Answer:
5.45 * 10^7
Step-by-step explanation:
[tex](4.8 * 10^7) +6,500,000[/tex]
= [tex](4.8 * 10^7) + 6.5 * 10^6[/tex]
= [tex](4.8 * 10^7) + (0.65 * 10^7)[/tex]
= [tex]5.45 * 10 ^7[/tex]
I have this question on an assignment and my calculator won't show the horizontal asymptote correctly can I get some help here?
What's the question? I can try and help..
PLEASE HELP QUICK!!!Suppose the bill for dinner is $16.70, if you want to give a 10% tip what will be the total?
Answer:
$18.37
Step-by-step explanation:
$16.70 × 1.10 = $18.37
or
$16.70 × 0.10 = $1.67
$16.70 + 1.67 = $18.37
Please help! Determine whether the conjecture is true or false and put an example on why it is
Answer:
Step-by-step explanation:
The first one is true. There can't be any other choice.
a = 5959599949 b = 0 then a*b = 0 because b = 0
The Second one is also true, although you may stall trying to figure out what is meant.
Suppose the angle to start with is 30 degrees
There are two angles that are supplementary to this angle. They can only be 180 - 30 = 150 each. Therefore they are equal to each other. This happens because supplementary angles must add to 180 and nothing else.
The third one is false. You can think of states like Montana which has 3 syllables and Wyoming which also has 3. Texas has two. But guess what? Maine only has 1.
The last one is also false. If you square an even number, you get an even number. Add 1 and you get an odd number. 4^2 = 16 Add 1 you get 17. Seventeen is odd.
what should be added to 66.778 get 78.2
Answer:
11.422
Step-by-step explanation:
[tex]78.2 - 66.778 \\ = 11.422[/tex]
What is the simplest fraction whose value is equal to the number (red heart) depicted on this number line. (Give your answer as a fraction, not a mixed number. "Simplest fraction" means the numerator and denominator should have no common divisor greater than 1. : Look closely at the numbers on the number line. (red heart) is between 2 and 3. There are 6 tick marks between 2 and 3. How many regions do those tick marks split the number line into?
Answer:
simplest fraction: 2 1/3 the tick marks split the number into 7 regions
Step-by-step explanation:
The red heart is on the 2 tick mark of the 6 ticks between 2 and 3. The answer is 2 2/6 which after simplifying if equal to 2 1/3.
Answer:
16/7
Step-by-step explanation:
2-3 is devided into 7 segments if you make 2 14/7 and 3 21/7 then you have 16/7 with no common devisor other than 1
What would the 60 is x% of 12. Find the value of x.
Answer:
The value of x= 20
Step-by-step explanation:
I believe the question is ,"60% of x is us, find x"
So , if the percentage of x to 60 is 12.
60/100 * x = 12
0.6 *x = 12
Dividing both sides by 0.6
X= 12/0.6
X= (12/6) *(10)
X= 2*10
.x= 20
The value of x= 20
Pamela is 8 years older that Jiri. The sum of their age is 102. What is Jiri's age?
Answer:
Step-by-step explanation:
102-8= 94
94/2= 47
Jiri is 47 years old.
HLP HLP 10 10 10 HLP HLP HLP
W
Answer:
A. 6²¹
Step-by-step explanation:
When you have a number raised to the power in that form, you have to multiply the powers:
(6⁷)³
7×3 = 21
(6⁷)³ = 6²¹
Answer:
A. 6 raise to 21
Step-by-step explanation:
its a formula if:
a raise to m whole raise to n = a raise to m×n
so here
6 raise to 7 × 3
that is 6 to the power of 21
Henry takes out a $650 discounted loan with a simple interest rate of 12% for a period of 7 months. How much money does Henry receive into his bank account when the loan is drawn down? Give your answer to the nearest cent.
Answer:
$546
Step-by-step explanation:
Given
Amount, P = $650
Rate, R = 12%
Period, T = 7 months
Required
Determine the amount paid.
We'll solve this using simple interest formula, as thus
[tex]I = \frac{PRT}{100}[/tex]
Substitute values for T, R and P
[tex]I = \frac{\$650 * 12 * 7}{100}[/tex]
[tex]I = \frac{\$54600}{100}[/tex]
[tex]I = \$546[/tex]
Hence, Henry's withdrawal is $546
Solve for h.
H+6/4= 5
Find the volume of the following figure round your answer to the nearest tenth and if necessary use pi
Answer:
1526.04
Step-by-step explanation:
the formula for calculating the volume of cone is
V=πr^2(h/3)
Thus,
V = (3.14)(9)^2(18/3)
V = (3.14)(81)(6)
V = 1536.04 yd^3
Rounding off to the nearest tenth, we get
V = 1536 yd^3
What is the midline equation of the function h(x) = -4 cos(5x - 9) - 7?
Answer: Midline equation: y = -7
Step-by-step explanation: This function is a sinusoidal function of the form:
y = a.cos(b(x+c))+d
Midline is a horizontal line where the function oscillates above and below.
In the sinusoidal function d represents its vertical shift. Midline is not influenced by any other value except vertical shift. For that reason,
Midline, for the function: [tex]h(x) = -4cos(5x-9) - 7[/tex] is y=d, i.e., [tex]y=-7[/tex]
Answer:
y=-7
Step-by-step explanation:
Amy, Hong, and David have a total of $102 in their wallets. Amy has $6 less than Hong. David has 4 times what Hong has. How much does each have?
Answer:
12,18, and 72 respectively
Step-by-step explanation:
102=A+H+D
A+6=H
D=4H=4(A+6)=4A+24
102=A+H+D=A+A+6+4A+24
102=6A+30
6A=72
A=12
H=18
D=72
a mens clothing sore sold out of $50 jackets and $30 jackets for a total of $2360 if the store sold 12 more$30 jackets than$50 jackets how many$50 jackets were sold
Answer:
25
Step-by-step explanation:
Let x represent the number of $50 jackets that were sold, and let y represent how many $30 jackets were sold.
50x + 30y = 2360
y = x + 12
Solve by substitution by substituting the second equation into the first one. Then, solve for x:
50x + 30y = 2360
50x + 30(x + 12) = 2360
50x + 30x + 360 = 2360
80x + 360 = 2360
80x = 2000
x = 25
So, 25 $50 jackets were sold.
What are m and b in the linear equation, using the common meanings of m and b? 2 + 3x + 5 - 2x = y
y=mx+b is the general formula of linear equation
y=-2x+5+3x+2
y=1x+7
m=1
b=7
Linear equation given in the question is,
2 + 3x + 5 - 2x = y
To simplify this equation further,
Add like terms of the equation,(2 + 5) + (3x - 2x) = y
7 + x = y
Now compare this linear equation with the slope-intercept form of the linear equation,
y = mx + b
Here, m = slope of the line'
b = y-intercept
By comparing the equations,
m = 1
b = 7
Learn more,
https://brainly.com/question/15253236
Mathematical induction is:
Answer:
The third option.
Step-by-step explanation:
Mathematical induction is a 2 step mathematical technique which is used to prove a statement, a formula or a theorem is true for every natural number.
Step 1 (Base step) - It proves that a statement is true for the initial value.
Step 2 (Inductive step) - It proves that if the statement is true for the nth iteration (or number n), then it is also true for (n + 1)th iteration (or number n + 1)
Hope this helps.
Please mark Brainliest.
Answer:
A method of improving statments
Step-by-step explanation:
"Mathematical Induction is a mathematical technique which is used to prove a statement, a formula or a theorem is true for every natural number."
The area of a triangle is 24 square inches. What is the height of the triangle if the base length is 4 inches?
6 inches
8 inches
12 inches
20 inches
Answer:
[tex]\boxed {\boxed { \sf 12 \ inches}}[/tex]
Step-by-step explanation:
The area of a triangle can be calculated using the following formula.
[tex]a=\frac{1}{2} bh[/tex]
The area of the triangle is 24 square inches and the base is 4 inches long.
a= 24 in² b= 4 inSubstitute the values into the formula.
[tex]24 \ in^2 = \frac {1}{2} * 4 \ in * h[/tex]
Multiply on the right side of the equation.
[tex]24 \ in ^2 = ( \frac{1}{2} * 4 \ in ) * h[/tex]
[tex]24 \ in ^2 =2 \ in *h[/tex]
We are solving for the height of the triangle, so we must isolate the variable h. It is being multiplied by 2 inches. The inverse of multiplication is division, so we divide both sides by 2 inches.
[tex]\frac { 24 \ in ^2 }{2 \ in }= \frac{ 2 \ in *h}{ 2 \ in}[/tex]
[tex]\frac { 24 \ in ^2 }{2 \ in }= h[/tex]
[tex]12 \ in = h[/tex]
The height of the triangle is 12 inches.
If the errors produced by a forecasting method for 3 observations are +3, +3, and −3, then what is the mean squared error?
Answer:
9
Step-by-step explanation:
The mean squared error (MSE)of a set of observations can be calculated using the formula :
(1/n)Σ(Actual values - predicted values)^2
Where n = number of observations
Steps :
Error values of each observation (difference between actual and predicted values) is squared.
Step 2:
The squared values are summed
Step 3:
The summation is the divided by the number of observations
The difference between the actual and predicted values is known as the ERROR.
(1/n)Σ(ERROR)^2
n = 3
Error = +3, +3, - 3
MSE = (1/3)Σ[(3)^2 + (3)^2 + (-3)^2]
MSE = (1/3) × [9 + 9 + 9]
MSE = (1/3) × 27
MSE = 9
Given there are 26 alphabets in the English language, how many possible three-letter words are there?
We have 26 letters and 3 slots to fill. We can reuse a letter if it has been picked, so we have 26^3 = 26*26*26 = 17,576 different three letter "words". I put that in quotes because a lot of the words aren't actual words, but more just a sequence of letters.
HELP UUUURRRRRRRGGGGGEEEEEENNNNTTTTT PLLLLZZZZZ IM BAD AT MATHHHHHHHH
Answer:
-1 8/9
Step-by-step explanation:
w + ( - x)
w = -5/9
z = 4/3
Input:
-5/9 + ( -4/3)
-5/9 - 4/3
-4/3 * 3/3 = -12/9
-5/9 - 12/9 = -17/9 = -1 8/9
If my answer is incorrect, pls correct me!
If you like my answer and explanation, mark me as brainliest!
-Chetan K
(Small sample confidence intervals for a population mean) suppose you are taking a sampling of 15 measurements. you find that x=75 and s =5. assuming normality, the 99% confidence interval for the population mean is:__________
Answer:
The 99% confidence interval is [tex]71.67 < \mu < 78.33[/tex]
Step-by-step explanation:
From the question we are told that
The sample size is [tex]n = 15[/tex]
The sample mean is [tex]\= x = 75[/tex]
The standard deviation is [tex]s = 5[/tex]
Given that confidence is 99% then the level of significance is mathematically represented as
[tex]\alpha = 100 - 99[/tex]
[tex]\alpha = 1\%[/tex]
[tex]\alpha = 0.01[/tex]
Next we obtain the critical values of [tex]\frac{ \alpha }{2}[/tex] from the normal distribution table
The value is
[tex]Z_{\frac{ \alpha }{2} } = 2.58[/tex]
Generally the margin for error is mathematically represented as
[tex]E = Z_{\frac{ \alpha }{2} } * \frac{ s}{ \sqrt{n} }[/tex]
=> [tex]E = 2.58 * \frac{ 5}{ \sqrt{15} }[/tex]
=> [tex]E = 3.3307[/tex]
The 99% confidence interval is mathematically represented as
[tex]\= x -E < \mu < \= x +E[/tex]
=> [tex]75 - 3.3307 < \mu <75 + 3.3307[/tex]
=> [tex]71.67 < \mu < 78.33[/tex]
solve this equation 4log√x - log 3x =log x^2
Answer:
[tex]x = \frac{1}{3} [/tex]
Step-by-step explanation:
*Move terms to the left and set equal to zero:
4㏒(√x) - ㏒(3x) - ㏒(x²) = 0
*simplify each term:
㏒(x²) - ㏒(3x) - ㏒(x²)
㏒(x²÷x²) -㏒(3x)
㏒(x²÷x² / 3x)
*cancel common factor x²:
㏒([tex]\frac{1}{3x}[/tex])
*rewrite to solve for x :
10⁰ = [tex]\frac{1}{3x}[/tex]
1 = [tex]\frac{1}{3x}[/tex]
1 · x = [tex]\frac{1}{3x}[/tex] · x
1x = [tex]\frac{1}{3}[/tex]
*that would be our answer, however, the convention is to exclude the "1" in front of variables so we are left with:
x = [tex]\frac{1}{3}[/tex]
trigonometric identities
Without knowing what Juan's exact steps were, it's hard to say what he did wrong. The least you could say is that his solution is simply not correct.
4 sin²(θ) - 1 = 0
==> sin²(θ) = 1/4
==> sin(θ) = ±1/√2
==> θ = π/4, 3π/4, 5π/4, 7π/4
find the equation of the line that is perpendicular to y=6x-2) and contains to the point (6-,2)
Answer:
y = -1/6x - 1.
Step-by-step explanation:
I am assuming that the point id (6, -2).
The slope of the required line = -1/6.
y - y1 = m(x - x1) where m = slope and x1,y1 is a point on the line so we have
y - (-2) = -1/6( x- 6)
y + 2 = -1/6x + 1
y = -1/6x - 1.
Hi everyone how to solve this question
$2x+7$
according to the flow chart,
1. multiply [tex] x[/tex] by $2$, so $2x$
and then add seven to it so $2x+7$
note, if the order was reverse, i.e. first add seven ($x+7$). then multiply by two ($2(x+7)$)
the answer would be $2x+14$
Calculate, correct to one decimal plice
the acute angle between the lines
3x - 4y + 5 = 0 and 2x + 3y -1 = 0
A. 70.69
B. 50.2
C. 39.8
D. 19.4
Answer:
A. 70.69 is the correct answer.
Step-by-step explanation:
Given:
Two lines:
[tex]3x - 4y + 5 = 0 \\2x + 3y -1 = 0[/tex]
To find:
Angle between the two lines = ?
Solution:
Acute Angle between two lines can be found by using the below formula:
[tex]tan \theta = |\dfrac{(m_1 - m_2)}{ (1 + m_1m_2)}|[/tex]
Where [tex]\theta[/tex] is the acute angle between two lines.
[tex]m_1, m_2[/tex] are the slopes of two lines.
Slope of a line represented by [tex]ax+by+c=0[/tex] is given as:
[tex]m = -\dfrac{a}{b }[/tex]
So,
[tex]m_1 = -\dfrac{3}{- 4} = \dfrac{3}{4}[/tex]
[tex]m_2 = -\dfrac{2}{ 3}[/tex]
Putting the values in the formula:
[tex]tan \theta = |\dfrac{(\dfrac{3}{4}- (-\dfrac{2}{3}))}{ (1 + \dfrac{3}{4}\times (-\dfrac{2}{3 }))}|\\\Rightarrow tan \theta = |\dfrac{\dfrac{3}{4}+\dfrac{2}{3}}{ (1 -\dfrac{1}{2})}|\\\Rightarrow tan \theta = |\dfrac{\dfrac{17}{12}}{ \dfrac{1}{2}}|\\\Rightarrow tan \theta = \dfrac{17}{6}\\\Rightarrow \theta = tan^{-1}(\frac{17}{6})\\\Rightarrow \theta = \bold{70.69^\circ}[/tex]
So, correct answer is A. 70.69
Select the correct answer from each drop-down menu.
The function f is given by the table of values as shown below.
x 1 2 3 4 5
f(x) 13 19 37 91 253
Use the given table to complete the statements.
The parent function of the function represented in the table is
.
If function f was translated down 4 units, the
-values would be
.
A point in the table for the transformed function would be
.
Answer:
3^x9, 15, 33, 87, 249(4, 87) for exampleStep-by-step explanation:
a) First differences of the f(x) values in the table are ...
19 -13 = 6, 37 -19 = 18, 91 -37 = 54, 253 -91 = 162
The second differences are not constant:
18 -6 = 12, 54 -18 = 36, 162 -54 = 108
But, we notice that both the first and second differences have a common ratio. This is characteristic of an exponential function. The common ratio is 18/6 = 3, so the parent function is 3^x.
__
b) Translating a function down 4 units subtracts 4 from each y-value. The values of f(x) in the table would be ...
9, 15, 33, 87, 249
__
c) The x-values of the function stay the same for a vertical translation, so the points in the table of the transformed function are ...
(x, f(x)) = (1, 9), (2, 15), (3, 33), (4, 87), (5, 249)
Answer: I think this is it:
The parent function of the function represented in the table is exponential. If function f was translated down 4 units, the f(x)-values would be decreased by 4. A point in the table for the transformed function would be (4,87)
Step-by-step explanation: I got it right on Edmentum!
Matrix A is said to be involutory if A2 = I. Prove that a square matrix A is both orthogonal and involutory if and only if A is symmetric.
Answer:
4 · 1/4 (I-0) = (A-0)∧2
see details in the graph
Step-by-step explanation:
Matrix A is expressed in the form A∧2=I
To proof that Matrix A is both orthogonal and involutory, if and only if A is symmetric is shown by re-expressing that
A∧2=I in the standard form
4 · 1/4 (I-0) = (A-0)∧2
Re-expressing
A∧2 = I as a graphical element plotted on the graph
X∧2=I
The orthogonality is shown in the graphical plot displayed in the picture. Orthogonality expresses the mutually independent form of two vectors expressed in their perpendicularity.
What is the value of x when y equals 66?
y=0.985897x+0.194185
Answer:
x = 66.74715005725
Step-by-step explanation:
First you bring over the added variable. 0.194185, and subtract it from 66. Then you divide your difference by 0.985897. This gives you 66.74715005725
divide 111001 by 1101
Based on the fact that you asked this three times and got the same answer three times, I suspect the interpretation made by the users that posted those answers was incorrect, and that you meant to ask about dividing in base 2.
We have
111001₂ = 1×2⁵ + 1×2⁴ + 1×2³ + 1×2⁰ = 57
1101₂ = 1×2³ + 1×2² + 1×2⁰ = 13
and 57/13 = (4×13 + 5)/13 = 4 + 5/13.
4 = 2² is already a power of 2, so we have
111001₂/1101₂ = 1×2² + 5/13
we just need to convert 5/13. To do this, we look for consecutive negative powers of 2 that 5/13 falls between, then expand 5/13 as the sum of the smaller power of 2 and some remainder term. For instance,
• 1/4 < 5/13 < 1/2, and
5/13 - 1/4 = (20 - 13)/52= 7/52
so that
5/13 = 1/4 + 7/52
or
5/13 = 1×2 ⁻² + 7/52
Then a partial conversion into base 2 gives us
111001₂/1101₂ = 1×2² + 1×2 ⁻² + 7/52
111001₂/1101₂ = 100.01₂ + 7/52
Continuing in this fashion, we find
• 1/8 < 7/52 < 1/4, and
7/52 = 1/8 + 1/104
==> 111001₂/1101₂ = 100.011₂ + 1/104
• 1/128 < 1/104 < 1/64, and
1/104 = 1/128 + 3/1664
==> 111001₂/1101₂ = 100.0110001₂ + 3/1664
• 1/1024 < 3/1664 < 1/512, and
3/1664 = 1/1024 + 11/13312
==> 111001₂/1101₂ = 100.0110001001₂ + 11/13312
• 1/2048 < 11/13312 < 1/1024, and
11/13312 = 1/2048 + 9/26624
==> 111001₂/1101₂ = 100.01100010011₂ + 9/26624
• 1/4096 < 9/26624 < 1/2048, and
9/26624 = 1/4096 + 5/53248
==> 111001₂/1101₂ = 100.011000100111₂ + 5/53248
and so on.
It turns out that this pattern repeats, so that
[tex]\displaystyle \frac{111001_2}{1101_2} = 100.\overline{011000100111}_2[/tex]