6. bacterial strategies for evading host defense systems a.different parts of the host defense system work together to eliminate invading bacteria.give some examples of how virulence factors could work together to make a pathogenbetter able to cause infection.

Answers

Answer 1

The virulence factors help a pathogen to invade, cause and evade the host.

Movement and attachment also are crucial issues for bacterial virulence. The flagella, which aids in movement, can assist micro organism unfold. The flagellum is a key virulence thing in urinary tract infections as it facilitates the micro organism unfold up the urethra. The shorter filaments are Pilli. The following are varieties of virulence factors include many pathogenic micro organism colonize mucosal web sites via way of means of the usage of pili (fimbriae) to stick to cells.

Therefore, pathogenic micro organism colonize mucosal web sites.

To learn more about pathogens check the link below:

https://brainly.com/question/1273396

#SPJ4


Related Questions

Which blood vessels receive lymph from the right lymphatic duct and the thoracic duct?.

Answers

Answer:

Brachiocephalic veins are responsible for this function.

safing is a high-temperature, highly fire-resistance mineral batt material that is inserted between a curtain wall panel and the edge of the floor slab to block the passage of from one floor to the next.

Answers

Products made of Safing mineral wool insulation are intended for use in firestopping applications

what does fire resistance refers to ?

The amount of fire resistance a material exhibits is frequently determined by how long it can withstand a standard test fire.

Gypsum-based assemblies that are fire-resistant rated slow or stop the spread of fire, offer time for escape, and reduce fire damage. This passive fire resistance is provided for walls, ceilings, floors, and other building systems. According to the local building and fire codes, passive fire prevention measures are designed to stop the spread of fire and smoke for a brief period of time.

Products made of Safing mineral wool insulation are intended for use in firestopping applications such as construction joints, floor and wall penetrations, and perimeter fire containment systems.

To learn more about fire resistance follow the given link: https://brainly.com/question/14447720

#SPJ4

As blood glucose levels increase, hormones are released to return glucose levels to normal. This is an example of.

Answers

Blood glucose (blood sugar) should be kept in a very specific range by the human body. These two hormones, insulin and glucagon, are responsible for this. Both glucagon and insulin are considered pancreatic endocrine hormones since they are both released by the pancreas.

What hormone triggers a return to normal blood sugar levels?

Together with the hormone insulin, glucagon regulates blood sugar levels and helps to maintain target ranges. Insulin is released to prevent blood sugar levels from increasing too high while glucagon is released to prevent blood sugar levels from falling too low (hypoglycemia).

What happens to blood sugar and hormone levels after eating?

The blood glucose levels fall four to six hours after a meal. This stimulates the pancreatic. glucagon production. This hormone instructs the muscles in your body to release the stored glycogen and turn it back into glucose.

To know more about blood glucose visit :-

https://brainly.com/question/8394646

#SPJ4

the infection of cells by the human immunodeficiency virus (hiv) requires the virus to bind to the cell surface molecule cd3 and a second coreceptor molecule, ccr5 or cxcr4. in scandinavian populations a mutation in ccr5 results in functional loss of ccr5 expression and exists at an allelic frequency of about 10 to 18 percent. homozygous loss-of-function carriers are protected from infection by hiv strains that bind ccr5, and this mutation is also believed to have been protective against smallpox infection. this ccr5 mutation is evidence that mutations

Answers

The two kinds of HIV resistance that exist are caused by a genetic variation called CCR5-delta 32. HIV is prevented from entering immune cells by CCR5-delta 32.

The CCR5 co-receptor cells exteriors shrinks more than usual and stops sticking out from the cell as a result of the mutation. The CCR5 co-receptor functions as a doorway for HIV to enter cells. In a sense, the CCR5-delta 32 mutation "locks the door," preventing HIV from entering the cell. 1% of Northern European descendants, especially Swedes, are immune to HIV infection. These fortunate individuals are homozygous carriers of the mutant gene, which means they received a copy from each parent. One copy of the gene was inherited by an additional 10–15% (some sources put the percentage as high as 18%) of people of European ancestry. A mutation with only one copy does not protect against infection. But it does slow the spread of AIDS and lessen the risk of infection for carrier. The CCR5-delta 32 mutation has not been identified in Africans, East Asians, or Amerindians because it is primarily associated with the Eurasia region.

Learn more about HIV

https://brainly.com/question/20890118

#SPJ4

50 points

During telephase, the

A. Nuclear membrane breaks down

B. Spindle fibers reappear

C. Chromosomes have reached opposite poles of the cell

D. Chromosomes replicate

Answers

Answer:

C.

Explanation:

By telophase, the chromosomes are moved to opposite poles.

In autonomic motor pathways, the nerve signal must travel along ____________ neurons to reach a target cell.

Answers

The nerve signal must pass via two neurons in autonomic motor pathways before it may get to the target cell.

How do signals leave the autonomic nervous system?

Action potentials are produced by neurons and are sent along their axons. They then release chemicals known as neurotransmitters across a synapse to send messages. These chemicals cause another effector cell or neuron to respond.

What are the autonomic nervous system's motor pathways?

The main salivary glands, the contraction and relaxation of the stomach and oesophagus, saliva output from those glands, and likely even the cardiovascular system are all controlled by autonomic pathways.

To know more about Neurons visit:-

brainly.com/question/29462317

#SPJ4

Which of these observations is NOT expected based on our current theory of solar systems evolving from a solar nebula?

A) The planets orbit in the same plane around the sun
B) The sun spins in the same direction as the orbits of the planets
C) Some planets have similar compositions to the sun
D) The discovery of giant gas planets very near their host star

Answers

The observations which is not expected based on our current theory of solar systems evolving from a solar nebula is that the discovery of giant gas planets very near their host star and  is therefore denoted as option D.

What is Solar system?

This is referred to as the gravitationally bound system of the Sun and the objects that orbit it and consists of various types of elements such as planets. sun etc.

The theory of solar systems evolving from a solar nebula is that it contains elements such as gas and dusts and the planets obit in the same plane around the sun which makes them coplanar.

The sun spins in the same direction as the orbits of the planets and some of the planets have similar compositions to the sun which is therefore the reason why option D was chosen as the correct choice.

Read more about Solar system here https://brainly.com/question/1286910

#SPJ1

In relation to their position in a food chain, what do plants and photosynthetic algae have in common?.

Answers

Both plants and photosynthetic algae are producers in relation to their position in a food chain.

Autotrophs, another name for producers, grow their own food. Every food chain's initial level is comprised of these. Plants or single-celled creatures are the majority of autotrophs. The majority of autotrophs produce their "food" (a nutrient called glucose) from sunlight, carbon dioxide, and water through a process known as photosynthesis.

Algae are at the bottom of the food chain in an ecological sense. They mark the start of the process by which solar energy moves from biomass up the food chain to apex predators. This primary production is mostly due to phytoplankton.

For more questions like Algae click the link below:

https://brainly.com/question/19236050

#SPJ4

when a motor neuron sends only one ap to the neuromuscular junction, what would you observe in most muscles in vertebrates

Answers

When a nerve impulse arrives at the neuromuscular junction, hundreds of small vesicles (pouches) containing the neurotransmitter acetylcholine are released from the axon tip into the synapse.

A synapse is formed when the tip of each axon comes into contact with a muscle fiber. A neuromuscular junction is a type of synapse that connects a motor neuron axon to a muscle fiber.

The musculature of vertebrates is often classified into three categories based on its microscopic structure: striated, cardiac, and smooth muscle. The involuntary, or autonomic, nervous system controls smooth and cardiac muscle.

Learn more about to motor neuron  visit here;

https://brainly.com/question/29368083

#SPJ4

which cells migrate to the gonads, where they differentiate into immature cells that will eventually become sperm or oocytes?

Answers

Germline cycle. Shortly after the formation of the diploid zygote, the germ cells differentiate from the somatic cells that will give rise to the rest of the organism.

These primordial germ cells migrate and then interact with specific somatic cells to form the gonad. In most animals, including many vertebrates, the unfertilized egg is asymmetric, with different regions of the cytoplasm containing different sets of mRNA and protein molecules. Primordial germ cells originate in the endoderm of the yolk sac and migrate to the genital ridge to form the indifferent gonad. Gonads 46,XY and 46,XX are initially indistinguishable. Primordial germ cells are highly specialized cells that are precursors to gametes that, after meiosis, develop into haploid sperm and eggs that generate a new organism after fertilization. They transmit genetic and epigenetic information between generations and ensure the survival of a species. In mammals, meiosis occurs only in the gamete-producing cells within the gonads. During meiosis, homologous (paired) chromosomes separate, and haploid cells are formed that have only one chromosome from each pair.

To learn more about unfertilized  please click on below link

https://brainly.com/question/14159530

#SPJ4

Which lipids are long chains of fatty acids?

Answers

one molecule of glycerol.

Describe the similarities and differences between carbohydrates and the other three classes of biomolecules

Answers

Answer:

All are biomolecules, all are organic compounds, with C and H as essential elements, all have structural as well as functional roles.

Explanation:

what is the purpose of a sensory homunculus? a. it maps out the somatosensory cortex in relationship to the corresponding motor outputs. b. it shows how areas of the body are represented in the primary somatosensory cortex on the basis of sensitivity. c. it delineates which areas of the somatosensory cortex require the greatest oxygen and glucose supply. d. it demonstrates how our sensory inputs are connected to the central nervous system.

Answers

Option (b) It shows how regions of the body are represented in the primary somatosensory cortex based on sensitivity.

A sensory homunculus is a topographic representation of the body's sensory distribution found in the cerebral cortex. It is a map along the cerebral cortex where every part of the body is processed. Sensations occur throughout the body. Impulses from the body are sent to the spinal cord and eventually processed back to the brain. The trigeminal nerve carries sensations of the face. The sensory homunculus describes how much representation each part of the body has in the sensory cortex, emphasizing the human hand and face. We gather most of our senses to form perceptions. And, sensory pathways from the skin that convey information about pain, temperature, and touch are mapped onto the somatosensory cortex. This mapping of our touch onto the cortex provides a representation of the body, named the homunculus by its discoverer, Wilder Penfield.

To learn about homunculus click here https://brainly.com/question/28157895

#SPJ4

which of the following statements is true? a. the basic contractile unit for skeletal and smooth muscle is the sarcomere. b. troponin is a protein found in skeletal, but not smooth, muscle. c. the mechanism mediating the release of calcium from the sarcoplasmic reticulum is the same in both smooth and skeletal muscle.

Answers

c. Both skeletal and smooth muscle use the same mechanism to release calcium from the sarcoplasmic reticulum.

Does troponin affect smooth muscle?

This discovery puts the troponin proteins in a position to function as a regulator of smooth muscle contraction by showing that they are linked to actin filaments within smooth muscle tissues.

Protein molecules called troponins are found in skeletal and cardiac muscle. Troponins are absent from smooth muscle cells. Troponin I, T, and C are the three different forms of troponins.

In smooth muscle, there is no troponin complete protein. Calmodulin functions as troponin in smooth muscles, activates myosin light chain kinase, and results in myosin head attachment to actin.

A particular class of protein called troponin is present in the heart's muscles. Blood often does not contain troponin. Troponin is released into the bloodstream when the heart muscles are harmed.

To learn more about smooth muscle refer to:

https://brainly.com/question/13903265

#SPJ4

What is the total number of atp molecules produced through cellular respiration per molecule of glucose?.

Answers

Per molecule of glucose, cellular respiration results in the production of 38 atp molecules in total.

Do cells produce 36 or 38 ATP during respiration?

As a result, a single molecule of glucose can produce up to 36 molecules of ATP throughout the process of cellular respiration. A series of procedures known as glycolysis converts glucose into two pyruvate molecules, each of which has three carbons, and uses them to produce energy.

How is 38 ATP produced from glucose?

Aerobic respiration results in a net ATP gain of 38 from one glucose molecule. The electron transport system's oxidative phosphorylation, the link reaction, the TCA cycle, and ATP produced during glycolysis are all included.

To know more about glucose visit:-

https://brainly.com/question/2396657

#SPJ4

Next, you would like study the gene that you ligated into the plasmid in part b. From that experiment, which colonies should you select to culture for further experimentation?.

Answers

Blue colonies and a few White colonies are chosen to be cultured for future research.

Why do blue colonies outnumber white colonies?

The substrates' unequal distribution could be the cause. It's possible that certain colonies formed earlier and produced more enzyme. You might have some mixed colonies or scarce substrate if colonies are very dense. An in-frame insert may also result in light blue.

What do the colonies in blue and white mean?

White colonies, where X-gal is not hydrolyzed, indicate the presence of an insert in lacZ that prevents the formation of an active -galactosidase, whereas blue colonies suggest they may contain a vector with an uninterrupted lacZ (therefore no insert).

To know more about colonies visit:-

https://brainly.com/question/10016406

#SPJ4

Which peronality tet relie on a ubject telling torie baed on card depicting human figure in variou ambiguou ituation?

Answers

THEMATIC APPERCEPTION TEST (TAT)

What is TAT?

An example of a projective test is the Thematic Apperception Test (TAT), which asks participants to describe ambiguous scenes in order to reveal more about their personalities, emotions, and driving forces. It was created by American psychologists Henry A. Murray and Christina D. Morgan at Harvard University in the 1930s and is commonly referred to as the "picture interpretation technique." One of the most extensively studied and clinically applied personality tests is the TAT.

Why the TAT is used?

a.  To gain additional insight into a person.

b.  To aid in the expression of emotions.

c.  To delve into themes associated with the individual's experiences.

d.  To examine a person for psychological issues.

e.  To assess criminal suspects.

f.  To screen potential employees.

To learn more about TAT,

https://brainly.com/question/29647813

#SPJ4

species richness is only one measure of biodiversity for a community, but it is frequently used. can you think of any shortcomings or assumptions of assigning conservation priorities to various locations based on species richness estimates?

Answers

Biodiversity counts the number of distinct species that exist in a given area. It includes all living things and includes a wide range of life. Each species is crucial to preserving the ecological balance.

The quantity of species in a community is known as its species richness. The more complex concept of species diversity takes into account both the number of species present in a community and the abundance of each species. An index, such as Shannon's Index H', is typically used to describe species diversity.

Learn more about Biodiversity

https://brainly.com/question/20935770

#SPJ4,

describe how acute leukemias can be differentiated through the use of phenotyping cells by using flow cytometry technology. include the flow cytometry methodology, instrument parts and how the instrument makes this differentiation possible.

Answers

Under a microscope, certain poisons can be detected on the leukemic cell's surface. These are typically antigens or markers found on the surface of white blood cells.

The clusters of differentiation (CD) markers are the name given to these antigens. Such indicators' existence or absence aids in the leukemia diagnosis.

The antigen patterns or molecules that a normal cell expresses on its surface define its maturity or type. To identify them, these markers have unique CD numbers allocated to them.

As a result of the flow cytometry, a diagnosis can be made by comparing the discovered CD counts to regular and abnormal cells. In leukemia, the cell surfaces of CD5, CD19, CD23, CD20, Kappa, and Lambda markers are typically present, whereas prognostic markers CD38 and D49d are also present.

A suspension of monodisperse single, unclumped cells is absorbed by flow cytometers, which then run the cells one at a time (single file) via a fluorescent light ray where every cell passes through, before being counted, sorted, and then described.

The fluidics, optics, and electronics are the three primary parts of a flow cytometer.

What is flow cytometer?

To recognize and measure the physical and chemical characteristics of a population of cells or particles, a method known as flow cytometry is used. A fluid-suspended sample containing cells or other particles is delivered into the flow cytometer apparatus during this technique.

To learn more about flow cytometer from the given link

https://brainly.com/question/10371822

#SPJ4

A student constructs several terrariums like the one shown. Each terrarium is exposed to a different amount of sunlight each day. In order to determine the ideal amount of sunlight, which of the variables must be held constant?
a. Type of plants
b. Growth rate of plants
c. Wavelengths of sunlight
d. Amount of sunlight received

Answers

A student constructs several terrariums like the one shown. Each terrarium is exposed to a different amount of sunlight each day. In order to determine the ideal amount of sunlight, option A Type of plants must be held constant.

Terrariums are containerized interior orchards. The terrarium's plants and soil transmit water vapor, efficaciously reprocessing water. The vapor is then gathered on the vessel's walls and filters down towards the soil. Terrariums are self-sustaining, which is the reason they necessitate little maintainance if kept sealed. The terrarium was, in no small part, revolutionary in how we now observe and obtain popular houseplants. In fact, the earliest Victorian terrariums served a very specific purpose in bringing far-flung, exotic plants into our homes and making them an accessible and welcome commodity.

Learn more about terrariums here:

https://brainly.com/question/3795105

#SPJ4

in a certain group of african people, 4% are born with sickle-cell disease, an autosomal recessive disorder. heterozygous individuals not only don't have sickle-cell disease, but also are resistant to malaria. if this group is in hardy-weinberg equilibrium, what percentage of the population is heterozygous and resistant to malaria?

Answers

A whopping 32% of people have the heterozygous malaria resistance gene.

A hereditary condition known as sickle-cell anemia is autosomal recessive. Blood cells in homozygous recessive individuals have the sickle shape. Contrarily, the sickle cell trait is exclusively carried by heterozygous people. The carriers do not experience malaria because they are immune to the parasites that cause it.

If 4% of people in an African population are born with sickle cell disease, therefore the population's proportion of heterozygous people who are malaria resistant will be:

Equilibrium is the Hardy-Weinberg formula.

       p² + 2pq + q² = 1  

p = frequency of the population's dominant allele

q is the population's prevalence of the recessive allele.

p² = the proportion of homozygous dominant people

q² is the proportion of homozygous recessive people.

2pq = the proportion of heterozygous people

Given that the square root of the homozygous recessive allele for this gene (q2) is 0.2 (20%) and the homozygous allele (q2) is 4%, or 0.04, then p should be 1-0.2 = 0.8 (20%).

Therefore, the percentage of heterozygous people is 2pq.2 (0.8 x 0.2) = 0.32 (32%).

Learn more about Hardy-Weinberg equilibrium at

https://brainly.com/question/16823644?referrer=searchResults

#SPJ4

there is no doubt that obesity rates have risen dramatically in the united states. complete each sentence with an appropriate term.

Answers

The WHO conducted research that linked an increase in fast food sales to an increase in body mass index, and Americans are infamous for their fast food intake.

In America today, are obesity rates rising or falling?

The adult obesity rate in the United States is now 42.4 percent, which is the first time the national rate has above the 40 percent threshold and another proof of the obesity rate issue in the nation. Since 2008, there has been a 26 percent increase in the national adult obesity rate.

When did America's obesity rate increase?

When compared to the 1960s and 1970s, the prevalence of obesity increased dramatically over the following decades, rising from 5% in 1980 to 17% in children and from 13.4% in adults to 34.3% in 2008.

To know more about obesity rate visit:-

https://brainly.com/question/12076127

#SPJ4

The presence of many red blood cells in the urine during a microscopic examination is known as ________.

Answers

Blood in the urine is known as hemoturia. Gross or visible hematuria refers to the presence of crimson or pink urine, which may indicate the presence of blood in the urine. The term "microscopic" hematuria refers to hematuria in which blood occasionally occurs in the urine but is difficult to detect since it can only be seen under a microscope.

Why are there red blood cells in the urine?

The presence of more RBCs than usual in the urine could be caused by: cancer of the bladder, kidneys, or urinary system. infections or stones in the kidneys or the rest of the urinary system kidney damage or inflammation. prostate issues

What does urine with tiny blood mean?

A typical sign of glomerulonephritis, an inflammation of the kidneys' filtration mechanism, is microscopic urine bleeding. Possibly, glomerulonephritis.

To know more about hemoturia visit:-

https://brainly.com/question/10952324

#SPJ4

In animals, the life-prolonging benefits of energy restriction become evident when the diet provides enough food to prevent malnutrition and an energy intake of about _____ of normal.

Answers

When an animal's diet offers enough food to avoid malnutrition as well as an energy intake of around 70% of normal, the life-extending effects of energy restriction becomes apparent.

A dietary plan known as calorie restriction (also known as energy restriction or calorie restriction) lowers the amount of energy that is consumed from caloric foods and beverages without causing malnutrition. In addition to increased weight loss, severe calorie restriction also caused more bone loss. Although severe caloric restriction (800 kcal/day) is helpful for weight loss, its usage has been restricted because to documented adverse effects (such as hair loss and exhaustion). A unique kind of diet known as intermittent energy restrictions (IER) involves taking periodic breaks from eating food. Alternate-day fasting (ADF) & time-restricted eating are two examples of the various types of IER diets (TRF). The IER diet is regarded as an efficient way to lose weight in the literature.

Learn more about food

https://brainly.com/question/6947412

#SPJ4

Our eyes detect light that lies only within a small region of the electromagnetic spectrum. This region is called visible light. Which of these statements describes the visible spectrum of light as seen by the human eye?.

Answers

The visible spectrum of light, as perceived by the human eye, can be described by the adage that the lowest frequency appears red and the highest frequency appears violet. The region of the electromagnetic spectrum that the human eye can see is known as the visible light spectrum.

Humans can see wavelengths between 380 and 700 nanometers (nm). Additionally, the visible light spectrum's frequency is represented by the color. Violet light has the greatest frequencies and the shortest wavelengths, while red light has the lowest frequencies and the longest wavelengths (620-750 nm) (380–450 nm). The statement the lowest frequency appears red, and the highest frequency appears violet sums up how the human eye perceives the visible spectrum of light. Together, the human eye and brain transform the energy of visible light into an electrical impulse that the brain can decipher as an image. The cornea, iris, and pupil aid light entry into the eye's lens when concentrating on an object. The projection of the image on the retina at the rear of the eye is made possible by the lens's ability to bend light, which flips the image.

Learn more about Visible light here:

brainly.com/question/10709323

#SPJ4

during starvation, group of answer choices structural proteins cannot be used as a potential energy source. carbohydrate utilization increases. circulating ketone bodies decrease. gluconeogenesis increases. all of these answers are correct.

Answers

During prolonged starvation, the principal source of glucose is gluconeogenesis from amino acids arising from muscle proteolysis.

What happens during starvation?

Animals, including humans, activate a complex set of hormonal and metabolic adaptations that allow them to survive protracted periods of famine. The brain can only use glucose or ketone bodies as respiratory fuel. Gluconeogenesis from amino acids derived from muscle proteolysis is principal source of glucose during the extended fasting. To spare glucose utilization (and thus spare muscle protein) most tissues of the body utilize fat-derived fuels (fatty acid and ketone bodies) . As famine advances ketone bodies also become the predominant fuel of the brain, again reducing the demand for glucose. High quantities of ketone bodies result in substantial ketonuria with ketones excreted as ammonium salts. The ammonia is produced by the kidney's breakdown of glutamine, with the carbon skeleton returned as glucose. During extended famine, this well-organized metabolic rhythm ensures a continuous fuel supply to the brain and other tissues.

To learn more about glucose visit:

https://brainly.com/question/2396657

#SPJ4

how do phagocytes eliminate pathogens? what group of pathogens are most easily phagocytosed and why? g

Answers

Phagocytes ingest and destroy the pathogen through a process called phagocytosis.

Pathogens are recognized by phagocytes, which then phagocytose and eliminate them. Recognition is often accomplished through the use of phagocyte receptors that bind to molecules commonly present on pathogens, called pathogen-associated molecular patterns (PAMPs). Chemicals from the pathogen or dead damaged abnormal cells act as attractants causing phagocytes to move towards the pathogen. Phagocytes have several receptors in their cell surface membrane that recognize and attach to chemicals on the surface of the pathogen. They create a vesicle known as a phagosome by engulfing the pathogen. Particles commonly engulfed by white blood cells include bacteria, dead tissue cells, protozoa, various dust particles, pigments, and other tiny foreign bodies. Encapsulated bacteria are more difficult to ingest. In the absence of specific antibodies recognizing the bacteria, opsonization cannot occur and the bacteria repel the phagocytes.

To learn more about phagocytes click here https://brainly.com/question/16185213

#SPJ4

ubiquitination is one method used by cells to regulate protein levels. why do you think cells sometimes use this method of regulating protein levels rather than regulating the level of gene transcription/translation? what would happen in a cell with a mutated apc/c that fails to ubiquitylate germinin? explain your answer. what would happen in a cell with a mutated mdm2 protein that fails to ubiquitylate p53? explain your answer.

Answers

Ubiquitination is a process through which ubiquitin molecules are attached to protein substrates for protein degradation. It is one of the most important post translational modifications (PTMs) regulating the stability and functional activity of proteins.

Through a number of mechanisms, including the disruption of the MDM2-p53 interaction and the inhibition of its ubiquitin ligase activity, mutations in MDM2 can impair its capacity to degrade p53.

The regular operations of cells depend heavily on ubiquitination. The proteasome, which breaks down and recycles the substrates, is the target of this pathway's protein targeting. It performs a variety of tasks, including DNA repair, protein processing, immune response, cell signaling, and apoptosis, as was previously mentioned. Ubiquitination controls protein degradation (through the proteasome and lysosome), coordinates protein localization, activates and deactivates proteins, and modifies protein-protein interactions.

To learn more about ubiquitination click on this link: https://brainly.com/question/4339269

#SPJ4

which of the following would be the best hypotheses about how rainy days influence photosynthesis in plants? be sure to consider all aspects of a good hypothesis, not just the logic. select the two best hypotheses. which of the following would be the best hypotheses about how rainy days influence photosynthesis in plants? be sure to consider all aspects of a good hypothesis, not just the logic.select the two best hypotheses. on rainy days, plants have lower rates of photosynthesis because of the interaction between rainy days and photosynthesis. when it is rainy, plants have lower rates of photosynthesis because they have less light energy available. plants engaging in more photosynthesis will increase the amount of rain because plants remove water from the soil and put it into the air during the process of photosynthesis. if photosynthesis is measured in 100 plants over the course of 100 days that vary in the amount of rain, there will be a negative correlation between the amount of rain and the rate of photosynthesis. plants that live in rainy regions have greater rates of photosynthesis because they have more water, which is required for photosynthesis. plants that live in rainy regions have lower rates of photosynthesis (on average).

Answers

The two best hypotheses about how rainy days influence photosynthesis in plants are: On rainy days, plants have lower rates of photosynthesis because of the interaction between rainy days and photosynthesis and when it is rainy, plants have lower rates of photosynthesis because they have less light energy available. So, option (a) and (b) is correct.

Photosynthesis is a biological process by which many cellular organisms transform light energy into chemical energy, which is then stored in organic molecules.

a. Because of the interaction between rainy days and photosynthesis, plants have decreased rates of photosynthesis on rainy days since rain can obstruct sunlight, an essential component of photosynthesis. This claim may be verified through testing and is supported by prior research or observations.

b. When it is rainy, plants have lower rates of photosynthesis because they have less light energy available this happens due to the water droplets that falls on the leaves and block the sunlight from reaching the chloroplast present in the leaves thus the rate of photosynthesis is reduced.

The other hypotheses are not as good because they are not testable.

Therefore, (a) and (b) are the two best hypotheses about how rainy days influence photosynthesis in plants.

Learn more about photosynthesis here;

https://brainly.com/question/29764662

#SPJ12

Your question is incomplete but most probably your full question was,

Which of the following would be the best hypotheses about how rainy days influence photosynthesis in plants? Be sure to consider all aspects of a good hypothesis, not just the logic. Select the two best hypotheses.

a. On rainy days, plants have lower rates of photosynthesis because of the interaction between rainy days and photosynthesis.

b. When it is rainy, plants have lower rates of photosynthesis because they have less light energy available.

c. Plants engaging in more photosynthesis will increase the amount of rain because plants remove water from the soil and put it into the air during the process of photosynthesis.

d. Plants that live in rainy regions have greater rates of photosynthesis because they have more water, which is required for photosynthesis.

e. If photosynthesis is measured in 100 plants over the course of 100 days that vary in the amount of rain, there will be a negative correlation between the amount of rain and the rate of photosynthesis.

f. Plants that live in rainy regions have lower rates of photosynthesis on average).

Cell division is the process of taking a parent cell and splitting it into 2 new genetically identical daughter cells. All organisms go through the process of cell division. What do bacteria use cell division for and how?.

Answers

The cell that is dividing in a cell division process is referred to as the "parent" cell. Two "daughter" cells are created when the parent cell divides.

What happens during the division of a parent cell into two daughter cells?

When a parent cell divides to create two identical daughter cells, the process of nuclear division known as mitosis takes place in eukaryotic cells. Mitosis refers particularly to the division of the duplicated genetic material contained in the nucleus during cell division.

Cell division definition Short response?

The process by which a cell, known as the parent cell, divides into two cells, known as daughter cells, is known as cell division. Everything inside a cell divides when it divides. The mitochondria also divide together with the chromosomes and nucleus.

To know more about Cell division visit:-

https://brainly.com/question/13312481

#SPJ4

Other Questions
Brian slept for eight hours on Monday night. How many minutes did he sleep? You play a game of dice at the state fair, but suspect the dice may have been rigged. You observe the game owner rolling the dice 78 times and note the following results:Face"1""2""3""4""5""6"Observed count8131814196(a) Which hypotheses should be used to test if the dice are fair:Identify H0:-H0: p1 = p2 = p3 = p4 = p5 = p6 = 1/6, implying the dice are unfair.-H0: p1 = p2 = p3 = p4 = p5 = p6 = 0, implying the dice are fair.-H0: p1 = p2 = p3 = p4 = p5 = p6 = 1/6, implying the dice are fair.-H0: p1 = p2 = p3 = p4 = p5 = p6 = 0, implying the dice are unfair.Identify Ha:-Ha: every p 1/6, implying the dice are unfair.-Ha: at least one p 1/6, implying the dice are unfair.-Ha: every p 1/6, implying the dice are fair.-Ha: at least one p 1/6, implying the dice are fair.(b) What is the expected count for each side of the dice?(c) Is the cell count condition met?-No, because some cells have less than 10 observed counts.-Yes, because the expected cell count is at least 5 for all cells.-Yes, because the expected cell count is close to the observed cell count for all cells.-No, because some cells have less than 30 observed counts.(d) Calculate the contribution to the test statistic for the dice side with number "1": (Use 4 decimals):(e) The full test statistic is 2 = 10.462. What is the P-value? (Use 4 decimals.)(f) What is the appropriate test conclusion, for = 0.05?-There is sufficient evidence the dice are unfair.-There is insufficient evidence the dice are unfair.-There is insufficient evidence the dice are fair.-There is sufficient evidence the dice are fair. according to the biological species concept, which mechanism is not a mechanism of reproductive isolation? The TelePizza chain, which operates in Europe and Latin America, has copied Domino's service model but maintains differentiation in terms of location. TelePizza is an example of a(n) ________.A) counterfeiterB) adopterC) clonerD) imitatorE) adapter a study of whether or not customers respond to odors took place in a small pizza restaurant in france on two saturday evenings in may. on one of these evenings, a relaxing lavender odor was spread through the restaurant. on the other evening, no scent was used. the restaurant owners computed the mean amount spent on each night and computed a 95% confidence interval for the difference of means (lavender minus no odor) in euros to be (2.40, 4.82). can the researchers conclude there is a difference between the two means geometry classifying triangles HELp plssssssTravis used the linear model y = 0.3x + 2000 to predict her total salary from achieving total sales of x.What is her base salary?What percent commission does she earn? Which action describes chemical weathering?1. water carving out a limestone cave2. water cutting downward to deepen a river channel3. water depositing beach sand4. water freezing and thawing to widen cracks in rock Partial bonding, for example, as part of a resonance hybrid, often results in structures with _____. the procedures instructs a student to measure 7.55 ml of solution 1. the student measures 11.89 ml of solution 1. what is the percent (by volume) of extra liquid measured by the student? a bank wishes to hedge its $30 million face value bond portfolio (currently priced at 99 percent of par). the bond portfolio has a duration of 9.75 years. it will hedge with t-bond futures ($100,000 face) priced at 98 percent of par. the duration of the t-bonds to be delivered is nine years. how many contracts are needed to hedge? should the contracts be bought or sold? ignore basis risk. What happens to the chemistry of the seawater as more co2 is absorbed into the oceans?. Robert swims a lap in the pool. His coach graphs his distance from the starting block.A. Determine whether each graph is a function. Justify your answer.B. Construct Arguments - Which graph must be incorrect. Explain In order to be classified as a vitamin, a compound must meet which of the following criteria? Check All That Apply The body can't make a substance. ok ences The body can't synthesize enough of the compound to maintain health Absence of the compound from the diet for a defined period produces deficiency symptoms that if caught in time, are quickly cured when the substance is resupplied. A synthetic version of a compound is provided in amounts of one gram or more per day in supplemental form. Without the circulatory and respiratory systems, human bodies would not survive. Both systems play major roles in providing our bodies with what they need. They work individually as well as together to keep us alive and healthy, which four statements describe functions of the circulatory system?. division abc has $750,000 in average assets and income of $200,000. division xyz has $800,000 average assets and income of $210,000. which of the following statements is true? explain how the following rules check if there is a has color in a map factbase. adjacent(x, y) :- edge(x, y); edge(y, x). has color(s1, s2, color1) :- adjacent(s1, s2), color(s1, color1),color(s2, color1). An astronomer's infrared telescope is able to detect radiation with a wavelength of meters. Write this number in scientific notation. Identify a recent business trend that could be contributing to the increased number of collusive frauds.a. Increasing frequency of supplier alliances, and closer relationships between buyers and suppliers.b. Reducing costs and product quality by using same suppliers.c. Increased competition amongst suppliers.d. Advances in technology that simplify the process of conducting business. helpThe graph of g(x) is obtained by reflecting the graph of f(x)=2|x| over the x-axis.Which equation describes g(x)?g(x)=|x+2|g begin argument x end argument equals negative begin absolute value x plus 2 end absolute value.g(x)=|x+2|g begin argument x end argument equals begin absolute value x plus 2end absolute value.g(x)=2|x|g begin argument x end argument equals negative 2 begin absolute value x end absolute value.g(x)=2|x|Responsesg(x)=|x+2|g begin argument x end argument equals negative begin absolute value x plus 2 end absolute value.g(x)=|x+2|g begin argument x end argument equals begin absolute value x plus 2end absolute value.g(x)=2|x|g begin argument x end argument equals negative 2 begin absolute value x end absolute value.g(x)=2|x|