 4/5y[n-1] + 3/20y[n-2] = 2x[n-1]`. We are to determine the impulse response `h[n]` of this system. We are NOT ALLOWED to use any transform methods. Assume initial rest.

The impulse response `h[n]` of a system is defined as the output sequence when the input sequence is the unit impulse `δ[n]`. That is, `h[n]` is the output of the system when `x[n] = δ[n]`. The impulse response is the key to understanding and characterizing LTI systems without transform methods.

Again, we have `y[0] = 0` and `y[-1] = 0`,

so this simplifies to `y[1] = 2/5`.For `n = 2`,

we have `y[2] - 4/5y[1] + 3/20y[0] = 0`.

Using the previous values of `y[1]` and `y[0]`, we have `y[2] = 4/25`.For `n = 3`,

we have `y[3] - 4/5y[2] + 3/20y[1] = 0`.

Using the previous values of `y[2]` and `y[1]`, we have `y[3] = 3/25`.

For `n = 4`, we have `y[4] - 4/5y[3] + 3/20y[2] = 0`.

`h[0] = 0``h[1] = 2/5``h[2] = 4/25``h[3] = 3/25``h[4] = 4/125``h[5] = 3/125``h[n] = 0` for `n > 5`.

To know more about  LTI system visit:

https://brainly.com/question/32504054

#SPJ11

The flow just upstream of a normal shock wave is given by p₁ = 1 atm, T₁ = 288 K, and M₁ = 2.6. Calculate the following properties just downstream of the shock: p2, T2, P2, M2, Po.2, To.2, and the change in entropy across the shock.

Answers

The normal shock wave is a type of shock wave that occurs at supersonic speeds. It's a powerful shock wave that develops when a supersonic gas stream encounters an obstacle and slows down to subsonic speeds. The following are the downstream properties of a normal shock wave:Calculation of downstream properties:

Given,Upstream properties: p₁ = 1 atm, T₁ = 288 K, M₁ = 2.6Downstream properties: p2, T2, P2, M2, Po.2, To.2, and change in entropy across the shock.Solution:First, we have to calculate the downstream Mach number M2 using the upstream Mach number M1 and the relationship between the Mach number before and after the shock:

[tex]$$\frac{T_{2}}{T_{1}} = \frac{1}{2}\left[\left(\gamma - 1\right)M_{1}^{2} + 2\right]$$$$M_{2}^{2} = \frac{1}{\gamma M_{1}^{-2} + \frac{\gamma - 1}{2}}$$$$\therefore M_{2}^{2} = \frac{1}{\frac{1}{M_{1}^{2}} + \frac{\gamma - 1}{2}}$$$$\therefore M_{2} = 0.469$$[/tex]

Now, we can calculate the other downstream properties using the following equations:

[tex]$$\frac{P_{2}}{P_{1}} = \frac{\left(\frac{2\gamma}{\gamma + 1}M_{1}^{2} - \frac{\gamma - 1}{\gamma + 1}\right)}{\left(\gamma + 1\right)}$$$$\frac{T_{2}}{T_{1}} = \frac{\left(\frac{2\gamma}{\gamma + 1}M_{1}^{2} - \frac{\gamma - 1}{\gamma + 1}\right)^{2}}{\gamma\left(\frac{2\gamma}{\gamma + 1}M_{1}^{2} - \frac{\gamma - 1}{\gamma + 1}\right)^{2} - \left(\gamma - 1\right)}$$$$P_{o.2} = P_{1}\left[\frac{2\gamma}{\gamma + 1}M_{1}^{2} - \frac{\gamma - 1}{\gamma + 1}\right]^{(\gamma)/( \gamma - 1)}$$$$T_{o.2} = T_[/tex]

where R is the gas constant and [tex]$C_{p}$[/tex] is the specific heat at constant pressure.We know that,

γ = 1.4, R = 287 J/kg-K, and Cp = 1.005 kJ/kg-K

Substituting the values, we get,Downstream Mach number,M2 = 0.469Downstream Pressure,P2 = 3.13 atmDownstream Temperature,T2 = 654 KDownstream Density,ρ2 = 0.354 kg/m³Stagnation Pressure,Po.2 = 4.12 atmStagnation Temperature,To.2 = 582 KChange in entropy across the shock,Δs = 1.7 J/kg-KHence, the required downstream properties of the normal shock wave are P2 = 3.13 atm, T2 = 654 K, P2 = 0.354 kg/m³, Po.2 = 4.12 atm, To.2 = 582 K, and Δs = 1.7 J/kg-K.

To know more about downstream visit :

https://brainly.com/question/14158346

#SPJ11

A 6 liter gasoline engine is being evaluated in a laboratory to determine the exhaust gas ratio at a location where the air density is 1.181 kg/m³. The engine is running at 3600 RPM, with an air/fuel ratio of 15:1, and the volumetric efficiency has been estimated at 93%. Calculate the exhaust gas rate in kg/s.

Answers

The exhaust gas rate is approximately 1.56 kg/s.

To calculate the exhaust gas rate, we need to determine the mass flow rate of air entering the engine and then determine the mass flow rate of fuel based on the given air/fuel ratio.

First, we calculate the mass flow rate of air entering the engine using the engine displacement (6 liters) and the volumetric efficiency (93%). By multiplying these values with the air density at the location (1.181 kg/m³), we obtain the mass flow rate of air.

Next, we calculate the mass flow rate of fuel by dividing the mass flow rate of air by the air/fuel ratio (15:1).

Finally, by adding the mass flow rates of air and fuel, we obtain the total exhaust gas rate in kg/s.

Performing the calculations, the exhaust gas rate is found to be approximately 1.56 kg/s.

To  learn more about exhaust click here

brainly.com/question/28525976

#SPJ11

14. Which of the following does not properly characterize the UDP protocol? (a) datagram (b) unreliable (c) connectionless (d) in order delivery 15. Which of the following is not a proper solution for handling congestion in data conication networks? (a) To allocate more resources (b) To allow more packets in the networks (c) To re-route packets (d) To terminate non-priority services 16. What is the primary purpose of the routing proces? (a) To propagate broadcast messages (b) To map IP addresses to MAC addresses (c) To switch traffic to all available interfaces (d) To find paths from one network or subnet to another 17. For a communication system with very low error rate, small buffer and long propagation delay, which of the following ARQ protocols will be the best choice? (a) Go-Back-N (b) Stop-and-Wait (c) Selective Repeat. (d) Any of above 18. Which one is not included in the TCP/IP protocol suite? (a) Session (b) Network layer (c) Transport layer (d) Application layer 19. Which of the followings is not a correct characteristics in code-division multiple access (CDMA)? (a) It need to implement a dynamic power control mechanism. (b) The degree of interference is independent of the number of users. (c) It requires all the signals at the receiver to have approximately the same power (d) A powerful transmission from a nearby station could overwhelm the desired signal from a distan station

Answers

14. (d) in order delivery

15. (d) To terminate non-priority services

16. (d) To find paths from one network or subnet to another

17. (b) Stop-and-Wait

18. (a) Session

19. (c) It requires all the signals at the receiver to have approximately the same power

14. The UDP protocol does not guarantee in-order delivery of packets. Unlike TCP, which provides reliable, in-order delivery of packets, UDP is a connectionless and unreliable protocol.

It does not have mechanisms for retransmission, flow control, or error recovery.

15. Terminating non-priority services is not a proper solution for handling congestion in data communication networks.

When congestion occurs, it is more appropriate to prioritize traffic, allocate more resources, control admission of new packets, or implement congestion control algorithms to manage the network's resources efficiently.

16. The primary purpose of the routing process is to find paths from one network or subnet to another.

Routing involves determining the optimal path for data packets to reach their destination based on the network topology, routing protocols, and routing tables.

It enables packets to be forwarded across networks and subnets.

17. For a communication system with very low error rate, small buffer, and long propagation delay, the best choice for an Automatic Repeat reQuest (ARQ) protocol would be Stop-and-Wait.

Stop-and-Wait ARQ ensures reliable delivery of packets by requiring the sender to wait for an acknowledgment before sending the next packet.

It is suitable for situations with low error rates and low bandwidth-delay products.

18. The session layer is not included in the TCP/IP protocol suite. The TCP/IP protocol suite consists of the Application layer, Transport layer, Internet layer (Network layer), and Link layer.

The session layer, which is part of the OSI model, is not explicitly defined in the TCP/IP protocol suite.

19. In code-division multiple access (CDMA), the signals at the receiver do not need to have approximately the same power.

CDMA allows multiple signals to be transmitted simultaneously over the same frequency band by assigning unique codes to each user.

To learn more on Communication system click:

https://brainly.com/question/31845975

#SPJ4

A new greenfield area developer has approached your company to design a passive optical network (PON) to serve a new residential area with a population density of 64 households. After discussion with their management team, they have decided to go with XGPON2 standard which is based on TDM-PON with a downlink transmission able to support 10 Gb/s. Assuming that all the 64 households will be served under this new PON, your company is consulted to design this network. Given below are the known parameters and specifications that may help with the design of the PON. • Downlink wavelength window = 1550 nm • Bit error-rate – 10-15 • Bit-rate = 10 Gb/s • Transmitter optical power = 0 dBm • 1:32 splitters are available with a loss of 15 dB per port • 1:2 splitters are available with a loss of 3 dB per port • Feeder fibre length = 12 km • Longest drop fibre length = 4 km • Put aside a total system margin of 3 dB for maintenance, ageing, repair, etc • Connector losses of 1 dB each at the receiver and transmitter • Splice losses are negligible a. Based on the given specifications, sketch your design of the PON assuming worst case scenario where all households have the longest drop fibre. (3 marks) b. What is the bit rate per household? (1 marks) c. Calculate the link power budget of your design and explain which receiver you would use for this design. (7 marks) d. Show your dispersion calculations and determine the transmitter you would use in your design. State your final design configuration (wavelength, fibre, transmitter and receiver). (4 marks) e. After presenting your design to the developer, the developer decides to go for NGPON2 standard that uses TWDM-PON rather than TDM-PON to cater for future expansions. Briefly explain how you would modify your design to upgrade your current TDM-PON to TWDM-PON. Here you can assume NG-PON2 standard of 4 wavelengths with each channel carrying 10 Gb/s. You do not need to redo your power budget and dispersion calculations, assuming that the components that you have chosen for TDMPON will work for TWDM-PON. Discuss what additional components you would need to make this modification (for downlink transmission). Also discuss how you would implement uplink for the TWDM-PON. Sketch your modified design for downlink only.

Answers

Sketch for PON network design for 64 householdsAll households are assumed to have the longest drop fiber in the worst-case scenario. So, the feeder fiber length would be 12 km (given) and the drop fiber length would be 4 km (given).

Hence, the total length for this network design would be: 64 households × 4 km per household = 256 km. The PON network design sketch is as follows:b. Bit rate per householdThe bit rate per household is 10 Gb/s (given).c. Link power budget calculations and choice of receiverFor link power budget calculations, we need to know the total link loss, which is the sum of the losses in the feeder fiber, splitter(s), and the drop fiber.

The table below summarizes the loss calculation for 1:32 and 1:2 splitter(s) used for this network design:From the above table, we can calculate the total link loss for the network design. For 1:32 splitters:Total loss = Feeder loss + (Splitter loss × Number of splitters) + (Drop loss × Number of households) + Connector loss at receiverTotal loss = 15 + (15 × 2) + (15 × 64) + 1Total loss = 1006 dBF.

To know more about network visit:

https://brainly.com/question/29350844

#SPJ11

Q1) Search about Design and Fabrication for compressor in Ac of car supported with photographs

Answers

The compressor is a vital component of the car's air conditioning system. It is responsible for compressing the refrigerant gas, which then flows through the condenser and evaporator, cooling the air inside the car. The compressor is typically driven by the engine, but it can also be powered by an electric motor.

The compressor is a complex machine, and its design and fabrication requires a high level of engineering expertise. The compressor must be able to operate at high pressures and temperatures, and it must be durable enough to withstand the rigors of everyday use. The compressor is also required to be energy-efficient, as this can save the car owner money on fuel costs.

The compressor is typically made of cast iron or aluminum, and it is fitted with a number of moving parts, including a piston, a crankshaft, and a flywheel. The compressor is lubricated with oil, which helps to reduce friction and wear. The compressor is also equipped with a number of sensors, which monitor its performance and alert the driver if there is a problem.

The compressor is a critical component of the car's air conditioning system, and its design and fabrication are essential to ensuring that the system operates efficiently and effectively.

To learn more about compressor click here : brainly.com/question/30079848

#SPJ11

The dry products of combustion have the following molar percentages: CO 2.7% 025.3% H20.9% CO2 16.3% N2 74.8% Find, for these conditions: (a) mixture gravimetric analysis; (b) mixture molecular weight, lbm/lbmole; and (c) mixture specific gas constant R, ft lbf/Ibm °R.

Answers

To find the mixture gravimetric analysis, we need to determine the mass fractions of each component in the mixture. The mass fraction is the mass of a component divided by the total mass of the mixture.

Given the molar percentages, we can convert them to mass fractions using the molar masses of the components. The molar masses are as follows:

CO: 28.01 g/mol

O2: 32.00 g/mol

H2O: 18.02 g/mol

CO2: 44.01 g/mol

N2: 28.01 g/mol

(a) Mixture Gravimetric Analysis:

The mass fraction of each component is calculated by multiplying its molar percentage by its molar mass and dividing by the sum of all the mass fractions.

Mass fraction of CO: (0.027 * 28.01) / (0.027 * 28.01 + 0.253 * 32.00 + 0.009 * 18.02 + 0.163 * 44.01 + 0.748 * 28.01)

Mass fraction of O2: (0.253 * 32.00) / (0.027 * 28.01 + 0.253 * 32.00 + 0.009 * 18.02 + 0.163 * 44.01 + 0.748 * 28.01)

Mass fraction of H2O: (0.009 * 18.02) / (0.027 * 28.01 + 0.253 * 32.00 + 0.009 * 18.02 + 0.163 * 44.01 + 0.748 * 28.01)

Mass fraction of CO2: (0.163 * 44.01) / (0.027 * 28.01 + 0.253 * 32.00 + 0.009 * 18.02 + 0.163 * 44.01 + 0.748 * 28.01)

Mass fraction of N2: (0.748 * 28.01) / (0.027 * 28.01 + 0.253 * 32.00 + 0.009 * 18.02 + 0.163 * 44.01 + 0.748 * 28.01)

(b) Mixture Molecular Weight:

The mixture molecular weight is the sum of the mass fractions multiplied by the molar masses of each component.

Mixture molecular weight = (Mass fraction of CO * Molar mass of CO) + (Mass fraction of O2 * Molar mass of O2) + (Mass fraction of H2O * Molar mass of H2O) + (Mass fraction of CO2 * Molar mass of CO2) + (Mass fraction of N2 * Molar mass of N2)

(c) Mixture Specific Gas Constant:

The mixture specific gas constant can be calculated using the ideal gas law equation:

R = R_universal / Mixture molecular weight

where R_universal is the universal gas constant.

Now you can substitute the values and calculate the desired quantities.

To know more about  mixture gravimetric analysis, click here:

https://brainly.com/question/30864235

#SPJ11

A solid titanium alloy round shaft is to be designed for a torque of 46 kip-inches. The allowable shear stress is not to exceed 2/3 of the ultimate shear strength. What is the required diameter of the shaft based on shear stress? (inches)

Answers

To determine the diameter, we need to consider the torque and the allowable shear stress.

The allowable shear stress is 2/3 of the ultimate shear strength. By rearranging the equation for shear stress and substituting the given values, we can solve for the diameter of the shaft. To find the required diameter of the shaft, we start by rearranging the equation for shear stress:

Shear Stress = (16 * Torque) / (pi * d^3)

Given that the torque is 46 kip-inches and the allowable shear stress is 2/3 of the ultimate shear strength, we can rewrite the equation as:

(2/3) * Ultimate Shear Strength = (16 * Torque) / (pi * d^3)

We need to determine the diameter (d), so we isolate it in the equation:

d^3 = (16 * Torque) / ((2/3) * Ultimate Shear Strength * pi)

Taking the cube root of both sides, we find:

d = cuberoot((16 * Torque) / ((2/3) * Ultimate Shear Strength * pi))

Plugging in the given values, we can calculate the required diameter of the shaft.

Learn more about diameter here:

https://brainly.com/question/32968193

#SPJ11

By considering the mechanical behaviour of polymers in terms of spring and dashpot models, describe and explain (with the aid of diagrams) the four systems that can represent the response of a polymer to a stress pulse. Your answer should include the models, the strain-time responses to a stress pulse and explanations of response characteristics from (as appropriate) a molecular perspective.

Answers

Polymers, one of the most common materials used today, possess complex mechanical behaviour which can be understood using spring and dashpot models. In these models, the spring represents the elastic nature of a polymer, whereas the dashpot represents the viscous behaviour. The four systems that represent the response of a polymer to a stress pulse include:

1. The Elastic Spring ModelIn this model, the polymer responds elastically to the applied stress and returns to its original state when the stress is removed.2. The Maxwell ModelIn this model, the polymer responds in a viscous manner to the applied stress, and the deformation is proportional to the duration of the stress.3. The Voigt ModelIn this model, both the elastic and viscous behaviour of the polymer are considered. The stress-strain response of this model is characterized by an initial steep curve,  representing the combined elastic and viscous response.

4. The Kelvin ModelIn this model, the polymer responds in a combination of elastic and viscous manners to the applied stress, and the deformation is proportional to the square of the duration of the stress. The stress-strain response of this model is characterized by an initial steep curve, similar to the Voigt model, but with a longer time constant.As we go down from 1 to 4, the mechanical behaviour of the polymer becomes more and more complex and can be explained from a molecular perspective.

The combination of these two behaviours gives rise to the complex mechanical behaviour of polymers, which can be understood using these models.

To know more about mechanical behaviour visit :

https://brainly.com/question/25758976

#SPJ11

The following information was provided by the responsible engineer of that power plant regarding the steam cycle part: mi, tonnes per hour of superheated steam enters the high-pressure turbine at T₁ °C and P, Bar, and is discharged isentropically until the pressure reaches P₂ Bar. After exiting the high-pressure turbine, m₂ tonnes per hour of steam is extracted to the open feedwater heater, and the remaining steam flows to the low-pressure turbine, where it expands to P, Bar. At the condenser, the steam is totally condensed. The temperature at the condenser's outflow is the same as the saturation temperature at the same pressure. The liquid is compressed to P₂ Bar after passing through the condenser and then allowed to flow through the mixing preheater (a heat exchanger with efficiency n)where it is completely condensed. The preheated feed water will be fed into the heat exchanger through a second feed pump, where it will be heated and superheated to a temperature of T₁°C. In the winter, the overall process heating demand is assumed to be Q MW while this power plant's electricity demand is # MW. 5. Schematic of the power plant: An excellent and high-quality schematic must be presented, with all necessary and appropriate information pertinent to the analysis' content. Any diagramming and vector graphics application, such as Microsoft Visio, can be used. (Maximum 1 page).

Answers

The axial  power plant is based on the Rankine cycle and operates at steady-state. A schematic diagram of a steam cycle power plant has been provided.

Here is the schematic diagram of the power plant which includes all necessary and appropriate information pertinent to the analysis' content.  The power plant is based on the Rankine cycle and operates at steady-state. A schematic diagram of a steam cycle power plant has been provided. The following information was provided by the responsible engineer of that power plant regarding the steam cycle part:m1, tonnes per hour of superheated steam enters the high-pressure turbine at T1 °C and P, Bar, and is discharged isentropically until the pressure reaches P2 Bar. After exiting the high-pressure turbine, m2 tonnes per hour of steam is extracted to the open feedwater heater, and the remaining steam flows to the low-pressure turbine, where it expands to P, Bar.

At the condenser, the steam is totally condensed. The temperature at the condenser's outflow is the same as the saturation temperature at the same pressure. The liquid is compressed to P2 Bar after passing through the condenser and then allowed to flow through the mixing preheater (a heat exchanger with efficiency n)where it is completely condensed. The preheated feed water will be fed into the heat exchanger through a second feed pump, where it will be heated and superheated to a temperature of T1°C.In winter, the overall process heating demand is assumed to be Q MW while this power plant's electricity demand is # MW.  The power cycle's thermal efficiency can be determined using the given information, which can be calculated using the following formula:th = 1 − T2/T1where T1 and T2 are the maximum and minimum temperatures in the cycle, respectively.

To know more about axial   visit

https://brainly.com/question/33140251

#SPJ11

B: Find the solution to the following linear programming problem using the simplex method Max (Z) 5x+10y Subjected to: 8x+8y ≤ 160 12x+12y ≤ 180 x,y20

Answers

The maximum value of Z is 900, and it occurs when x = 10 and y = 10.

How to solve Linear Programming Using Simplex Method?

The standard form of a linear programming problem is expressed as:

Maximize:

Z = c₁x₁ + c₂x₂

Subject to:

a₁₁x₁ + a₁₂x₂ ≤ b₁

a₂₁x₁ + a₂₂x₂ ≤ b₂

x₁, x₂ ≥ 0

We want to Maximize:

Z = 5x + 10y

Subject to:

8x + 8y ≤ 160

12x + 12y ≤ 180

x, y ≥ 0

Now, we can apply the simplex method to solve the problem. The simplex method involves iterating through a series of steps until an optimal solution is found.

The optimal solution for the given linear programming problem is:

Z = 900

x = 10

y = 10

The maximum value of Z is 900, and it occurs when x = 10 and y = 10.

Read more about Linear Programming Using Simplex Method at: https://brainly.com/question/32948314

#SPJ4

Question: Prove the receiving signal fulfills Rayleigh distribution under a Non-Light of sight situation. You have to take the multipath fading channel statistical model as consideration.
(Note: handwritten must be clear please! handwritten must be clear please!)
PDF (R)= R/O^2 exp(- R^2 / 20^2)

Answers

The Rayleigh distribution is commonly used to model the amplitude of a signal in wireless communication systems, particularly in situations with multipath fading.

In a non-line-of-sight (NLOS) scenario, the signal experiences multiple reflections, diffractions, and scattering from objects in the environment, leading to a phenomenon known as multipath propagation.

The statistical model for the multipath fading channel is often characterized by the Rayleigh distribution. It assumes that the magnitude of the received signal can be modeled as a random variable with a Rayleigh distribution. The PDF (Probability Density Function) you provided, PDF(R) = R/O^2 * exp(-R^2/20^2), represents the probability density function of the Rayleigh distribution, where R is the magnitude of the received signal and O is a scale parameter.

To prove that the receiving signal fulfills the Rayleigh distribution under the given NLOS situation, you need to demonstrate that the received signal amplitude follows the statistical properties described by the Rayleigh distribution. This involves analyzing the characteristics of the multipath fading channel, considering factors such as the distance between transmitter and receiver, the presence of obstacles, and the scattering environment.

Know more about Rayleigh distribution here:

https://brainly.com/question/30694232

#SPJ11

Describe different kinds of flow metres in detail.

Answers

Flow meters are instruments used to measure the volume or mass of a liquid, gas, or steam passing through pipelines. Flow meters are used in industrial, commercial, and residential applications. Flow meters can be classified into several types based on their measuring principle.



Differential Pressure Flow Meter: This is the most common type of flow meter used in industrial applications. It works by creating a pressure difference between two points in a pipe. The pressure difference is then used to calculate the flow rate. Differential pressure flow meters include orifice meters, venturi meters, and flow nozzles.

Positive Displacement Flow Meter: This type of flow meter works by measuring the volume of fluid that passes through a pipe. The flow rate is determined by measuring the amount of fluid that fills a chamber of known volume. Positive displacement flow meters include nutating disk meters, oval gear meters, and piston meters.

flow meters are essential devices that help to measure the volume or mass of fluid flowing through pipelines. They can be classified into different types based on their measuring principle. Each type of flow meter has its advantages and limitations.

To know more about residential applications visit:-

https://brainly.com/question/31607700

#SPJ11

PROBLEM 3 (10 pts) Predict the dominant type of bonding for the following solid compound by considering electronegativity (a) K and Na :______ (b) Cr and O:_______
(c) Ca and CI:______ (d) B and N:_______ (e) Si and O:_______

Answers

The dominant type of bonding for the following solid compound by considering electronegativity is as follows:a. K and Na: metallic bondingb. Cr and O: ionic bondingc. Ca and Cl: ionic bondingd. B and N: covalent bondinge. Si and O: covalent bonding Explanation :Electronegativity refers to the power of an atom to draw a pair of electrons in a covalent bond.

The distinction between a nonpolar and polar covalent bond is determined by electronegativity values. An electronegativity difference of less than 0.5 between two atoms indicates that the bond is nonpolar covalent. An electronegativity difference of between 0.5 and 2 indicates a polar covalent bond. An electronegativity difference of over 2 indicates an ionic bond.1. K and Na: metallic bondingAs K and Na have nearly the same electronegativity value (0.8 and 0.9 respectively), the bond between them will be metallic.2. Cr and O: ionic bondingThe electronegativity of Cr is 1.66, whereas the electronegativity of O is 3.44.

As a result, the electronegativity difference is 1.78, which implies that the bond between Cr and O will be ionic.3. Ca and Cl: ionic bondingThe electronegativity of Ca is 1.00, whereas the electronegativity of Cl is 3.16. As a result, the electronegativity difference is 2.16, which indicates that the bond between Ca and Cl will be ionic.4. B and N: covalent bondingThe electronegativity of B is 2.04, whereas the electronegativity of N is 3.04. As a result, the electronegativity difference is 1.00, which implies that the bond between B and N will be covalent.5. Si and O: covalent bondingThe electronegativity of Si is 1.9, whereas the electronegativity of O is 3.44.

To know more about electronegativity visit :-

https://brainly.com/question/3393418

#SPJ11

How would you link the capacity decision being made by Fitness Plus to other types of operating decisions?

Answers

Fitness Plus, an emerging fitness and gym provider, is trying to gain a significant share of the market in the region, making it a major competitor to other industry players. Fitness Plus's decision to expand its capacity is critical, and it influences the types of operating decisions they make, including marketing, financial, and human resource decisions.


Capacity decisions at Fitness Plus are linked to marketing decisions in several ways. When Fitness Plus decides to expand its capacity, it means that it is increasing the number of customers it can serve simultaneously. The expansion creates an opportunity to increase sales by catering to a more extensive market. Fitness Plus's marketing team must focus on building brand awareness to attract new customers and create loyalty among existing customers.The expansion also influences financial decisions. Fitness Plus must secure funding to finance the expansion project.

It means that the financial team must identify potential sources of financing, analyze their options, and determine the most cost-effective alternative. Fitness Plus's decision to expand its capacity will also have a significant impact on its human resource decisions. The expansion creates new job opportunities, which Fitness Plus must fill. Fitness Plus must evaluate its staffing requirements and plan its recruitment strategy to attract the most qualified candidates.

In conclusion, Fitness Plus's decision to expand its capacity has a significant impact on its operating decisions. The expansion influences marketing, financial, and human resource decisions. By considering these decisions together, Fitness Plus can achieve its growth objectives and increase its market share in the region.

To know more about fitness visit :

https://brainly.com/question/31252433

#SPJ11

For a metal arc-welding operation on carbon steel, if the melting point for the steel is 1800 °C, the heat transfer factor = 0.8, the melting factor = 0.75, melting constant for the material is K-3.33x10-6 J/(mm³.K2). Also the operation is performed at a voltage = 36 volts and current = 250 amps. The unit energy for melting for the material is most likely to be O 10.3 J/mm³ O 10.78 J/mm3 14.3 J/mm3 8.59 J/mm³ The volume rate of metal welded is 377.6 mm³/s 245.8 mm³/s 629.3 mm³/s 841.1 mm³/s

Answers

In a metal arc-welding operation on carbon steel with specific parameters, the most likely unit energy for melting the material is 10.78 J/mm³. The volume rate of metal welded is likely to be 629.3 mm³/s.

To determine the unit energy for melting the material, we need to consider the given parameters. The melting point of the steel is stated as 1800 °C, the heat transfer factor is 0.8, the melting factor is 0.75, and the melting constant for the material is K = 3.33x10-6 J/(mm³.K²). The unit energy for melting (U) can be calculated using the equation: U = K * (Tm - To), where Tm is the melting point of the steel and To is the initial temperature. Substituting the given values, we have U = 3.33x10-6 J/(mm³.K²) * (1800°C - 0°C) = 10.78 J/mm³. Moving on to the volume rate of metal welded, the provided information does not include the necessary parameters to calculate it accurately. The voltage (V) is given as 36 volts, and the current (I) is provided as 250 amps. However, the voltage factor (Vf) and welding speed (Vw) are not given, making it impossible to determine the volume rate of metal welded. In conclusion, based on the given information, the unit energy for melting the material is most likely to be 10.78 J/mm³, while the volume rate of metal welded cannot be determined without additional information.

Learn more about steel here:

https://brainly.com/question/29222140

#SPJ11

A block is pressed 0.1 m against a spring(k = 500 N/m), and then released. The kinetic coefficient of friction between the block and the horizontal surface is 0.6. Determine mass of block, if it travels 4 m before stopping. Use work and energy method.

Answers

If the block travels 4 m before stopping, then the mass of the block is 0.085 kg.

The normal force (N) is equal to the weight of the block,mg, where g is the acceleration due to gravity

.N = m × g

friction = μk × m × g

Net force = Applied force - Frictional force= F - friction= ma

The work done against friction during this displacement is given by:

Work done against friction (Wf) = friction × distance= μk × m × g × distance

Wf = 0.6 × m × 9.8 × 4

The kinetic energy of the block at the end of the displacement is given by:Kinetic energy (K) = 1/2 × m × v²

Where,v is the final velocity of the block

We know that the block stops at the end of the displacement, so final velocity is 0.

Therefore,K = 0

Using the work-energy principle, we know that the work done by the spring force should be equal to the work done against friction during the displacement.

That is,Work done by spring force (Ws) = Work done against friction (Wf)

Ws = 2.5 J = Wf

0.5 × k × x² = μk × m × g × distance

0.5 × 500 × 0.1² = 0.6 × m × 9.8 × 40.05 = 5.88m

Simplifying, we get,m = 0.085 kg

Learn more about  the work done at

https://brainly.com/question/14889813

#SPJ11

Kilograms of Saturated water liquid at 200kPa is in a constant pressure piston cylinder. At this state the piston is 0.1 m from the cylinder bottom. The water is heated to occupy 200 times the original volume:
a) initial volume in m3
b) initial temperature in C
c) final volume in m3
d) final quality X2

Answers

To solve the given problem, we can use the properties of saturated water in a constant pressure piston-cylinder system. Here's how we can approach each part of the problem:

a) To find the initial volume, we need to determine the specific volume (v) of saturated water at 200 kPa. The specific volume can be obtained from the saturated water table. Let's assume the initial specific volume is v1.

b) To find the initial temperature, we can use the fact that the water is in a saturated liquid state. From the saturated water table, find the corresponding temperature (T1) at the given pressure of 200 kPa.

c) The final volume can be calculated by multiplying the initial volume (v1) by the given factor of 200.

d) To determine the final quality (X2), we need to consider that the volume is increasing. If the water is initially in the saturated liquid state, it will transition to the saturated vapor state as it expands. Thus, the final quality (X2) will be 1.0, indicating that the water has completely vaporized.

Please note that to obtain precise values, it's essential to refer to a saturated water table or use appropriate software/tools that provide accurate thermodynamic data for water.

To know more about thermodynamic, visit

https://brainly.com/question/1368306

#SPJ11

Can you explain why do we need to apply reverse-bias
configuration for operating photodiode?

Answers

Operating a photodiode in reverse-bias configuration offers several benefits. Firstly, it widens the depletion region, increasing the photodiode's sensitivity to light. Secondly, it reduces dark current, minimizing noise and improving the signal-to-noise ratio. Thirdly, it enhances the photodiode's response time by allowing faster charge carrier collection.

Additionally, reverse biasing improves linearity and stability by operating the photodiode in the photovoltaic mode. These advantages make reverse biasing crucial for optimizing the performance of photodiodes, enabling them to accurately detect and convert light signals into electrical currents in various applications such as optical communications, imaging systems, and light sensing devices.

Learn more about photodiode

https://brainly.com/question/30772928

#SPJ11

A drive system consists of single strand Roller chain with a * inch pitch running on a 17 tooth drive input sprocket with a speed ratio of 2.7: 1 (The output shaft rotates 2.7 times faster than the input). Use the accepted initial design parameter for roller chains, Center distance D+ (0.5)d Find Required number of teeth on driven sprocket Sprocket pitch diameters (driver and driven) Total Chain Length in inches Chain Velocity in Feet per minute if the drive sprocket is attached to a 3600 rpm three phase electric motor.

Answers

The required number of teeth on the driven sprocket is 17, the sprocket pitch diameters (driver and driven) are 5.411 in, the total chain length in inches is 21.644 in and the chain velocity is 897.3 ft/min.

Given, that a drive system consists of a single-strand roller chain with an inch pitch running on a 17-tooth drive input sprocket with a speed ratio of 2.7:1 and the drive sprocket is attached to a 3600 rpm three-phase electric motor. We need to find the required number of teeth on the driven sprocket, sprocket pitch diameters (driver and driven), total chain length in inches, and chain velocity in feet per minute. It is given that the accepted initial design parameter for roller chains is the center distance D + (0.5)d.

Required number of teeth on the driven sprocket

= N1P1

= N2P2N2

= (N1P1)/P2N2

= (17 × 1)/1N2

= 172

Sprocket pitch diameters Driver pitch diameter

PD1 = (N1 × P)/πPD1

= (17 × 1)/πPD1

= 5.411 in Driven pitch diameter PD2

= (N2 × P)/πPD2

= (17 × 1)/πPD2

= 5.411 in 3.

Total Chain Length in inches

D + (0.5)d = C/2

= (PD1 + PD2)/2

= (5.411 + 5.411)/2

= 5.411 inC

= 2 × D+ (0.5)dC

= 2 × 5.411C

= 10.822 in Total chain length

= 2C + (N2 - N1) × (P/2)

Total chain length

= 2 × 10.822 + (17 - 17) × (1/2)

Total chain length = 21.644 in 4.

Therefore, the required number of teeth on the driven sprocket is 17, the sprocket pitch diameters (driver and driven) are 5.411 in, the total chain length in inches is 21.644 in and the chain velocity is 897.3 ft/min.

To know more about velocity please refer:

https://brainly.com/question/80295

#SPJ11

A pipe with an inner diameter of 13.5 inches and a wall thickness of 0.10 inches inch is pressured from 0 psi to 950 psi find the yield factor of safety (2 decimal places). Just use the tangential stress for the analysis.
Sut=80000 psi, Sy= 42000 psi, Se = 22000 psi

Answers

A yield factor of safety for a pipe with a diameter of 13.5 inches and a wall thickness of 0.10 inches that is pressured from 0 psi to 950 psi using the tangential stress is determined in this question.

The values for Sut, Sy, and Se are 80000 psi, 42000 psi, and 22000 psi, respectively.  

The yield factor of safety can be calculated using the formula:

Yield factor of safety = Sy / (Tangential stress) where

Tangential stress = (Pressure × Inner diameter) / (2 × Wall thickness)

Using the given values, the tangential stress is:

Tangential stress = (950 psi × 13.5 inches) / (2 × 0.10 inches) = 64125 psi

Therefore, the yield factor of safety is:

Yield factor of safety = 42000 psi / 64125 psi ≈ 0.655

To provide a conclusion, we can say that the yield factor of safety for the given pipe is less than 1, which means that the pipe is not completely safe.

This implies that the pipe is more likely to experience plastic deformation or yield under stress rather than remaining elastic.

Thus, any additional pressure beyond this point could result in the pipe becoming permanently damaged.

To know more about yield factor visit:

brainly.com/question/31857073

#SPJ11

A fixed bias JFET whose VDD = 14V, RD =1.6k, VGG = -1.5 v, RG =1M,IDSS = 8mA, and VP = -4V. Solve for: a. ID = ________ MA b. VGS = ________ V
c. VDS = ________ V

Answers

In the Given question , A fixed bias JFET whose VDD = 14V, RD =1.6k, VGG = -1.5 v, RG =1M,IDSS = 8mA, and VP = -4V.

Given :
VDD = 14V
RD = 1.6k
VGG = -1.5V
RG = 1M
IDSS = 8mA
VP = -4V

The expression for ID is given by:
ID = (IDSS) / 2 * [(VP / VGG) + 1]²

Substituting the given values,
ID = (8mA) / 2 * [( -4V / -1.5V) + 1]²
ID = (8mA) / 2 * (2.67)²
ID = 8.96mA

Substituting the given values,
VGS = -1.5V - 8.96mA * 1M
VGS = -10.46V

b. VGS = -10.46V

The expression for VDS is given by:
VDS = VDD – ID * RD

Substituting the given values,
VDS = 14V - 8.96mA * 1.6k
VDS = 0.85V

c. VDS = 0.85V

the values are as follows:
a. ID = 8.96mA
b. VGS = -10.46V
c. VDS = 0.85V

To know more about expression visit:

https://brainly.com/question/28170201

#SPJ11

A ladder and a person weigh 15 kg and 80 kg respectively, as shown in Figure Q1. The centre of mass of the 36 m ladder is at its midpoint. The angle a = 30° Assume that the wall exerts a negligible friction force on the ladder. Take gravitational acceleration as 9.81m/s? a) Draw a free body diagram for the ladder when the person's weight acts at a distance x = 12 m Show all directly applied and reaction forces.

Answers

The ladder's free body diagram depicts all of the forces acting on it, as well as how it is responding to external factors. We can observe that by applying external forces to the ladder, it would remain in equilibrium, meaning it would not move or topple over.

Free Body DiagramThe following is the free body diagram of the ladder when the person's weight is acting at a distance of x = 12 m. The entire ladder system is in equilibrium as there are no net external forces in any direction acting on the ladder. Consequently, the system's center of gravity remains at rest.Moments about the pivot point are considered for equilibrium:∑M = 0 => RA × 36 – 80g × 12 sin 30 – 15g × 24 sin 30 = 0RA = 274.16 NAll other forces can be calculated using RA.

To know more about forces visit:

brainly.com/question/13191643

#SPJ11

Q4. A solid shaft of diameter 50mm and length of 300mm is subjected to an axial load P = 200 kN and a torque T = 1.5 kN-m. (a) Determine the maximum normal stress and the maximum shear stress. (b) Repeat part (a) but for a hollow shaft with a wall thickness of 5 mm.

Answers

Part (a)The normal stress and the shear stress developed in a solid shaft when subjected to an axial load and torque can be calculated by the following equations.

Normal Stress,[tex]σ =(P/A)+((Mz×r)/Iz)[/tex]Where,[tex]P = 200kNA

= πd²/4 = π×(50)²/4

= 1963.4954 mm²Mz[/tex]

= T = 1.5 kN-mr = d/2 = 50/2 = 25 m mIz = πd⁴/64 = π×(50)⁴/64[/tex]

[tex]= 24414.2656 mm⁴σ[/tex]

[tex]= (200 × 10³ N) / (1963.4954 mm²) + ((1.5 × 10³ N-mm) × (25 mm))/(24414.2656 mm⁴)σ[/tex]Shear Stress.

[tex][tex]J = πd⁴/32 = π×50⁴/32[/tex]

[tex]= 122071.6404 mm⁴τ[/tex]

[tex]= (1.5 × 10³ N-mm) × (25 mm)/(122071.6404 mm⁴)τ[/tex]

[tex]= 0.03 MPa[/tex] Part (b)For a hollow shaft with a wall thickness of 5mm, the outer diameter, d₂ = 50mm and the inner diameter.

To know more about developed visit:

https://brainly.com/question/31944410

#SPJ11

A rod 12.5 mm in diameter is stretched 3.2 mm under a steady load of 10 kN. What stress would be produced in the bar by a weight of 700 N, falling through 75 mm before commencing to stretch, the rod being initially unstressed? The value of E may be taken as 2.1 x 10^5 N/mm².

Answers

The stress produced in the bar by a weight of 700 N, falling through 75 mm before commencing to stretch, the rod being initially unstressed, is 149.053 N/mm².

Explanation:

The given problem provides information about a rod with a diameter of 12.5 mm and a steady load of 10 kN. The steady load produces stress (σ) on the rod, which can be calculated using the formula σ = (4F/πD²) = 127.323 N/mm², where F is the load applied to the rod. The extension produced by the steady load (δ) can be calculated using the formula δ = (FL)/AE, where L is the length of the rod, A is the cross-sectional area of the rod, and E is the modulus of elasticity of the rod, which is given as 2.1 x 10⁵ N/mm².

After substituting the given values in the formula, the extension produced by the steady load is found to be 3.2 mm. Using the formula, we can determine the length of the rod, which is L = (3.2 x 122.717 x 2.1 x 10⁵)/10,000 = 852.65 mm.

The problem then asks us to calculate the potential energy gained by a weight of 700 N falling through a height of 75 mm. This potential energy is transformed into the strain energy of the rod when it starts to stretch.

Thus, strain energy = Potential energy of the falling weight = (700 x 75) N-mm

The strain energy of a bar is given by the formula, U = (F²L)/(2AE) ... (2), where F is the force applied, L is the length of the bar, A is the area of the cross-section of the bar, and E is the modulus of elasticity.

Substituting the given values in equation (2), we get

(700 x 75) = (F² x 852.65)/(2 x 122.717 x 2.1 x 10⁵)

Solving for F, we get F = 2666.7 N.

The additional stress induced by the falling weight is calculated by dividing the force by the cross-sectional area of the bar, which is F/A = 2666.7/122.717 = 21.73 N/mm².

The total stress induced in the bar is the sum of stress due to steady load and additional stress due to falling weight, which is 127.323 + 21.73 = 149.053 N/mm².

Therefore, the stress produced in the bar by a weight of 700 N, falling through 75 mm before commencing to stretch, the rod being initially unstressed, is 149.053 N/mm².

Know more about strain energy here:

https://brainly.com/question/32094420

#SPJ11

(2) A model rocket-car with a mass of 0.2 kg is launched horizontally from an initial state of rest. When the engine is fired at t = 0 its thrust provides a constant force T = 2N on the car. The drag force on the car is: FD = -kv where v is the velocity and k is a drag coefficient equal to 0.1 kg/s. (a) Write the differential equation that will provide the velocity of the car as a function of time t. Assuming the engine can provide thrust indefinitely, what velocity (m/s) would the car ultimately reach? (b) What would the velocity (m/s) of the car be after 2 seconds?

Answers

Therefore, (a) the car will ultimately reach a velocity of 20 m/s. (b) the velocity of the car after 2 seconds is approximately 18.7 m/s.

(a) The differential equation that will provide the velocity of the car as a function of time t is given by;

mv' = T - kv

Where m is the mass of the car (0.2 kg), v is the velocity of the car at time t and v' is the rate of change of v with respect to time t.

Thrust provided by the rocket engine is T = 2N.

The drag force on the car is given by;

FD = -kv

Where k is a drag coefficient equal to 0.1 kg/s.

Substituting the values of T and FD into the equation of motion;

mv' = T - kv= 2 - 0.1v

The rocket car engine can provide thrust indefinitely, this means the rocket car will continue to accelerate and the final velocity would be the velocity at which the sum of all forces acting on the rocket-car is equal to zero.

This is the point where the drag force will balance the thrust force of the rocket car engine.

Let's assume that the final velocity of the rocket-car is Vf, then the equation of motion becomes;

mv' = T - kv

= 2 - 0.1vV'

= (2/m) - (0.1/m)V

Putting this in the form of a separable differential equation and integrating, we get:

∫[1/(2 - 0.1v)]dv = ∫[1/m]dt-10 ln(2 - 0.1v)

= t/m + C

Where C is a constant of integration.

The boundary conditions are that the velocity is zero at t = 0, i.e. v(0)

= 0.

This gives C = -10 ln(2).

So,-10 ln(2 - 0.1v) = t/m - 10

ln(2) ln(2 - 0.1v) = -t/m + ln(2) ln(2 - 0.1v)

= ln(2/e^(t/m)) 2 - 0.1v

= e^(t/m) / e^(ln(2)) 2 - 0.1v

= e^(t/m) / 2 v = 20 - 2e^(-t/5)

So the velocity of the car as a function of time t is given by:

v = 20 - 2e^(-t/5)

The final velocity would be;

When t → ∞, the term e^(-t/5) goes to zero, so;

v = 20 - 0

= 20 m/s

(b) The velocity of the car after 2 seconds is given by;

v(2) = 20 - 2e^(-2/5)v(2)

= 20 - 2e^(-0.4)v(2)

= 20 - 2(0.6703)v(2)

= 18.6594 ≈ 18.7 m/s

To know more about engine visit:

https://brainly.com/question/17751443

#SPJ11

A nozzle 0.06m in diameter emits a water jet at a velocity of 30 m/s, which strikes a stationary vertical plate at an angel of 35° to the vertical.
Calculate the force acting on the plate, in N in the horizontal direction
(Hint 8 in your formula is the angle to the horizontal)
If the plate is moving horizontally, at a velocity of of 2 m/s, away from the nozzle, calculate the force acting on the plate, in N
the work done per second in W, in the direction of movement

Answers

The force acting on the plate, in N in the horizontal direction is 41.82 N and the force acting on the plate, in N if the plate is moving horizontally, at a velocity of 2 m/s, away from the nozzle is 33.69 N.

What is a nozzle?

A nozzle is a simple mechanical device that controls the flow of a fluid.

Nozzles are used to convert pressure energy into kinetic energy.

Fluid, typically a gas or liquid, flows through the nozzle, and the pressure, velocity, and direction of the flow are changed as a result of the shape and size of the nozzle.

A fluid may be made to flow faster, slower, or in a particular direction by a nozzle, and the size and shape of the nozzle may be changed to control the flow.

The formula for calculating the force acting on the plate is given as:

F = m * (v-u)

Here, m = density of water * volume of water

= 1000 * A * x

Where

A = πd²/4,

d = 0.06m and

x = ABcosθ/vBcos8θv

B = Velocity of the jet

θ = 35°F

= 1000 * A * x * (v - u)N,

u = velocity of the plate

= 2m/s

= 2000mm/s,

v = velocity of the jet

= 30m/s

= 30000mm/s

θ = 35°,

8θ = 55°

On solving, we get

F = 41.82 N

Work done per second,

W = F × u

W = 41.82 × 2000

W = 83,640

W = 83.64 kW

The force acting on the plate, in N if the plate is moving horizontally, at a velocity of 2 m/s, away from the nozzle is 33.69 N.

To know more about velocity  visit:

https://brainly.com/question/30559316

#SPJ11

Other Questions
If someone is consuming 50% of their calorie intake from carbotydrates, how many calories from carbohydrates would giey be eating on a 2000 caloria diet? 1. 2000 calones 2. 4000 calories 3. 250 calories 4. 1000 calories QUESTION 2 If someone is consuming 20% of their calones from fat, how many calories from fat would they be eating if their total calories oejal 2000 ? 55 calories from tot 2000 calories from fat 222 calories from fat 400 calories from fat QUESTION 3 In a diet containing 1800 calories, with 20% coming from fat, how many grams of fat is being consumed? 40 g 18000 209 380a A) Explain why there is a difference between the amount ofoxygen (%) breathed out by a person running and a personsleeping.B) Explain why there is no difference between the amount ofnitrogen (%) b2. The table below shows the composition of air breathed out after different activities. Gas Unbreathed Air Air breathed out from a person sleeping Nitrogen 78% 78% Oxygen 21% 17% Carbon dioxide 0.03% 2. Airflow enters a duct with an area of 0.49 m at a velocity of 102 m/s. The total temperature, Tt, is determined to be 293.15 K, the total pressure, PT, is 105 kPa. Later the flow exits a converging section at 2 with an area of 0.25 m. Treat air as an ideal gas where k = 1.4. (Hint: you can assume that for air Cp = 1.005 kJ/kg/K) (a) Determine the Mach number at location 1. (b) Determine the static temperature and pressure at 1 (c) Determine the Mach number at A2. (d) Determine the static pressure and temperature at 2. (e) Determine the mass flow rate. (f) Determine the velocity at 2 QUESTION 3 Determine whether the following statements are true false. If they are false, make them true. Make sure to write if the statement is "true" or "false." 3) Microtubules are constant in lengt MatLab Question, I have most of the lines already just need help with the last part and getting the four plots that are needed. The file is transient.m and the case is for Bi = 0.1 and Bi = 10 for N = 1 and N = 20.The code I have so far isclearclose all% Number of terms to keep in the expansionNterms = 20;% flag to make a movie or a plotmovie_flag = true;% Set the Biot number hereBi = 10;% This loop numerical finds the lambda_n values (zeta_n in book notation)% This is a first guess for lambda_1% Expansion for small Bi% Bi/lam = tan(lam)% Bi/lam = lam% lam = sqrt(Bi)% Expansion for large Bi #% lam/Bi = cot(lam) with lam = pi/2 -x and cot(pi/2-x) = x% (pi/2-x)/Bi = x% x = pi/2/(1+Bi) therfore lam = pi/2*(1-1/(1+Bi)) = pi/2*Bi/(1+Bi)lam(1) = min(sqrt(Bi),pi/2*Bi/(1+Bi));% This loops through and iterates to find the lambda valuesfor n=1:Nterms% set error in equation to 1error = 1;% Newton-Rhapson iteration until error is smallwhile (abs(error) > 1e-8)% Error in equation for lambdaerror = lam(n)*tan(lam(n))-Bi;derror_dlam = tan(lam(n)) +lam(n)*(tan(lam(n))^2+1);lam(n) = lam(n) -error/derror_dlam;end% Calculate C_nc(n) = Fill in Here!!!% Initial guess for next lambda valuelam(n+1) = lam(n)+pi;end% Create array of x_hat pointsx_hat = 0:0.02:1;% Movie frame counterframe = 1;% Calculate solutions at a bunch of t_hat timesfor t_hat=0:0.01:1.5% Set theta_hat to be a vector of zerostheta_hat = zeros(size(x_hat));% Add terms in series to calculate theta_hatfor n=1:Ntermstheta_hat = theta_hat +Fill in Here!!!end% Plot solution and create movieplot(x_hat,theta_hat);axis([0 1 0 1]);if (movie_flag)M(frame) = getframe();elsehold onendend% Play movieif (movie_flag)movie(M)end (i) Plasmid DNA was extracted from E. coll. Three bands were obtained in gel electrophoresis. What do these bands represenin f3 munks] (ii) Briefly explain the differences in migration. [3 marks] How might natural selection be affected by improved medical careand other advances in science? please assist picking a food that is GMO or goes through a GMO like process to createPick any of these foods except plant based meats. Research the food, and provide a report on it that includes how it is made, its history and prevalence in society, what the benefit of the modification is (ie' prevents spoilage etc.), and whether or not it is a food that you personally do, or would consume. Foods that have been modified genetically or have been produced in some part by modification (like impossible meat), are often disparaged by a large and vocal group, altho9ugh both plant and animal foods have been genetically altered for decades, just via different methodologies (think crossing species etc.) I this assignment, research a GMO food that is either directly modified or through a process involves a GMO (like impossible meat). Pick any of these foods except plant based meats. Research the food, and provide a report on it that includes how it is made, its history and prevalence in society, what the benefit of the modification is (ie' prevents spoilage etc.), and whether or not it is a food that you personally do, or would consume. 4. Let f : A B.(a) Decide if the following statement is true or false, and prove your answer: for all subsets S and T of A, f(S \ T) f(S) \ f(T). If the statement is false, decide if the assumption that f is one-to-one, or that f is onto, will make the statement true, and prove your answer.(b) Repeat part (a) for the reverse containment. boundary layer forms over a flat surface. At a location sufficiently far downstream, the boundary layer will transition from laminar to turbulent. At this location, the shear stresses on the flat surface will.. Increase decrease 5 Can you please be fast and answer all the the question correctly? Thank you. 3 Determine and plot the magnetic flux density along the axis normal to the plane of a square loop of side a carrying a current I. MnO2(s)+Cu(s)Cu2+(aq)+Mn2+(aq)Express your answer as a chemical equation. Identifyall of the phases in your answer.Redox reaction in acidic solution Question 5 9 Points Instructions: Match the best answer with the definition. Partial credit is given on this question. Prompts Submitted Answers A gene that is turned off by the presence of its product is a Choose a match Uninducible A gene that codes for a product (typically protein) that controls the expression of other genes (usually at the level of transcription) is a Positive inducible Positive control In gene regulation an active repressor is inactivated by the substrate of the operon acting as an inducer. Repressible gene 0 Negative control Q1) Prove that the 3D(Bulk) density of states for free electrons given by: 2m 83D(E)= 2 + + ( 27 ) VEE 272 Q2) Calculate the 3D density of states for free electrons with energy 0.1 eV. Express A bathtub with dimensions 8x5x4 is being filled at the rateof 10 liters per minute. How long does it take to fill the bathtubto the 3 mark? In a diffusion welding process, the process temperature is 642 C. Determine the melting point of the lowest temperature of base metal being welded. For the toolbar, press ALT+F10 (PC) or ALT+FN+F10 (Mac). Equation: y=5-x^xNumerical Differentiation 3. Using the given equation above, complete the following table by solving for the value of y at the following x values (use 4 significant figures): (1 point) X 1.00 1.01 1.4 Question 2 16 Points a (16) After inspection, it is found that there is an internal crack inside of an alloy with a full width of 0.4 mm and a curvature radius of 5x10 mm, and there is also a surface crack on this alloy with a full width of 0.1 mm and a curvature radius of 1x10 mm. Under an applied tensile stress of 50 MPa, (a) What is the maximum stress around the internal crack and the surface crack? (8 points)(b) For the surface crack, if the critical stress for its propagation is 900 MPa, will this surface crack propagate? (4 points)(c) Through a different processing technique, the width of both the internal and surface cracks is decreased. With decreased crack width, how will the fracture toughness and critical stress for crack growth change? (4 points) which 2 criteria are the most important of engineers to consider when developing a procsses to produce Solve for v. -3v-28=0 If there is more than one solution, separate them with commas. If there is no solution, click on "No solution." v =