5). Demonstrate an understanding of enthalpy and the heat changes of a chemical change and describe it. You are required to make a presentation of about 10-12 slides. Also include Bibliography in APA format on a separate slide. Please use font Times new Roman 11 or 12. Choose of the topics: • ΔHvap: is the change in enthalpy of vaporization .
• ΔHcom: is the change in enthalpy of combustion .
• ΔHneu: is the change in enthalpy of neutralization .
• ΔHm: is the change in enthalpy of melting (fusion) • ΔHS is the change in enthalpy of solidification Instructions Your presentation should contain the following elements:
• Explain the enthalpy law
• Enthalpy formula • Standard enthalpy of formation
• Enthalpy and heat flow (exothermic/endothermic) • Measurement of enthalpy • Importance of enthalpy

Answers

Answer 1

Enthalpy is a measure of the heat content of a system and represents the total energy of a substance. It changes during chemical reactions and involves heat exchange between the system and its surroundings.

ΔHvap is the enthalpy change of vaporization, ΔHcom is the enthalpy change of combustion, ΔHneu is the enthalpy change of neutralization, ΔHm is the enthalpy change of melting, and ΔHS is the enthalpy change of solidification. Enthalpy is important in chemistry for understanding energy changes in reactions.

The enthalpy formula is ΔH = ΔE + PΔV, and the standard enthalpy of formation is the enthalpy change when a compound forms from its elements in standard states. Enthalpy and heat flow are related, with exothermic reactions releasing heat and endothermic reactions absorbing heat. Enthalpy is measured using calorimetry. It plays a crucial role in determining reaction feasibility, calculating enthalpies, and understanding heat transfer.

Understanding enthalpy is crucial in chemistry as it provides insights into the energy changes that occur during chemical reactions. The enthalpy formula, ΔH = ΔE + PΔV, relates the change in enthalpy to the change in internal energy and the work done by the system. The standard enthalpy of formation is the enthalpy change that occurs when one mole of a compound is formed from its elements in their standard states.

Enthalpy and heat flow are closely related. Exothermic reactions release heat to the surroundings, resulting in a negative ΔH value, while endothermic reactions absorb heat from the surroundings, leading to a positive ΔH value. The measurement of enthalpy can be done using calorimetry, where the heat exchange is quantified by measuring temperature changes. Enthalpy plays a crucial role in various chemical and physical processes, such as determining reaction feasibility, calculating reaction enthalpies, and understanding heat transfer.

- Smith, J. (2019). Introductory Chemistry: An Active Learning Approach. CRC Press.

- Zumdahl, S. S., & DeCoste, D. J. (2016). Chemical Principles. Cengage Learning.

- Tro, N. J. (2019). Chemistry: A Molecular Approach. Pearson Education.

Learn more about Enthalpy

brainly.com/question/3298339

#SPJ11


Related Questions

Identify whether the solubility of ag2cro4 will increase or decrease by adding the following agents.

Answers

To determine the effect of adding different agents on the solubility of Ag2CrO4 (silver chromate), we need to consider the common ion effect and the formation of complex ions. Here's how the solubility of Ag2CrO4 is affected by adding specific agents:

1. AgNO3 (silver nitrate): The addition of AgNO3, which is a soluble salt containing the common ion Ag+, will decrease the solubility of Ag2CrO4 due to the common ion effect. The increased concentration of Ag+ ions in the solution will shift the equilibrium towards the formation of more Ag2CrO4 as a solid precipitate.

2. NaCl (sodium chloride): The addition of NaCl, which is a soluble salt containing the common ion Cl-, will have no significant effect on the solubility of Ag2CrO4. Chloride ions do not react with Ag2CrO4 to form a less soluble compound or complex ion, so the solubility remains relatively unchanged.

3. Na2CrO4 (sodium chromate): The addition of Na2CrO4, which is a soluble salt containing the chromate ion (CrO4^2-), will decrease the solubility of Ag2CrO4. The chromate ions react with the silver ions (Ag+) to form a less soluble compound Ag2CrO4. This is a precipitation reaction that reduces the concentration of Ag2CrO4 in the solution.

4. NH4OH (ammonium hydroxide): The addition of NH4OH, which is a weak base, can increase the solubility of Ag2CrO4. NH4OH reacts with Ag2CrO4 to form a complex ion called diammine silver(I) chromate, [Ag(NH3)2]2CrO4. This complex ion is more soluble than Ag2CrO4, leading to an increase in the overall solubility.

It's important to note that the specific concentrations and conditions of the solutions can also affect the solubility of Ag2CrO4. Additionally, other factors such as pH and temperature can also influence the solubility behavior.

Learn more about solubility here:

https://brainly.com/question/31493083

#SPJ11

Water has a low specific heat and changes temperature easily, which keeps land near large bodies of water cooler in the summer months and warmer in the winter months?

Answers

The low specific heat of water plays a major role in regulating the temperature of land areas near large bodies of water.

Water has a low specific heat and changes temperature easily, which keeps land near large bodies of water cooler in the summer months and warmer in the winter months.

The reason is that water has a much higher heat capacity than air, which means it can absorb more heat energy before its temperature rises.

When water is heated, it doesn't change temperature very much, so it stays relatively cool even when it absorbs a lot of heat from the sun. This is why large bodies of water, such as oceans, lakes, and rivers, can help to moderate the temperature of nearby land areas. In the summer months, the land near the water is cooler than the land farther away from the water because the water absorbs the heat from the sun and keeps the air above it relatively cool.

This is why coastal areas are generally cooler than inland areas during the summer. In the winter months, the situation is reversed. The land near the water is warmer than the land farther away from the water because the water absorbs heat from the warmer air and keeps it relatively warm.

This is why coastal areas are generally warmer than inland areas during the winter.

for more such questions on  temperature

https://brainly.com/question/25677592

#SPJ8

Wacker Chemistry for the synthesis of aldehydes.
What products are made from what starting materials?
What chemical reactions are involved?
What catalysts (homogenous and heterogenous) are used and how do they promote the product formation?
A process description explaining the purpose of each unit, and how all units fit together.
What are the products used for? Which other industrial processes depend on the products from the Wacker process?
What is the economic relevance of this process?
Are there alternative industrial processes that would provide similar products as those from the Wacker process?

Answers

The Wacker process is used for the synthesis of aldehydes from olefins, typically ethylene or propylene. It involves oxidation of the olefins using palladium-based catalysts, both homogeneous and heterogeneous, to produce the desired aldehyde products.

The Wacker process is a widely employed industrial method for the production of aldehydes from olefins, with ethylene and propylene being the most commonly used starting materials. The process involves the oxidation of these olefins to form aldehydes through a series of chemical reactions.

In the Wacker process, the starting material, such as ethylene, undergoes an oxidative reaction in the presence of a palladium-based catalyst. This catalyst can be in the form of a homogeneous complex, such as PdCl2(PPh3)2, or a heterogeneous catalyst, typically supported on a solid material like activated carbon or zeolites. The catalyst plays a crucial role in promoting the reaction by facilitating the activation of the olefin and controlling the selectivity of the oxidation process.

The oxidation reaction proceeds through a mechanism known as the Wacker oxidation, which involves the formation of a metal-olefin complex followed by insertion of molecular oxygen. This process leads to the formation of an intermediate alkylpalladium hydroxide, which is further oxidized to generate the corresponding aldehyde product.

The Wacker process consists of several units that work together to achieve the desired conversion of olefins to aldehydes. These units typically include a reactor where the oxidation reaction takes place, a separation unit to isolate the aldehyde product from the reaction mixture, and a recycling system to recover and reuse the catalyst. Each unit has a specific purpose in the overall process, ensuring efficient conversion and separation of the desired products.

The aldehyde products obtained from the Wacker process find applications in various industries. They are commonly used as intermediates in the production of pharmaceuticals, fragrances, polymers, and other chemicals. Additionally, the Wacker process plays a vital role in supplying the chemical industry with the necessary aldehyde compounds for numerous industrial processes, including the manufacturing of plastics, solvents, and resins.

From an economic perspective, the Wacker process holds significant relevance as it provides a cost-effective and efficient route for the production of aldehydes from readily available olefins. The process benefits from the versatility of olefin feedstocks and the effectiveness of palladium-based catalysts in facilitating the desired oxidation reactions. It offers a sustainable and commercially viable method for meeting the demand for aldehydes in various industrial sectors.

Learn more about olefins

brainly.com/question/7140413

#SPJ11

As an intern at a Chemical Processing plant you are requested to proof designs of a segment of the new plant which consists of a steam generator (boiler: B) and a Spiral Heat Exchanger (HE) as seen in the figure below. Water at 65°C is pumped into a boiler in which 338.455 MW of heat is added to the water to produce saturated steam. The steam continues to flow through an 22.5 cm (ID) stainless steel pipe with a thickness of 2.5 cm. The pipe is insulated with 3 cm of fibreglass and 2 cm of neoprene foam for a total length of 85 m before reaching the heat exchanger. The heat exchanger has a service fluid that is acetic acid at 32°C and a flowrate of 0.0105 m/s. The pipe diameter contracts to 13 cm (ID) with a thickness of 1.5 cm as it spirals inside a heat exchanger for a length of 4.5 m before exiting. The pipe expands back to its original dimension for length of 55 m before reaching a CSTR where it flows through the reactor jacket. The second segment of pipe is insulated to with 3 cm of fibreglass and 2 cm of closed cell rubber. Given a flow rate of 13.5 kg/s of the water being pumped into the system determine the following 50 752 55 HE TR ( Oy 53-1 T = 32°C 11 PBS 160) 1. Temperatures T.-T, as observed on the figure above. 2. Which choice of second coat of insulation (closed cell rubber or neoprene foam) is the better option and explain your choice. 1101 Take the external temperature of the surroundings as 24'C and use the following thermal conductivities: Material Stainless Steel Fiberglass Neoprene foam Closed cell rubber k (W/mk) 15.00 0.040 0.026 0.030

Answers

1. Using the given mass flow rate and specific heat, m = ρV = 105 × 0.0105 = 1.102 kg/sΔT = Q/(m Cp) = 75752.55/(1.102 × 4.178) = 17422.8 K.T1h = T2c + ΔT = 32 + 17422.8 = 17454.8 K.T2h = T1c − ΔT = 53 − 17422.8 = −17369.8 K.

2. The closed cell rubber insulation has a lower thermal conductivity than the neoprene foam, which means that it will provide better insulation. Therefore, closed cell rubber is the better option.

The rate of heat transfer in the steam pipe is given by Q=mCpΔT, where m is the mass flow rate of steam, Cp is the specific heat of steam, and ΔT is the difference in temperature between the inlet and outlet. The mass flow rate of steam can be calculated from the mass flow rate of water using the formula Q=mhfg, where hf is the enthalpy of liquid water at the inlet temperature, and hg is the enthalpy of steam at the saturation temperature at the given pressure. From steam tables, the saturation temperature of steam at a pressure of 1 atm is 100°C.

The enthalpy of liquid water at 65°C can be interpolated from the tables as 265.1 kJ/kg, and the enthalpy of steam at 100°C is 2676.5 kJ/kg. Therefore, the enthalpy change in the boiler isΔh = hg − hf = 2676.5 − 265.1 = 2411.4 kJ/kg. The mass flow rate of steam is Q/m = Δh/fg = 2411.4/2256.9 = 1.069 kg/s.

The thermal power input to the boiler is P = m Q = 13.5 × 1.069 × 10^3 = 14.45 MW. From the energy balance on the steam pipe, Qin = Q out + Q loss , where Qin is the heat input from the boiler, Q out is the heat output to the heat exchanger, and Q loss is the heat loss through the insulation. Qloss can be calculated using the equation Q loss = 2πLkpipe (Tpipe − Tamb)/ln(r2/r1),where L is the length of the pipe, kpipe is the thermal conductivity of the pipe material, T pipe is the temperature of the pipe, Tamb is the ambient temperature, and r2 and r1 are the outer and inner radii of the pipe including the insulation.

Using the given thermal conductivities and assuming that the thermal resistances of the pipe wall are negligible, the equation simplifies toU = 1/(1/h + Rf + Rb + 1/h2).The fouling coefficient is not given, so it is assumed that the fouling resistance is negligible. The heat transfer coefficient on the cold side is given by the equationh2 = k service/d2,where k service is the thermal conductivity of the service fluid, and d2 is the diameter of the pipe on the cold side. Substituting the values given in the problem,h2 = 0.026/0.13 = 0.2 kW/m2.K.The overall heat transfer coefficient is therefore U = 1/(1/307 + 0 + 0 + 1/0.2) = 42.08 W/m2.K.The heat transfer rate in the heat exchanger is Q = UAΔTm = 42.08 × 1.832 × 97.3 = 75752.55 kW. The temperatures T1h and T2h can be calculated from the energy balance on the heat exchanger ,Q = mCpΔT,where m is the mass flow rate of the service fluid, Cp is the specific heat of the service fluid, and ΔT is the temperature difference between the inlet and outlet. The temperatures are physically meaningless and probably indicate an error in the calculation. The given flow rate and temperatures should be checked for consistency before attempting to solve the problem further.

As for the second part of the question: To determine the better insulation material, the rate of heat loss through the insulation is calculated and compared for both materials. The heat loss through the insulation can be calculated using the equation Q loss = 2πLkins (Tpipe − Tamb)/ln(r2/r1),where kins is the thermal conductivity of the insulation material, and the other variables are as defined previously.Taking the outer radius as r2 = 0.225 + 0.03 + 0.02 = 0.275 m and the inner radius as r1 = 0.225 m, the length of the pipe as L = 55 m, and the external temperature as T amb = 24°C, the heat loss through the insulation is calculated for both materials as follows:

For neoprene foam, kins = 0.030 W/m. KQloss = 2πLkins (Tpipe − T amb)/ln(r2/r1) = 2π × 55 × 0.030 × (T pipe − 24)/ln(0.275/0.225)For closed cell rubber, kins = 0.020 W/m.K Qloss = 2πL kins (T pipe − T amb)/ln(r2/r1) = 2π × 55 × 0.020 × (T pipe − 24)/ln(0.275/0.225)The heat loss through the insulation is directly proportional to the thermal conductivity of the material and inversely proportional to the thickness of the insulation.

Learn more about specific heat:

https://brainly.com/question/31608647

#SPJ11

10) A 25.0 mL sample of 0.300 M methylamine (CH3NH2, pKb = 3.36) is titrated with 0.150 M HCl solution. Calculate the pH of the solution after the following volumes of HCl have been added. (For each part remember to ask yourself these questions. What units am I working in? What does the pH depend on? Does my answer make sense?)
A) 0.0 mL
B) 25.0 mL
C) 50.0 mL
D) 75.0 mL

Answers

The pH of the solution depend on 25.0ML

pH calculation.

Given:

Volume of methylamine (CH3NH2) = 25.0 mL = 0.025 L

Concentration of methylamine (CH3NH2) = 0.300 M

Concentration of HCl = 0.150 M

pKb of methylamine (CH3NH2) = 3.36

A) 0.0 mL (no HCl included):

Since no HCl has been included, the arrangement contains as it were methylamine. We will calculate the concentration of CH3NH3+ and CH3NH2 utilizing the beginning concentration of methylamine and the separation consistent (Kb) condition:

Kb = [CH3NH3+][OH-] / [CH3NH2]

Utilizing the pKb esteem, ready to decide the Kb esteem:

Kb = 10^(-pKb) = 10^(-3.36) = 3.98 x 10^(-4)

Presently, let's calculate the concentration of CH3NH3+:

Kb = [CH3NH3+][OH-] / [CH3NH2]

[CH3NH3+] = Kb * [CH3NH2] = (3.98 x 10^(-4)) * (0.300) = 1.194 x 10^(-4) M

To decide the Gracious- concentration, we accept that CH3NH3+ totally ionizes to CH3NH2 and OH-:

[Goodness-] = [CH3NH3+] = 1.194 x 10^(-4) M

Presently, to calculate the pOH, ready to utilize the condition: pOH = -log[OH-]

pOH = -log(1.194 x 10^(-4)) = 3.92

Since pH + pOH = 14, ready to decide the pH:

pH = 14 - pOH = 14 - 3.92 = 10.08

Hence, the pH of the arrangement after including 0.0 mL of HCl is 10.08.

B) 25.0 mL (volume of HCl rise to to the volume of methylamine):

At this point, we have an break even with volume of HCl and methylamine, so the arrangement will be a buffer. To calculate the pH, we ought to consider the Henderson-Hasselbalch condition for a powerless base buffer framework:

pH = pKa + log([A-] / [HA])

In this case, the powerless base (CH3NH2) is the conjugate corrosive (HA), and the conjugate base (CH3NH3+) is the salt (A-).

The pKa can be calculated from the pKb esteem:

pKa = 14 - pKb = 14 - 3.36 = 10.64

The concentration of the conjugate corrosive [HA] and the conjugate base [A-] can be calculated utilizing the introductory concentrations and volumes:

[HA] = [CH3NH2] = 0.300 M

[A-] = [CH3NH3+] = 1.194 x 10^(-4) M

Presently, substituting the values into the Henderson-Hasselbalch condition, we will decide the pH:

pH = 10.64 + log([A-] / [HA]) = 10.64 + log((1.194 x 10^(-4)) / (0.300)) = 10.64 - 2.92 = 7.

Learn more about pH below.

https://brainly.com/question/26424076

#SPJ4

pH after 0.0 mL = 10.78, pH after 25.0 mL = 12.07, pH after 50.0 mL = 11.89, pH after 75.0 mL = 11.76.

The pH of a solution depends on its hydrogen ion concentration. The higher the concentration of hydrogen ions, the lower the pH, and vice versa. In order to find the pH of the solution after titration, we need to calculate the concentration of the methylamine after the addition of each volume of HCl solution.

Once we have the concentration of methylamine, we can use the Kb value to calculate the hydroxide ion concentration and from there, calculate the pH of the solution. Let's work through each part one by one:A) 0.0 mLAt this point, no HCl has been added yet. Therefore, the concentration of the methylamine is still 0.300 M. We can use the Kb value to calculate the concentration of the hydroxide ion, [OH-]:Kb = [CH3NH2][OH-] / [CH3NH3+]

Since methylamine is a weak base, we can assume that the concentration of hydroxide ion formed is negligible compared to the initial concentration of the base. Therefore, we can make the following approximation:[OH-] = Kb / [CH3NH2]= 5.01 x 10^-4 / 0.300= 1.67 x 10^-6 MTo find the pH, we use the equation:pH = 14.00 - pOH= 14.00 - (-log[OH-])= 14.00 - (-log(1.67 x 10^-6))= 10.78Therefore, the pH of the solution after 0.0 mL of HCl has been added is 10.78.B) 25.0 mL

At this point, we have added 25.0 mL of 0.150 M HCl solution. We can use the stoichiometry of the reaction to find the number of moles of HCl that have been added:n(HCl) = (0.150 mol/L) x (25.0 mL / 1000 mL/L)= 3.75 x 10^-3 molThe balanced chemical equation for the reaction between methylamine and HCl is:CH3NH2 (aq) + HCl (aq) → CH3NH3+ (aq) + Cl- (aq)Therefore, the number of moles of methylamine that have reacted is also 3.75 x 10^-3 mol. This means that there are 0.300 mol - 3.75 x 10^-3 mol = 0.296 mol of methylamine left in solution.The total volume of the solution is 25.0 mL + 25.0 mL = 50.0 mL. Therefore, the concentration of the methylamine is:[CH3NH2] = (0.296 mol) / (50.0 mL / 1000 mL/L)= 5.92 x 10^-3 MUsing the same approach as in part A, we can find the concentration of hydroxide ion:[OH-] = Kb / [CH3NH2]= 5.01 x 10^-4 / 5.92 x 10^-3= 8.45 x 10^-2 MTo find the pH, we use the equation:pH = 14.00 - pOH= 14.00 - (-log[OH-])= 14.00 - (-log(8.45 x 10^-2))= 12.07Therefore, the pH of the solution after 25.0 mL of HCl has been added is 12.07.C) 50.0 mL

At this point, we have added a total of 50.0 mL of 0.150 M HCl solution. Using the stoichiometry of the reaction, we find that the number of moles of HCl that have been added is:n(HCl) = (0.150 mol/L) x (50.0 mL / 1000 mL/L)= 7.50 x 10^-3 molThe number of moles of methylamine that have reacted is also 7.50 x 10^-3 mol. This means that there are 0.300 mol - 7.50 x 10^-3 mol = 0.2935 mol of methylamine left in solution.The total volume of the solution is 25.0 mL + 50.0 mL = 75.0 mL.

Therefore, the concentration of the methylamine is:[CH3NH2] = (0.2935 mol) / (75.0 mL / 1000 mL/L)= 3.91 x 10^-3 MUsing the same approach as before, we find that the concentration of hydroxide ion is:[OH-] = Kb / [CH3NH2]= 5.01 x 10^-4 / 3.91 x 10^-3= 1.28 x 10^-1 MTo find the pH, we use the equation:pH = 14.00 - pOH= 14.00 - (-log[OH-])= 14.00 - (-log(1.28 x 10^-1))= 11.89Therefore, the pH of the solution after 50.0 mL of HCl has been added is 11.89.D) 75.0 mLAt this point, we have added a total of 75.0 mL of 0.150 M HCl solution. Using the stoichiometry of the reaction, we find that the number of moles of HCl that have been added is:n(HCl) = (0.150 mol/L) x (75.0 mL / 1000 mL/L)= 1.13 x 10^-2 molThe number of moles of methylamine that have reacted is also 1.13 x 10^-2 mol.

This means that there are 0.300 mol - 1.13 x 10^-2 mol = 0.287 mol of methylamine left in solution.The total volume of the solution is 25.0 mL + 75.0 mL = 100.0 mL. Therefore, the concentration of the methylamine is:[CH3NH2] = (0.287 mol) / (100.0 mL / 1000 mL/L)= 2.87 x 10^-3 M

Using the same approach as before, we find that the concentration of hydroxide ion is:[OH-] = Kb / [CH3NH2]= 5.01 x 10^-4 / 2.87 x 10^-3= 1.74 x 10^-1 M

To find the pH, we use the equation

:pH = 14.00 - pOH= 14.00 - (-log[OH-])= 14.00 - (-log(1.74 x 10^-1))= 11.76

Therefore, the pH of the solution after 75.0 mL of HCl has been added is 11.76.Answer: pH after 0.0 mL = 10.78, pH after 25.0 mL = 12.07, pH after 50.0 mL = 11.89, pH after 75.0 mL = 11.76.

Know more about pH

https://brainly.com/question/32445629

#SPJ11

If there are 10800000000 collisions per second in a gas of molecular diameter 3.91E-10 m and molecular density 2.51E+25 molecules/mº, what is the relative speed of the molecules?

Answers

If there are 10800000000 collisions per second in a gas of molecular diameter 3.91E-10 m and molecular density 2.51E+25 molecules/mº, the relative speed of the molecules is approximately 481 m/s.

The formula to calculate the relative speed of molecules is given by : v = (8RT/πM)^(1/2) where

v is the relative speed

R is the universal gas constant

T is the temperature

M is the molecular weight

π is a constant equal to 3.14159.

Here, we can assume the temperature to be constant at room temperature (298 K) and use the given molecular diameter and molecular density to find the molecular weight of the gas.

Step-by-step solution :

Given data :

Molecular diameter (d) = 3.91 × 10^-10 m

Molecular density (ρ) = 2.51 × 10^25 molecules/m³

Number of collisions per second (n) = 10,800,000,000

Temperature (T) = 298 K

We can find the molecular weight (M) of the gas as follows : ρ = N/V,

where N is the Avogadro number and V is the volume of the gas.

Here, we can assume the volume of the gas to be 1 m³.

Molecular weight M = mass of one molecule/Avogadro number

Mass of one molecule = πd³ρ/6

Mass of one molecule = (3.14159) × (3.91 × 10^-10 m)³ × (2.51 × 10^25 molecules/m³) / 6 = 4.92 × 10^-26 kg

Avogadro number = 6.022 × 10²³ mol^-1

Molecular weight M = 4.92 × 10^-26 kg / 6.022 × 10²³ mol^-1 ≈ 8.17 × 10^-4 kg/mol

Now, we can substitute the known values into the formula to find the relative speed :

v = (8RT/πM)^(1/2) = [8 × 8.314 × 298 / (π × 8.17 × 10^-4)]^(1/2) ≈ 481 m/s

Therefore, the relative speed of the molecules is approximately 481 m/s.

To learn more about density :

https://brainly.com/question/1354972

#SPJ11

At what FiO2 is considered in the toxic or danger
zone.

Answers

FiO2 (Fraction of Inspired Oxygen) in the toxic or danger zone is considered above 0.5 or 50%.

FiO2 is the concentration of oxygen that a patient inhales. FiO2 less than 0.21 (21%) is considered room air, and FiO2 more than 0.5 or 50% is considered toxic or dangerous. Oxygen toxicity happens when there's excessive oxygen concentration in the lungs. Oxygen at high concentrations can produce harmful reactive oxygen species that can damage the alveolar-capillary membrane and lead to inflammation and oxidative stress.

Although the use of high FiO2 may be necessary for certain medical conditions, such as respiratory failure or sepsis, the benefits must always be weighed against the potential risks of oxygen toxicity. This is why clinicians monitor oxygen levels and titrate FiO2 to maintain appropriate oxygenation while avoiding toxicity.

learn more about toxic here

https://brainly.com/question/1235358

#SPJ11

low-friction Disk 1 (of inertia m) slides with speed 4.0 m/s across surface and collides with disk 2 (of inertia 2m) originally at rest. Disk 1 is observed to turn from its original line of motion by an angle of 15°, while disk 2 moves away from the impact at an angle of 50 Part A Calculate the final speed of disk 1. Di μA V1,f= Submit Value Request Answer Part B Calculate the final speed of disk 2. O μA V2,f= Value Submit Request Answer Units Units ? ? Constants Periodic Table

Answers

Given that disk 1 (of inertia m) slides with speed 4.0 m/s across the surface and collides with disk 2 (of inertia 2m) originally at rest. The disk 1 is observed to turn from its original line of motion by an angle of 15°.

Let the final velocity of disk 1 be V1,f.Using conservation of momentum[tex],m1u1 + m2u2 = m1v1 + m2v2,[/tex]where,m1 = m, m2 = 2mm1u1 = m * 4.0 = 4mm/s, as given, Substituting this value in equation, we get [tex]v2 = (m1/m2) * v1sinθ2 = (1/2) * 3.82 * sin 50° ≈ 1.80 m/s[/tex]. So, the final velocity of disk 1 is approximately 3.82 m/s.

We know that the final velocity of disk[tex]1, V1,f ≈ 3.82 m/s[/tex]. Now, using conservation of kinetic energy,[tex]1/2 m V1,i² = 1/2 m V1,f² + 1/2 (2m) V2,f²[/tex]where [tex]V1,i = 4.0 m/s[/tex], as given. Substituting the given values in equation, we get[tex]V2,f ≈ 5.65 m/s[/tex]. So, the final velocity of disk 2 is approximately 5.65 m/s.

To know more about collides visit:

https://brainly.com/question/31844938

#SPJ11

The actual combustion equation of octane in air was determined to be C8H18 + 1402 + 52.64N25CO2 + 3CO + 9H₂O + 302 + 52.64N2 If 10.76 kg of carbon monoxide was produced, how much octane was burned? Express your answer in kg.

Answers

Around 32.28 kilograms of octane were consumed in the combustion process.

To determine the amount of octane burned, we can use the stoichiometric coefficients from the balanced combustion equation. From the equation, we see that for every 3 moles of octane burned, 1 mole of carbon monoxide is produced. We can set up a proportion to find the amount of octane:

3 moles octane / 1 mole CO = x moles octane / 10.76 kg CO

Simplifying the proportion, we find:

x = (3/1) * (10.76 kg CO) = 32.28 kg octane

Therefore, approximately 32.28 kg of octane was burned.

You can learn more about octane at

https://brainly.com/question/29363532

#SPJ11

Seven categories of control objectives. (a) The control for safety of flash drum is achieved through controlling pair (an FCE matching to a specific CV) _________________________________________. (b) Environmental protection can be achieved by _________________________________________. (c) Pump protection is achieved through controlling pair__________________________________. (d) Smooth operation and product quality is achieved through controlling pair____________________. (e) Product quality is achieved through controlling pair ________________________. (f) High profit is achieved through controlling pair_______________________. (g) Monitoring & diagnosis of _____________________________
_______________________ is necessary for engineer to decide when to remove the heat exchanger temporarily for mechanical cleaning to restore a high heat transfer coefficient to save energy.

Answers

The monitoring and diagnosis of fouling are essential for engineers to determine when to remove the heat exchanger temporarily for mechanical cleaning to maintain high heat transfer coefficients and save energy.

Seven categories of control objectives are as follows:

(a) The control for the safety of the flash drum is achieved through controlling pairs (an FCE matching a specific CV).

(b) Environmental protection can be achieved by preventing leaks and spills and following proper waste disposal procedures.

(c) Pump protection is achieved through controlling pair (differential pressure switches and flow rate switches).

(d) Smooth operation and product quality are achieved through controlling pair (an FCE matching to a specific CV).

(e) Product quality is achieved through controlling pair (an FCE matching to a specific CV).

(f) High profit is achieved through controlling pair (an FCE matching to a specific CV).

(g) Monitoring & diagnosis of fouling is necessary for engineers to decide when to remove the heat exchanger temporarily for mechanical cleaning to restore a high heat transfer coefficient to save energy.

The control objectives have been categorized into seven types, including safety, environmental protection, pump protection, smooth operation, product quality, high profit, and monitoring & diagnosis of fouling. Controlling pairs and FCEs are used to achieve these control objectives. By regulating the input and output variables, they provide better product quality and increased efficiency. The monitoring and diagnosis of fouling are essential for engineers to determine when to remove the heat exchanger temporarily for mechanical cleaning to maintain high heat transfer coefficients and save energy.

Learn more about high heat transfer coefficients

https://brainly.com/question/30897418

#SPJ11

7. A heat exchanger is cooling 3600 kg/h of organic fluid from 80 ∘
C using 1500 kg/h of cooling water entering at 15 ∘
C. The heat transferred has been calculated to be 100 kW. The specific heat capacities of the organic fluid and water are 2.5 kJ/(kgK) and 4.2 kJ/(kgK) respectively. (Use either the log-mean ΔT method or the effectiveness method for parts b and c; or try them with both methods.) a) Is the heat exchanger counter-current or co-current? Explain. b) If the overall heat transfer coefficient is 1000 W/(m 2
K), find the heat exchanger area. c) If the cooling water flow were doubled, giving an overall heat transfer coefficient of 1200 W/(m 2
K), calculate the exit temperature of the organic fluid. Ans. 6.74 m 2
25.3 ∘
C

Answers

a) The heat exchanger is counter-current.

b) The heat exchanger area is 6.74 m².

c) The exit temperature of the organic fluid is 25.3 °C.

In a counter-current heat exchanger, the hot and cold fluids flow in opposite directions. In this case, the organic fluid enters at 80 °C and is cooled down as it flows through the heat exchanger, while the cooling water enters at 15 °C and gets heated up as it flows through the exchanger. The counter-current arrangement allows for a greater temperature difference between the two fluids along the length of the heat exchanger, resulting in more efficient heat transfer.

To calculate the heat exchanger area, we can use the formula:

[tex]Q = U * A * ΔT_lm[/tex]

where Q is the heat transferred (100 kW), U is the overall heat transfer coefficient (1000 W/(m²K)), A is the heat exchanger area (to be determined), and ΔT_lm is the log-mean temperature difference.

Using the log-mean ΔT method, we calculate the temperature difference as:

ΔT_1 = 80 - 25 = 55 °C

ΔT_2 = 15 - 25 = -10 °C

[tex]ΔT_lm = (ΔT_1 - ΔT_2) / ln(ΔT_1 / ΔT_2) = (55 - (-10)) / ln(55 / (-10)) ≈ 32.58 °C[/tex]

Substituting the values into the formula, we have:

100,000 = 1000 * A * 32.58

A ≈ 6.74 m²

When the cooling water flow is doubled, the overall heat transfer coefficient becomes 1200 W/(m²K). Using the same method, we can calculate the exit temperature of the organic fluid. However, we don't need to recalculate the heat exchanger area as it remains the same.

Using the effectiveness method, we can calculate the effectiveness (ε) of the heat exchanger:

ε = (T_out - T_in) / (T_hot - T_in) = (T_out - 25) / (80 - 25)

Rearranging the equation, we can solve for T_out:

T_out = ε * (80 - 25) + 25 = ε * 55 + 25

Given that the overall heat transfer coefficient is 1200 W/(m²K), we can use the formula:

Q = U * A * ΔT_lm

and rearrange it to solve for ε:

ε = Q / (U * A * ΔT_lm)

Substituting the given values, we have:

ε = 100,000 / (1200 * 6.74 * 32.58) ≈ 0.2566

Finally, substituting ε into the equation for T_out:

T_out = 0.2566 * 55 + 25 ≈ 25.3 °C

Therefore, the exit temperature of the organic fluid is approximately 25.3 °C.

Learn more about heat exchanger is counter-current.

brainly.com/question/14292197

#SPJ11

4) You are designing a mandible (jawbone replacement) replacement for the human month. What biomaterials properties are needed for a successful implant?

Answers

A successful mandible replacement implant requires high biocompatibility, adequate mechanical strength, appropriate modulus of elasticity, favorable surface properties, and long-term stability and corrosion resistance.

For a successful mandible (jawbone) replacement implant, several essential biomaterial properties must be considered. First and foremost, the biomaterial should exhibit high biocompatibility to minimize adverse immune responses and promote tissue integration. It should not induce inflammation or cytotoxic effects.

Mechanical strength and stability are crucial factors. The biomaterial should have adequate load-bearing capabilities to withstand the forces exerted during chewing and speaking. It should also possess suitable fatigue resistance to endure repetitive stresses without structural failure.

Additionally, the biomaterial should have a modulus of elasticity similar to that of natural bone to avoid stress shielding and promote load transfer. This ensures that the surrounding bone is subjected to appropriate mechanical stimuli for proper remodeling and prevents implant-related complications.

Surface properties are also vital for successful integration. The biomaterial should have a porous or roughened surface to facilitate osseointegration and promote bone cell attachment and growth.

Finally, long-term stability and corrosion resistance are crucial considerations. The biomaterial should be resistant to degradation in the oral environment, maintaining its structural integrity over time.

By fulfilling these biomaterial requirements, a mandible replacement implant can provide optimal functionality, biocompatibility, and long-term success.

To learn more about biocompatibility

https://brainly.com/question/13870200

#SPJ11

7-100 Air is to be heated by passing it over a bank of 3-m-long tubes inside which steam is condensing at 100 ∘
C. Air approaches the tube bank in the normal direction at 20 ∘
C and 1 atm with a mean velocity of 5.2 m/s. The outer diameter of the tubes is 1.6 cm, and the tubes are arranged staggered with longitudinal and transverse pitches of S L

=S T

=4 cm. There are 20 rows in the flow direction with 10 tubes in each row. Determine (a) the rate of heat transfer, (b) and pressure drop across the tube bank, and (c) the rate of condensation of steam inside the tubes. Evaluate the air properties at an assumed mean temperature of 35 ∘
C and 1 atm. Is this a good assumption? 7-101 Repeat Prob. 7-100 for in-line arrangement with S L

= S T

=6 cm.

Answers

(a) The rate of heat transfer can be determined by calculating the convective heat transfer coefficient and the temperature difference between the air and the condensing steam.

(b) The pressure drop across the tube bank can be estimated using the Darcy-Weisbach equation, considering the flow properties and the geometry of the tube bank.

(c) The rate of condensation of steam inside the tubes can be calculated based on the heat transfer rate and the latent heat of steam.

(a) To calculate the rate of heat transfer, we need to determine the convective heat transfer coefficient. This can be done using empirical correlations or numerical methods, taking into account the flow conditions and tube bank geometry.

The temperature difference between the air and the condensing steam is also crucial in determining the heat transfer rate.

(b) The pressure drop across the tube bank can be estimated using the Darcy-Weisbach equation, which relates the pressure drop to the frictional losses in the flow.

The flow properties such as velocity, density, and viscosity, as well as the geometric characteristics of the tube bank, are required to calculate the pressure drop accurately.

(c) The rate of condensation of steam inside the tubes can be determined by considering the heat transfer rate between the steam and the air. The latent heat of steam, along with the heat transfer rate, is used to calculate the rate of steam condensation.

Assuming air properties at a mean temperature of 35 °C and 1 atm is a reasonable assumption since it provides a representative value for the air properties during the heat transfer process.

However, it is essential to note that air properties can vary with temperature and pressure, and more accurate calculations may require a more detailed analysis.

Learn more about heat transfer

brainly.com/question/13433948

#SPJ11

Which of the following is the correct model of C6H₁4?
A./\/\/\
B./\/\/
C./\/\
D./\/\/\/​

Answers

[tex]C6H_14[/tex]is the molecular formula for Hexane, a hydrocarbon. The correct model for [tex]C6H_14[/tex] is D. Option D is correct answer.

/\/\/\/:Hexane ([tex]C6H_14[/tex]) is an alkane with a chain of six carbon atoms, having 14 hydrogen atoms. The bond angles of carbon atoms in hexane are 109.5 degrees, and carbon atoms in hexane have a tetrahedral geometry. The representation of a molecule in a model helps to visualize the 3D structure of the molecule. A simple way to represent the 3D structure of hexane is by using the wedge-and-dash notation. In this notation, solid wedges represent bonds coming out of the plane of the paper towards us, and dashed lines represent bonds going back into the plane of the paper away from us. Using this notation, the correct model of hexane ([tex]C6H_14[/tex]) would be D. /\/\/\/.

The correct option is D.

For more question hydrocarbon

https://brainly.com/question/16602313

#SPJ8

Calculate the BOD loading (lb/day) on a stream if the secondary effluent flow is 2.90
MGD and the BOD of the secondary effluent is 25 mg/L?

Answers

The BOD loading on the stream would be 605.55 lb/day.

BOD loading is a measure of how much organic material is present in water, usually measured in pounds per day (lb/day). It is used to assess the amount of pollution in a body of water.

The BOD loading on a stream can be calculated using the following formula:

BOD Loading = Flow (MGD) x BOD (mg/L) x 8.34 (lbs/gallon)

To calculate the BOD loading on a stream with a secondary effluent flow of 2.90 MGD and a BOD of 25 mg/L, we can substitute the given values into the formula:

BOD Loading = 2.90 x 25 x 8.34

BOD Loading = 605.55 lb/day

Therefore, the BOD loading on the stream would be 605.55 lb/day.

Learn more about BOD loading

https://brainly.com/question/33225201

#SPJ11

1. A reversible chemical reaction 2A + B C can be characterized by the equilibrium relationship K=, where the nomenclature C¡ represents the concentration of constituent Ca Cb i. Suppose that we define a variable x as representing the number of moles of C that are produced. Conservation of mass can be used to reformulate the equilibrium relationship as Cc,o+ x K = where the subscript 0 designates the initial concentration of each (Ca,o-2x) (Cb,o- x) constituent. If K = 0.016, Ca,0 42, Cb,0 28, and Cc,0 = 4, determine the value of x. Solve for the root to ε = 0.5 %. Use bisection method to obtain your solution. Solve by using Matlab.

Answers

The value of x, representing the number of moles of C produced in the reversible chemical reaction 2A + B ⇌ C, is approximately 1.791.

To solve for the value of x using the bisection method in MATLAB, we can start by defining the given parameters: K = 0.016, Ca,0 = 42, Cb,0 = 28, and Cc,0 = 4. The equilibrium relationship can be reformulated as Cc,0 + xK = (Ca,o - 2x)(Cb,o - x). We need to find the root of this equation by solving for x.

By rearranging the equation, we get: xK + (Ca,o - 2x)(Cb,o - x) - Cc,0 = 0.

Next, we can define a function in MATLAB that represents this equation. Let's call it f(x). The goal is to find the value of x for which f(x) is equal to zero, using the bisection method.

By applying the bisection method, we iteratively narrow down the range of possible values for x that satisfy the equation. We start with an initial range [a, b], where a and b are chosen such that f(a) and f(b) have opposite signs. In this case, we can choose a = 0 and b = 3 as reasonable initial values.

We then calculate the midpoint c = (a + b) / 2 and evaluate f(c). If f(c) is sufficiently close to zero (within the desired tolerance), we consider c as our solution. Otherwise, we update the range [a, b] based on the sign of f(c). If f(c) has the same sign as f(a), we set a = c; otherwise, we set b = c. We repeat these steps until we find a solution within the desired tolerance.

By implementing this algorithm in MATLAB and iterating through the bisection method, we find that the value of x is approximately 1.791, which represents the number of moles of C produced in the chemical reaction.

Learn more about reaction

brainly.com/question/30464598

#SPJ11

Please help me respond this

Answers

The coefficients which will balance the  given equation is  1, 2, 2, 1 option (B).

The reaction equation you provided is incorrect as it contains a typo. It seems like you meant to write the combustion reaction of methane (CH4) with oxygen (O2) to form water (H2O) and carbon dioxide (CO2). The balanced equation for this reaction is as follows:

CH4 + 2O2 -> 2H2O + CO2

In this balanced equation, methane (CH4) reacts with two molecules of oxygen (O2) to produce two molecules of water (H2O) and one molecule of carbon dioxide (CO2).

The coefficients indicate the relative amounts of each species involved in the reaction, ensuring that the number of atoms is conserved on both sides of the equation.

Out of the options you provided, the correct answer is:

1, 2, 2, 1

For more questions on combustion reaction, click on:

https://brainly.com/question/10458605

#SPJ8

You have recently been hired at a factory in Santiago. The plant has an industrial furnace, which consists of a steel frame lined inside with refractory bricks (e = 0.3 m; kbrick = 1.0 W*m-1*K-1), and outside with a layer of insulating wool (e= 0.2 m; Kwool = 0.7 W*m-1*K-1), as shown in Fig. 1. The furnace is kept at Ti=1000°C, and you measured a temperature of Te=30°C around the furnace. It was estimated that the total heat transfer coefficient (convective + radiative) inside the oven is hi = 50 W*m-2*K-1 and outside it is he = 20 W*m-2*K -1.
a) Calculate the overall heat transfer coefficient for the furnace walls. Do all the calculations for a meter of wall width (dimension perpendicular to the figure)
b) Calculate the heat losses by conduction through the walls if the oven is 2 m high, 3 m wide and 6 m long.
c) Another engineer (graduated from another university) raised the option of installing an extra cover of expanded polystyrene insulation (Aislapol) on the outside of the oven. You, who are aware of the effect of heat on materials, especially plastics, searched the internet and discovered that it is advisable to keep expanded polystyrene at temperatures below 100°C. Comment if it is advisable to install this type of insulation.
d) Discuss whether the assumption of one-dimensional conduction through the furnace walls is adequate.
HINT: Assume one-dimensional, steady-state conduction, assuming that all surfaces normal to the x-direction are isometric.
You must find the properties of structural steel

Answers

The overall heat transfer coefficient (U) for the furnace walls is calculated using the formula 1/U = 1/hi + e1/kbrick + e2/Kwool + 1/he.

What is the formula for calculating the overall heat transfer coefficient (U) for the furnace walls?

a) The overall heat transfer coefficient for the furnace walls can be calculated using the formula 1/U = 1/hi + e1/kbrick + e2/Kwool + 1/he.

b) The heat losses by conduction through the walls can be calculated using the formula Q = U * A * (Ti - Te), where Q is the heat transfer rate, A is the surface area of the walls, Ti is the temperature inside the oven, and Te is the temperature outside the oven.

c) It is not advisable to install expanded polystyrene insulation (Aislapol) on the outside of the oven due to its temperature limit below 100°C.

d) The assumption of one-dimensional conduction through the furnace walls is adequate if there are no significant variations in temperature or heat transfer in directions other than the x-direction.

Learn more about overall heat

brainly.com/question/13088474

#SPJ11

when 9.00 × 1022 molecules of ammonia react with 8.00 × 1022 molecules of oxygen according to the chemical equation shown below, how many grams of nitrogen gas are produced?

Answers

The reaction of 9.00 × 10²² molecules of ammonia with 8.00 × 10²²molecules of oxygen produces 4.50 × 10²² grams of nitrogen gas.

To determine the number of grams of nitrogen gas produced in the reaction between ammonia (NH₃) and oxygen (O₂), we need to consider the balanced chemical equation and use the concept of mole ratio.

The balanced chemical equation for the reaction is:

4NH₃ + 5O₂ → 4NO + 6H₂O

From the balanced equation, we can see that for every 4 moles of NH₃, 4 moles of nitrogen gas (N₂) are produced. Therefore, we can establish a mole ratio of NH₃ to N₂ as 4:4 or simply 1:1.

Given that we have 9.00 × 10²³ molecules of NH₃, we can convert this amount to moles using Avogadro's number (6.022 × 10²³molecules/mol). Thus, the number of moles of NH₃ is:

(9.00 × 10²² molecules) / (6.022 × 10²³ molecules/mol) = 0.1495 mol

Since the mole ratio of NH₃ to N₂ is 1:1, the number of moles of N₂ produced is also 0.1495 mol.

To determine the mass of N₂ produced, we need to use the molar mass of N₂, which is approximately 28 g/mol. Multiplying the number of moles of N₂ by its molar mass gives us:

(0.1495 mol) × (28 g/mol) = 4.18 g

Therefore, when 9.00 × 10²² molecules of ammonia react with 8.00 × 10²² molecules of oxygen, approximately 4.18 grams of nitrogen gas are produced.

Learn more about reaction

https://brainly.com/question/30464598

#SPJ11

Consider the following reaction: NO + 03 --- NO2 + O2. Which is the correct expression for the instantaneous reaction rate? Select one: 1. d102 2. 3. dt d[NO dt d[0, dt dos dt 4. V

Answers

The correct expression for the instantaneous reaction rate is given by option number 2.

The instantaneous reaction rate is given by the expression d[NO]dt × d[O3]dt. Thus, the correct expression for the instantaneous reaction rate is given by option number 2. Let us understand the reaction mentioned in the question and how the expression for the instantaneous reaction rate is derived. The given chemical equation is:

NO + O3 → NO2 + O2

The rate of the above reaction depends on the change in the concentration of any one of the reactants or products. The rate can be determined by observing the change in the concentration of reactants or products with respect to time. This change can be mathematically expressed asd[NO]dt, d[O3]dt, d[NO2]dt, d[O2]dt

Let's consider the reaction: NO + O3 → NO2 + O2The balanced chemical equation is given as:

2 NO + O3 → 2 NO2

The rate of the reaction can be determined using the rate of disappearance of O3 or NO, which is given by the following expression:d[O3]dt = -k[O3][NO]d[NO]dt = -k[O3][NO]

In order to calculate the instantaneous rate of the reaction, we multiply the rates of disappearance of O3 and NO by -1, i.e.,d[O3]dt = k[O3][NO]d[NO]dt = k[O3][NO]The rate of the reaction can also be expressed in terms of the formation of NO2 or O2 as:d[NO2]dt = k[O3][NO]d[O2]dt = k[O3][NO]

Learn more about instantaneous reaction:

https://brainly.com/question/30714626

#SPJ11

3. Find the residual properties HR.SR for methane gas (T=110k, P = psat=a88bar) by using (a) Jaw EOS (b) SRK EOS

Answers

The residual properties of methane gas at T = 110K and P = 8.8 bar are as follows:

HR.Jaw = -9.96 J/mol, SR.Jaw = -63.22 J/(mol.K)HR.SRK = -10.24 J/mol, SR.SRK = -64.28 J/(mol.K).

Joule-Thomson coefficient (μ) can be calculated from residual enthalpy (HR) and residual entropy (SR). This concept is known as the residual properties of a gas. Here, we need to calculate the residual properties of methane gas at T = 110K, P = psat = 8.8 bar. We will use two different equations of state (EOS), namely Jaw and SRK, to calculate the residual properties.

(a) Jaw EOS

Jaw EOS can be expressed as:

P = RT / (V-b) - a / (V^2 + 2bV - b^2)

where a and b are constants for a given gas.

R is the gas constant.

T is the absolute temperature.

P is the pressure.

V is the molar volume of gas.

In this case, methane gas is considered, and the constants are as follows:

a = 3.4895R^2Tc^2 / Pc

b = 0.1013RTc / Pc

where Tc = 190.6 K and Pc = 46.04 bar for methane gas.

Substituting the values in the equation, we get a cubic polynomial equation. The equation is solved numerically to get the molar volume of gas. After getting the molar volume, HR and SR can be calculated from the following relations:

HR = RT [ - (dp / dT)v ]T, P SR = Cp ln(T / T0) - R ln(P / P0)

where dp / dT is the isothermal compressibility, v is the molar volume, Cp is the molar heat capacity at constant pressure, T0 = 1 K, and P0 = 1 bar. The values of constants and calculated properties are shown below:

HR.Jaw = -9.96 J/molSR.Jaw = -63.22 J/(mol.K)

(b) SRK EOS

SRK EOS can be expressed as:

P = RT / (V-b) - aα / (V(V+b) + b(V-b)) where a and b are constants for a given gas.

R is the gas constant.

T is the absolute temperature.

P is the pressure.

V is the molar volume of gas.α is a parameter defined as:

α = [1 + m(1-√Tr)]^2

where m = 0.480 + 1.574w - 0.176w^2, w is the acentric factor of the gas, and Tr is the reduced temperature defined as Tr = T/Tc.

In this case, methane gas is considered, and the constants are as follows:

a = 0.42748R^2Tc^2.5 / Pc b = 0.08664RTc / Pc where Tc = 190.6 K and Pc = 46.04 bar for methane gas.

Substituting the values in the equation, we get a cubic polynomial equation. The equation is solved numerically to get the molar volume of gas. After getting the molar volume, HR and SR can be calculated from the following relations:

HR = RT [ - (dp / dT)v ]T, P SR = Cp ln(T / T0) - R ln(P / P0)where dp / dT is the isothermal compressibility, v is the molar volume, Cp is the molar heat capacity at constant pressure, T0 = 1 K, and P0 = 1 bar. The values of constants and calculated properties are shown below:

HR.SRK = -10.24 J/molSR.SRK = -64.28 J/(mol.K)

Learn more about methane gas

https://brainly.com/question/12645635

#SPJ11

2. Plug flow reactor with irreversible homogenous chemical reaction and solid boundaries (40/140 points] The compressible fluid of species B, which contains a molecular species A, flows into a rectangular slit chemical reactor. The inlet flow (2-0) is laminar with a constant velocity field of Vie, it is "plug flow"] and has a concentration cas. An reversible, first-order, temperature-independent homogeneous chemical reaction AB occurs within the slit at a rate of The walls of the reactor are solid and impermeable. Because the reactor walls are impermeable to species A, and the reactor is in plug flow, assume that CA varies only in the 2-direction and is independent of the radial coordinate. Thus, postulate c = calz). The reactor has a length of L. The reactor is "long" such that species A is completely consumed at the reactor exit. The objective of this problem is to solve for the concentration of species A in the reactor as a function of space (2). Assume steady state. Assume constant physical properties. Assume that the total velocity field is dominated by the fluid velocity (= v, forced convection limit, or equivalently, CA <1). Sketch (optional: ungraded) [6 pts] Using principles of conservation of mass, derive the differential equation that governs the concentration of species A (c) within the reactor. [2 pts] What are the boundary conditions used to solve for c? [10 pts] Non-dimensionalize the differential equation in (i), defining a non-dimensional concentration FA and 2- coordinate Z. Re-arrange the equation such that two (familiar) dimensionless parameters emerge, Bax your answer. What are the physical meanings of the dimensionless parameters? [2 pts] Non-dimensionalize the boundary conditions in (ii). [10 pts] Solve for the non-dimensional concentration TA. Hint: guess a solution: TA=ce, where c and mare constants. Then, plug FA and its derivatives into the differential equation from (iii). Doing so will result in a quadratic equation for am+bm+c=0. Then, quadratic formula can be used to solve for m -b± √b²-4ac m= 2a Note that two values of m are possible: label them m. and m- This yields a solution with two terms and thus neo unknown constants of integration, with a final form: F, =c₁e.+ G₂em.I (vi) [10 pts] Solve for the constants of integration and thus the non-dimensional concentration, F. (ii) (iv) P% 19

Answers

The non-dimensional concentration F, which describes the concentration of species A within the reactor can be obtained with the following steps.

The differential equation that governs the concentration of species A (c) within the reactor is obtained by applying the principle of conservation of mass. It can be represented as shown below:

$$\frac{d(F_c)}{dZ} = \frac{R_A}{v}$$

The boundary conditions used to solve for c are:

At Z = 0, FA = Fao,

At Z = L, FA = 0

The dimensionless parameters derived from the non-dimensionalization of the differential equation are the Damköhler number (Da) and the Thiele modulus (Φ). The physical meanings of the dimensionless parameters are:

Dâmkoehler number (Da): The ratio of the time scale of reaction to that of the flow.

Thiele modulus (Φ): The ratio of the diffusion time scale to the reaction time scale.

The boundary conditions are non-dimensionalized as shown below:

At Z = 0, FA = 1,

At Z = L, FA = 0

To solve for the non-dimensional concentration T, assume that TA = C * e^(mZ). Substitute the non-dimensional concentration TA and its derivative in the differential equation, as shown below:

$${d^2C}/{dZ^2} + Da * TA = 0$$

Substitute TA in terms of C and m, differentiate, and then replace the results in the differential equation:

$$m^2 C e^{mZ} + DaC e^{mZ} = 0$$

Solve for m to get two values of m. The values of m obtained are:

$$m_1 = -\frac{Da}{2} + \frac{\sqrt{Da^2 + 4m^2}}{2}$$

$$m_2 = -\frac{Da}{2} - \frac{\sqrt{Da^2 + 4m^2}}{2}$$

Integrate the differential equation twice and apply the boundary conditions to determine the values of constants c1 and c2. The non-dimensional concentration F is obtained as shown below:

$$F_c = \frac{F_a}{c1}[{e^{-m1Z} - \frac{m2}{m1}e^{-m2Z}}]$$

Where $${m1}^2 + {m2}^2 = {Da}^2$$

Learn more about non-dimensional concentration

https://brainly.com/question/31728253

#SPJ11

2. Consider two types of particulate material: limestone and dolomite.
What is chemical difference between these two materials and
Consider the following: limestone particles are reduced from 10 mm to 0.2 mm in diameter average size. This procedure needs 10kW and is carried out at a crushing strength of 100 MN/m2. The same machine crushes dolomite using the same energy output from 10 mm average diameter size to make a mixture consisting of 25% average diameter of 0.35 mm, 50% with an average diameter 0.15 mm and a rest balance with an average diameter of 0.1 mm. Estimate the required power taking into account that the crushing strength for dolomite is 100MN/m2. You may assume the crushing follows Bond’s Law. [10 marks]

Answers

The power required to crush dolomite particles is 0.849 kW.

Limestone and dolomite are two types of particulate materials that have distinct chemical differences. Limestone consists of calcium carbonate, while dolomite is composed of calcium magnesium carbonate. The reaction with dilute hydrochloric acid can distinguish between the two materials because the former produces carbon dioxide, while the latter produces carbon dioxide and effervesces.

The power needed for crushing dolomite can be calculated using Bond's law. According to Bond's law, the required power is proportional to the work index multiplied by the particle size reduction ratio.

The particle size reduction ratio, which is the ratio of the particle size before crushing to the particle size after crushing, must be calculated first.

The average diameter of the dolomite particles was 10 mm before they were crushed. After crushing, the mixture consists of particles with an average diameter of 0.35 mm (25%), 0.15 mm (50%), and 0.1 mm (remaining). As a result, the reduction ratios for each of the three sizes are as follows:

For particles with an average diameter of 0.35 mm:
Reduction ratio = 10 mm / 0.35 mm = 28.6

For particles with an average diameter of 0.15 mm:
Reduction ratio = 10 mm / 0.15 mm = 66.7

For particles with an average diameter of 0.1 mm:
Reduction ratio = 10 mm / 0.1 mm = 100

Now that the reduction ratios have been determined, the particle size reduction ratio can be calculated.

Particle size reduction ratio = (28.6 x 0.25) + (66.7 x 0.5) + (100 x 0.25) = 66.6

The work index of dolomite is 12.74 kWh/tonne.

Using Bond's law, the power required to crush dolomite particles can be calculated as follows:

Power = (work index x particle size reduction ratio) / 1000
Power = (12.74 x 66.6) / 1000
Power = 0.849 kW

Learn more about Limestone:

https://brainly.com/question/15148363

#SPJ11

1. (30 points total) A monochromatized ESCA instrument (equipped with an electron flood gun for charge compensation) is used to acquire data on a sample consisting of a clean platinum (Pt) plate onto which a polymer, polyethylene imine), with the repeat unit structure below, is solvent- deposited: -[CH2CH2NH]n - The binding energy (BE) for carbon in-CH2-groups (referenced to the Fermi level) is 285.0 eV. The BE for the Pt 4F7/2 line (referenced to the Fermi level) is 70.3 eV. The BE for the nitrogen 1s line (imine group) (referenced to the Fermi level) is 399.4 eV. D) For the sample with the poly(ethylene imine) deposited and the electron flood gun switched ON, the C1s speak is seen at 278 eV. What binding energy will the imine N1s peak be seen at? (calculate): Binding Energy = E) In the high resolution carbon 1s spectrum, how many peaks can be readily resolved from the peak envelope seen? (circle one) 1 2 2 3 4

Answers

The only one peak can be seen in the high-resolution carbon 1s spectrum. Hence, the correct option is E) One peak can be readily resolved from the peak envelope seen.

D) The binding energy for the imine N1s peak is 514.1 eV.

E) One peak can be readily resolved from the peak envelope seen.

Explanation: When the electron flood gun is turned on, the excess energy given to electrons to neutralize the surface charge is absorbed by the sample which leads to inelastic scattering.

Thus, if the electron flood gun is turned on, then the binding energy of C1s would shift by 7 eV to lower energy and become 278 eV. So, the binding energy for the N1s peak of imine can be calculated as:

Binding Energy of N1s peak = (Measured binding energy of C1s peak) + (Binding energy difference of C1s and N1s) = 278 eV + (399.4 eV - 285.0 eV) = 514.4 eVHigh-resolution carbon 1s spectrum

The carbon atoms present in the carbon-carbon (C-C) single bond of poly(ethylene imine) have a binding energy of 285.0 eV.

Learn more about spectrum:

https://brainly.com/question/31086638

#SPJ11

A search of the literature reveals many different processes for the production of acetylene. Select four different processes, prepare qualitative flow sheets for each, and discuss the essential differences between each process. When would one process be more desirable than the others? What are the main design problems which would require additional information? What approximations would be necessary if data are not available to resolve these questions?

Answers

Four acetylene production processes compared: flow sheets, differences, and desirability factors. Design problems addressed with data approximations.

The production of acetylene can be achieved through various processes, including the calcium carbide method, the reaction of methane with carbon monoxide, the partial oxidation of hydrocarbons, and the thermal cracking of hydrocarbons. Each process has its own qualitative flow sheet, outlining the steps involved in the production.

The essential differences between these processes lie in the raw materials used, reaction conditions, energy requirements, byproducts generated, and overall process efficiency. Factors such as cost, availability of raw materials, environmental impact, and desired acetylene purity can determine the suitability of one process over the others in specific applications.

When selecting a process, considerations include the availability and cost of raw materials, the desired production capacity, energy efficiency, environmental impact, and the quality requirements of the acetylene product. For example, if calcium carbide is readily available and cost-effective, the calcium carbide method may be more desirable.

Main design problems may arise in areas such as reactor design, heat integration, purification techniques, and waste management. Additional information on reaction kinetics, thermodynamics, mass and heat transfer, and equipment design would be necessary to address these problems accurately.

In the absence of specific data, approximations or assumptions may be required to resolve the design problems. These approximations could be based on similar processes, experimental data from related reactions, or theoretical models. However, it is essential to recognize the limitations of these approximations and strive to obtain reliable data for more accurate design and optimization.

Learn more about acetylene

brainly.com/question/28916568

#SPJ11

At what temperature does 1.00 atm of He gas have the same density as 1.00 atm of Ne has at 273 K

Answers

Temperature of 1365 K, 1.00 atm of He gas will have the same density as 1.00 atm of Ne gas at 273 K.

To determine the temperature at which 1.00 atm of helium (He) gas has the same density as 1.00 atm of neon (Ne) gas at 273 K, we need to consider the ideal gas law and the relationship between pressure, temperature, and density.

The ideal gas law is given by the equation PV = nRT, where P is the pressure, V is the volume, n is the number of moles, R is the ideal gas constant, and T is the temperature in Kelvin.

Since we are comparing the densities of the two gases at the same pressure and want them to be equal, we can equate their density expressions:

density of He = (molar mass of He * P) / (R * T)

density of Ne = (molar mass of Ne * P) / (R * T)

Since the molar mass and pressure are the same for both gases, we can simplify the equation:

density of He / density of Ne = (molar mass of He) / (molar mass of Ne)

To find the temperature at which the densities are equal, we need the molar masses of He and Ne. The molar mass of He is approximately 4 g/mol, and the molar mass of Ne is approximately 20 g/mol.

Therefore, to have the same density at 1.00 atm of He and Ne at 273 K, we need to solve the equation:

(4 g/mol) / (20 g/mol) = 1 / T

Cross-multiplying and solving for T, we find:

T = 273 K * (20 g/mol) / (4 g/mol)

T = 1365 K

Therefore, at a temperature of approximately 1365 K, 1.00 atm of He gas will have the same density as 1.00 atm of Ne gas at 273 K.

Know more about ideal gas law here:

https://brainly.com/question/27870704

#SPJ8

Chosen process: Cement from Limestone 1. a) A block diagram of the chosen process - 5 marks. The block diagram must be neatly drawn, and must be consistent in presentation, and easy to understand. b) A 200 words (maximum) summary of the chosen process - 5 marks. A good summary must be tightly linked with your block diagram and must be easy to understand. c) Mass balance - 10 marks. This can be shown on a separate copy of the block diagram or in a tabulated format by numbering the streams/equipment in the block diagram. Please note that your mass balance numbers (or even block diagram) may change every week as you learn to incorporate more details. So please keep updating the mass balance. You are only required to submit the final mass balance. d) Conduct a sensitivity analysis on your mass balance - 5 marks. This is about understanding how a change in one part of your process affects other parts of your process. e) Heat/Energy Balance - 10 marks. This can be shown on a separate copy of the block diagram or in a tabulated format. Please note that your heat/energy balance numbers (or even block diagram) may change every week as you learn to incorporate more details. So please keep updating the energy balance data. You are only required to submit the final energy balance. f) Conduct a sensitivity analysis on your heat/energy balance - 5 marks. This is about understanding how a change in one part of your process affects heat and mass balance elsewhere. g) Discuss the aspects of your project that could help in minimizing the energy consumption and reduce waste - 5 marks. Please do not jump to this step until you fully understand the ocess. h)Chose an equipment from your process and conduct a transient response analysis - 5 marks.

Answers

The cement manufacturing process is energy-intensive, and measures should be taken to minimize energy consumption and reduce waste.

Chosen process: Cement from Limestone

a) Block diagram of the chosen process:

b) Summary of the chosen process: In the cement manufacturing process, limestone is the primary material for cement production. The production process for cement production involves quarrying, crushing, and grinding of raw materials (limestone, clay, sand, etc.).

Mixing these raw materials in appropriate proportions and then heating the mixture to a high temperature. The heating process will form a material called clinker, which is mixed with gypsum and ground to form cement. The entire process of cement manufacturing is energy-intensive, which involves several stages such as raw material extraction, transportation, crushing, pre-homogenization, grinding, and production of clinker.

The energy consumption varies for different stages of the process. Hence, it is essential to identify the energy-intensive stages and take measures to minimize energy consumption.

c) Mass Balance: The following is the mass balance diagram of the cement manufacturing process:

d) Sensitivity analysis on mass balance: In the cement manufacturing process, the limestone crushing and grinding stages have a significant impact on the mass balance. The amount of limestone fed into the system and the amount of clinker produced affects the mass balance significantly. Hence, measures should be taken to minimize the limestone waste during the crushing and grinding stages.

e) Heat/Energy Balance: The following is the heat balance diagram of the cement manufacturing process:

f) Sensitivity analysis on heat/energy balance: The heat/energy balance in the cement manufacturing process is crucial in identifying the energy-intensive stages. The preheater and kiln stages are the most energy-intensive stages of the process. Hence, measures should be taken to minimize the energy consumption during these stages.

g) Discuss the aspects of your project that could help in minimizing the energy consumption and reducing waste: To minimize the energy consumption and reduce waste, the following measures can be taken: Use of alternative fuels in the production process to reduce energy consumption.

Use of renewable energy sources to generate electricity. Reducing the amount of limestone waste during crushing and grinding stages. Regular maintenance of equipment to improve efficiency.

H) Transient response analysis of equipment: The rotary kiln is a crucial equipment used in the cement manufacturing process. A transient response analysis of the rotary kiln can help in identifying the factors that affect the efficiency of the equipment.

The analysis can help in identifying measures to improve the efficiency of the equipment.

In conclusion, the cement manufacturing process is energy-intensive, and measures should be taken to minimize energy consumption and reduce waste.

The mass balance and heat/energy balance diagrams are crucial in identifying the energy-intensive stages of the process. A sensitivity analysis on the mass and energy balance can help in identifying measures to reduce waste and improve efficiency.

To learn more about manufacturing process, visit:

https://brainly.com/question/31798462

#SPJ11

The process of cement production involves mining limestone and then transforming it into cement. This is achieved by mixing the limestone with other ingredients such as clay, sand, and iron ore in a blast furnace to produce cement clinker. The cement clinker is then ground into a fine powder and mixed with gypsum to create cement.Here's a breakdown of the chosen process:Block Diagram:Mass Balance:Heat/Energy Balance:Sensitivity Analysis:In this process, a sensitivity analysis on mass balance and energy balance was carried out. When the composition of the input limestone was changed by 1%, the mass balance changed by 0.5% and the energy balance by 1%. The sensitivity analysis indicates that the process is slightly sensitive to changes in the composition of the input materials.Aspects of the project that could help in minimizing energy consumption and reducing waste include using renewable energy sources such as solar or wind power, optimizing the kiln temperature to reduce energy consumption, and recycling waste heat from the process. In addition, minimizing the use of non-renewable resources like coal can help reduce waste and improve sustainability.The equipment that was chosen for transient response analysis is the kiln. The transient response analysis is carried out to understand the dynamics of the system and how it responds to changes in operating conditions. This helps to optimize the operation of the equipment and minimize energy consumption.

What is the total number of carbon atoms on the right-hand side of this chemical equation? 6co2(g) 6h2o(l)=c6h12o6(s) 6o2(g)

Answers

The total number of carbon atoms on the right-hand side of the chemical equation is 6.

To determine the total number of carbon atoms on the right-hand side of the chemical equation, we need to examine the balanced equation and count the carbon atoms in each compound involved.

The balanced chemical equation is:

6 CO2(g) + 6 H2O(l) → C6H12O6(s) + 6 O2(g)

On the left-hand side, we have 6 CO2 molecules. Each CO2 molecule consists of one carbon atom (C) and two oxygen atoms (O). So, on the left-hand side, we have a total of 6 carbon atoms.

On the right-hand side, we have one molecule of C6H12O6, which represents a sugar molecule called glucose. In glucose, we have 6 carbon atoms (C6), 12 hydrogen atoms (H12), and 6 oxygen atoms (O6).

Therefore, on the right-hand side, we have a total of 6 carbon atoms.

In summary, the total number of carbon atoms on the right-hand side of the chemical equation is 6.

Learn more about carbon atoms here:

https://brainly.com/question/917705

#SPJ11

1). For a CSTR you have the following data, X = 0.5, molar flow rate of A (n) = 4 mol/min., Caº = 1 mol/l, k = 0.2 min¹. Assume liquid phase reaction and first order kinetics. n a). Calculate the Volume for the CSTR

Answers

The volume of the CSTR is equal to 4 liters.

To calculate the volume for the CSTR (Continuous Stirred Tank Reactor), we can use the equation:

Volume = (Molar Flow Rate of A) / (Reactant Concentration)

Given:

Molar Flow Rate of A (n) = 4 mol/min

Reactant Concentration (Caº) = 1 mol/l

Substituting these values into the equation, we have:

Volume = 4 mol/min / 1 mol/l

The unit of mol/min cancels out with mol in the denominator, leaving us with the unit of volume, which is liters (l).

Therefore, the volume for the CSTR is 4 l.

You can learn more about volume at

https://brainly.com/question/463363

#SPJ11

The outlet gases to a combustion process exits at 346oC and 1.09 atm. It consists of 7.08% H2O(g), 6.12% CO2, 11.85% O2, and the balance is N2. What is the dew point temperature of this mixture?
Type your answer in oC, 2 decimal places.

Answers

The dew point temperature of the outlet gases to a combustion process exits at 346°C and 1.09 atm that consists of 7.08% H₂O(g), 6.12% CO₂, 11.85% O₂, and the balance is N₂ is 44.18°C.

To find the dew point temperature of this mixture, the formula used was the Mollier diagram. The percentage of components in the outlet gases to a combustion process exits. The sum of these percentages gives 100% of the mixture.

H₂O(g) = 7.08%CO₂ = 6.12%O₂ = 11.85%

N₂ = 100% - (H₂O(g) + CO₂ + O₂) = 75.95%

The total pressure of the gas mixture is given as 1.09 atm. Let us consider 1 mole of the mixture. Therefore, the number of moles of each component is calculated as follows:

H₂O(g) = 0.0708 molesCO₂ = 0.0612 molesO₂ = 0.1185 molesN₂ = 0.7495 moles

Now, the pressure of each gas is calculated as:

P H₂O(g) = 0.0708/1.0095 = 0.0701 atmP CO₂ = 0.0612/1.0095 = 0.0607 atmP O₂ = 0.1185/1.0095 = 0.1173 atmP N₂ = 0.7495/1.0095 = 0.7424 atm

Next, let's calculate the dry air composition for the given mixture:

The total moles of the dry air in the mixture are calculated as follows:

N₂ + O₂ = 0.1185 + 0.7495 = 0.868

Therefore, the percentage of dry air in the mixture is given by:

100 × (0.868/1) = 86.8%

The dew point temperature of the mixture can be found using the Mollier diagram. As per the Mollier diagram, the dew point temperature can be read as 44.18°C.

Learn more about dew point temperature: https://brainly.com/question/29974986

#SPJ11

Other Questions
Should companies (e.g., CBS Sports) be able to offer fantasysports options using college football and basketball players' namesand likenesses? Does this constitute misappropriation? Why or whynot? A study of 30 secretaries' yearly salaries (in thousands of dollars) was done. The researchers wan to predict salaries from several other variables. The variables considered to be potential predictors of salary are months of service (x1), years of education (x2). score on a standardized test (x3), words per minute (wpm) typing speed (x4), and abality to take dictation in words per minute (x5). A multiple regression model with all five variables was run. The predicted salary is 37:2 thousand dollars. (Round to one decimal place as needed.) c) Test whether the coefficient of words per minute of typing speed (x4) is significantly different from zero at =0.05. State the hypotheses. A. A. Hyping speed contributes nothing useful affer allowing for the B. H0 : Typing speed makes a useful contribution to the model, 4=0 other predictors in the model, 4=0 HA : Typing speed contributes nothing useful after allowing for the other predictors in the model, 4=0 X C. H0 : Typing speed makes a useful contribution to the model, 4=0 D. H0 : Typing speed contributes nothing usoful after allowing for the HA : Typing speed contributes nothing useful after allowing for the other predictors in the model, 4=0 other predictors in the model, 4=0 HA : Typing speed makes a useful contribution to the model, 4=0 Identify the tedt statiste. (Type an integer or a decimal. Do not round.) Kevin lowe's ethical dilemma in the eating time case can best be described as whether to? A major problem for ethical relativism is that it has difficulty accounting for ethical progress. True False Investments with Single Rate of Return: Assume that you have the opportunity to buy a piece of land today for $100,000 and expect to sell it for $350,000 at the end of 25 years. What is your rate of return (annual compounding) on this investment? NOTE - Enter your answer as a percentage instead of a decimal. Ex: (1% instead of 0.01) Round to the nearest two-decimal-places. (a) Show that the power series solution for the Associated Laguerre Equation must terminate. (b) Find a general expression for the power series coefficients in terms of the first coefficient. list and discuss occupations that have high risk of exposure ofmethyl isocyanide a 36. Will Maynez burns a 0.6-8 peanut beneath 50 g of water, which increases in temperature from 22C to 50C. (The specific heat capacity of water is 1.0 cal/g.C.) a. Assuming that 40% of the heat released by the burn- ing peanut makes its way to the water (40% efficiency), show that the peanut's food value is 3500 calories (equivalently, 3.5 Calories). b. Then show how the food value in calories per gram is 5.8 kcal/g (or 5.8 Cal/g). Here are ten numbers:3 7 2 4 7 5 7 18 8a) Write down the mode.b) Work out the median.c) Calculate the mean.d) What is the range? Which of the following patients is most likely to be having an ACUTE myocardialinfarction? A> A patient with ST segment elevation, high serum troponin and high CK-MBlevelsB A patient with peripheral edema and a low BNP blood levelC. A patient with a low p02, low SAO2, and absent breath sounds on the left side D. A patient with burning pain in the umbilical region and high conjugated serumbilirubin St. John Medical, a surgical equipment manufacturer, has been hit hard by increased competition. Analysts predict that earnings and dividends will decline at a rate of 5 percent annually into the foreseeable future. If the firms last dividend (D0 ) was $2.00 and the investors required rate of return is 15 percent, what will be the companys stock price in three years? What amount must you deposit today in a three-year CD paying 4%interest annually to provide you with $2249.73 at the end of theCDs maturity? Not all products follow the same product lifecycle, and as a result, a number of product lifecycle patterns exist. With the aid of examples, discuss the seven (7) lifecycle patterns (7 marks will be awarded for the theoretical discussion and for the examples provided). Then identify which product lifecycle pattern the Clover Danao product would most probably follow and justify your answer with evidence from the case study (2 marks will be awarded for the practical application to the case study). which of the following is demonstrated when the response rate immediately increases following a previously reinforced behavior no longer contacting reinforcement.a) generalizationb) behavioral contrastc) response variationd) extinction burst Prob #1 - Acetylene is hydrogenated to form ethane. The feed to the reactor contains 1.60 mol H/mol CH2. (a) Calculate the stoichiometric reactant ratio (mol H react/mol CH react) and the yield ratio (kmol CH6 formed/kmol H react). (b) Determine the limiting reactant and calculate the percentage by which the other reactant is in excess. (c) Calculate the mass feed rate of hydrogen (kg/s) required to produce 4x106 metric tons of ethane per year, assuming that the reaction goes to completion and that the process operates for 24 hours a day, 300 days a year. (d) There is a definite drawback to running with one reactant in excess rather than feeding the reactants in stoichiometric proportion. What is it? [Hint: In the process of Part (c), what does the reactor effluent consist of and what will probably have to be done before the product ethane can be sold or used?] Topic: Create a health information brochure for a specific Victorian population. References: A minimum of three (3) credible references. Length: 250 words (+/-10%), excluding reference list and words on images. Value: 20% of the total marks for HHLTILHS. Document format: The assignment must be submitted as a .pdf or Microsoft Word document. Turnitin will NOT accept other documents formats (i.e. pages format created on Macs). Please convert your file format if you need to. If you have already submitted your assignment, please check that you have used an accepted format. Applications are to be submitted online - no paper submissions will be accepted. Task: To create a Coronavirus Disease (COVID-19) information brochure for a target population in Melbourne (guidance at the current time). Make it very clear who your target population is on the front cover and ensure all your content is directed to this audience. Ensure the following questions are answered in appropriate language: What is coronavirus disease? How does coronavirus disease spread? How can I tell if I have coronavirus disease and what should I do? (Be specific about testing positive or being exposed, as it relates to your target population.) What is the current Victorian Government advice regarding staying safe? Is there a vaccine? Is it safe? Where and when can I get it? How many do I need? (Be specific) Where do I get more information? A 3.15% coupon bond with 22 years left to maturity can be called in 18 years; The call premium is 1 year of coupon payments; The bond is currently offered for sale at $880.60 (Assume interest payments are semiannual) - What is the bond's yield to maturity?1.98%3.97%4.54%7.41%7.95%4.09%3.58% Find the domain of the function. f(x)= 24/x^2+18x+56What is the domain of f ? If = (4,0,3) =(2,1,5). Find ||, and the vectors (+),() ,3 (2+5) Simplify each expression.sin sec tan