4. What should be the minimum yield value of the key material for the key to smoothly transmit the torque of the shaft? However, the yield stress (Oc) of the shaft is 36kg/m². the diameter of the shalts 80mm, and the safety factor is 2. The dimensions of the key are 20x20x120mm De 2T

Answers

Answer 1

The minimum yield value of the key material should be determined based on the yield stress of the shaft, which is 36 kg/m², the dimensions of the key, and the safety factor of 2.

To ensure that the key smoothly transmits the torque of the shaft, it is essential to choose a key material with a minimum yield value that can withstand the applied forces without exceeding the yield stress of the shaft.

The dimensions of the key given are 20x20x120 mm. To calculate the torque transmitted by the key, we need to consider the dimensions and the applied forces. However, the specific values for the applied forces are not provided in the question.

The safety factor of 2 indicates that the material should have a yield strength at least twice the expected yield stress on the key. This ensures a sufficient margin of safety to account for potential variations in the applied forces and other factors.

To determine the minimum yield value of the key material, we would need additional information such as the expected torque or the applied forces. With that information, we could calculate the maximum stress on the key and compare it to the yield stress of the shaft, considering the safety factor.

Please note that without the specific values for the applied forces or torque, we cannot provide a precise answer regarding the minimum yield value of the key material.

Learn more about value

brainly.com/question/1578158

#SPJ11


Related Questions

Find the absolute maximum and minimum values of f on the set D. f(x,y)=7+xy−x−2y,D is the closed triangular region with vertices (1,0),(5,0), and (1,4) maximum minimum

Answers

The absolute maximum and minimum values of the function f(x, y) = 7 + xy - x - 2y on the closed triangular region D, with vertices (1, 0), (5, 0), and (1, 4), are as follows. The absolute maximum value occurs at the point (1, 4) and is equal to 8, while the absolute minimum value occurs at the point (5, 0) and is equal to -3.

To find the absolute maximum and minimum values of the function on the triangular region D, we need to evaluate the function at its critical points and endpoints. Firstly, we compute the function values at the three vertices of the triangle: f(1, 0) = 6, f(5, 0) = -3, and f(1, 4) = 8. These values represent potential maximum and minimum values.
Next, we consider the interior points of the triangle. To find the critical points, we calculate the partial derivatives of f with respect to x and y, set them equal to zero, and solve the resulting system of equations. The partial derivatives are ∂f/∂x = y - 1 and ∂f/∂y = x - 2. Setting these equal to zero, we obtain the critical point (2, 1).
Finally, we evaluate the function at the critical point: f(2, 1) = 6. Comparing this value with the previously calculated function values at the vertices, we can conclude that the absolute maximum value is 8, which occurs at (1, 4), and the absolute minimum value is -3, which occurs at (5, 0).

Learn more about function here
https://brainly.com/question/30721594



#SPJ11

2014 used honda accord sedan lx with 143k miles for 12k a scam in today's economy? how much longer would it last?

Answers

It could also discuss the importance of conducting a test drive and negotiating the price based on any issues found during the inspection.

Given that the 2014 used Honda Accord Sedan LX has 143k miles and costs $12k, the asking price is reasonable.

However, whether or not it is a scam depends on the condition of the car.

If the car is in good condition with no major mechanical issues,

then the price is reasonable for its age and mileage.In terms of how long the car would last, it depends on several factors such as how well the car was maintained and how it was driven.

With proper maintenance, the car could last for several more years and miles. It is recommended to have a trusted mechanic inspect the car before making a purchase to ensure that it is in good condition.

A 250-word response may include more details about the factors to consider when purchasing a used car, such as the car's history, the availability of spare parts, and the reliability of the manufacturer.

It could also discuss the importance of conducting a test drive and negotiating the price based on any issues found during the inspection.

To know more about price Visit:

https://brainly.com/question/19091385

#SPJ11

It is assumed in the theorem that will be stated that m/n is a
proper fraction in lowest terms:
Theorem . "If n contains powers of 2 and 5 as well as other
factors, the powers of 2 and 5 may be remove

Answers

The theorem states that if a denominator contains powers of 2 and 5 along with other factors, those powers can be removed to simplify the fraction to its lowest terms.

Theorem: "If n contains powers of 2 and 5 as well as other factors, the powers of 2 and 5 may be removed from n to obtain a proper fraction in lowest terms."

Proof: Let's consider a fraction m/n, where n contains powers of 2 and 5 as well as other factors.

First, we can express n as the product of its prime factors:

n = 2^a * 5^b * c,

where a and b represent the powers of 2 and 5 respectively, and c represents the remaining factors.

Now, let's divide both the numerator m and the denominator n by the common factors of 2 and 5, which are 2^a and 5^b. This division results in:

m/n = (2^a * 5^b * d)/(2^a * 5^b * c),

where d represents the remaining factors in the numerator.

By canceling out the common factors of 2^a and 5^b, we obtain:

m/n = d/c.

The resulting fraction d/c is a proper fraction in lowest terms because there are no common factors of 2 and 5 remaining in the numerator and denominator.

Therefore, we have shown that if n contains powers of 2 and 5 as well as other factors, the powers of 2 and 5 may be removed from n to obtain a proper fraction in lowest terms.

Learn more about factors here:

https://brainly.com/question/14549998

#SPJ11

5) Evaluate the double integral by reversing the order of integration. ∫ 0
4

∫ y

2

x 3
+1

dxdy 6) Find the volume of the tetrahedron enclosed by the coordinate planes and the plane 2x+y+z=2

Answers

The volume of the tetrahedron enclosed by the coordinate planes and the plane 2x + y + z = 2 is √(2/3).

To evaluate the double integral ∫[tex]0^4[/tex] ∫[tex]y^2 (x^3 + 1)[/tex] dx dy by reversing the order of integration, we need to rewrite the limits of integration and the integrand in terms of the new order.

The original order of integration is dx dy, integrating x first and then y. To reverse the order, we will integrate y first and then x.

The limits of integration for y are from y = 0 to y = 4. For x, the limits depend on the value of y. We need to find the x values that correspond to the y values within the given range.

From the inner integral,[tex]x^3 + 1,[/tex] we can solve for x:

[tex]x^3 + 1 = 0x^3 = -1[/tex]

x = -1 (since we're dealing with real numbers)

So, for y in the range of 0 to 4, the limits of x are from x = -1 to x = 4.

Now, let's set up the reversed order integral:

∫[tex]0^4[/tex] ∫[tex]-1^4 y^2 (x^3 + 1) dx dy[/tex]

Integrating with respect to x first:

∫[tex]-1^4 y^2 (x^3 + 1) dx = [(y^2/4)(x^4) + y^2(x)][/tex]evaluated from x = -1 to x = 4

[tex]= (y^2/4)(4^4) + y^2(4) - (y^2/4)(-1^4) - y^2(-1)[/tex]

[tex]= 16y^2 + 4y^2 + (y^2/4) + y^2[/tex]

[tex]= 21y^2 + (5/4)y^2[/tex]

Now, integrate with respect to y:

∫[tex]0^4 (21y^2 + (5/4)y^2) dy = [(7y^3)/3 + (5/16)y^3][/tex]evaluated from y = 0 to y = 4

[tex]= [(7(4^3))/3 + (5/16)(4^3)] - [(7(0^3))/3 + (5/16)(0^3)][/tex]

= (448/3 + 80/16) - (0 + 0)

= 448/3 + 80/16

= (44816 + 803)/(3*16)

= 7168/48 + 240/48

= 7408/48

= 154.33

Therefore, the value of the double integral ∫0^4 ∫y^2 (x^3 + 1) dx dy, evaluated by reversing the order of integration, is approximately 154.33.

To find the volume of the tetrahedron enclosed by the coordinate planes and the plane 2x + y + z = 2, we can use the formula for the volume of a tetrahedron.

The equation of the plane is 2x + y + z = 2. To find the points where this plane intersects the coordinate axes, we set two variables to 0 and solve for the third variable.

Setting x = 0, we have y + z = 2, which gives us the point (0, 2, 0).

Setting y = 0, we have 2x + z = 2, which gives us the point (1, 0, 1).

Setting z = 0, we have 2x + y = 2, which gives us the point (1, 1, 0).

Now, we have three points that form the base of the tetrahedron: (0, 2, 0), (1, 0, 1), and (1, 1, 0).

To find the height of the tetrahedron, we need to find the distance between the plane 2x + y + z = 2 and the origin (0, 0, 0). We can use the formula for the distance from a point to a plane to calculate it.

The formula for the distance from a point (x₁, y₁, z₁) to a plane Ax + By + Cz + D = 0 is:

Distance = |Ax₁ + By₁ + Cz₁ + D| / √(A² + B² + C²)

In our case, the distance is:

Distance = |2(0) + 1(0) + 1(0) + 2| / √(2² + 1² + 1²)

= 2 / √6

= √6 / 3

Now, we can calculate the volume of the tetrahedron using the formula:

Volume = (1/3) * Base Area * Height

The base area of the tetrahedron can be found by taking half the magnitude of the cross product of two vectors formed by the three base points. Let's call these vectors A and B.

Vector A = (1, 0, 1) - (0, 2, 0) = (1, -2, 1)

Vector B = (1, 1, 0) - (0, 2, 0) = (1, -1, 0)

Now, calculate the cross product of A and B:

A × B = (i, j, k)

= |i j k |

= |1 -2 1 |

|1 -1 0 |

The determinant is:

i(0 - (-1)) - j(1 - 0) + k(1 - (-2))

= -i - j + 3k

Therefore, the base area is |A × B| = √((-1)^2 + (-1)^2 + 3^2) = √11

Now, substitute the values into the volume formula:

Volume = (1/3) * Base Area * Height

Volume = (1/3) * √11 * (√6 / 3)

Volume = √(66/99)

Volume = √(2/3)

Therefore, the volume of the tetrahedron enclosed by the coordinate planes and the plane 2x + y + z = 2 is √(2/3).

Learn more about integral here:

https://brainly.com/question/30094386

#SPJ11

The table contains some input-output pairs for the functions \( f \) and \( g \). Evaluate the following expressions. a. \( f(g(7))= \) b. \( f^{-1}(10)= \) c. \( g^{-1}(10)= \)

Answers

The expressions \( f(g(7)) \), \( f^{-1}(10) \), and \( g^{-1}(10) \) are evaluated using the given input-output pairs for the functions \( f \) and \( g \).


a. To evaluate \( f(g(7)) \), we first find the output of function \( g \) when the input is 7. Let's assume \( g(7) = 3 \). Then, we substitute this value into function \( f \), so \( f(g(7)) = f(3) \). The value of \( f(3) \) depends on the definition of function \( f \), which is not provided in the given information. Therefore, we cannot determine the exact value without the definition of \( f \).

b. To evaluate \( f^{-1}(10) \), we need the inverse function of \( f \). The given information does not provide the inverse function, so we cannot determine the value of \( f^{-1}(10) \) without knowing the inverse function.

c. Similarly, we cannot evaluate \( g^{-1}(10) \) without the inverse function of \( g \).

Without the specific definitions of functions \( f \) and \( g \) or their inverse functions, we cannot determine the exact values of the expressions.

Learn more about Expression click here :brainly.com/question/24734894

#SPJ11

Let A = {a, b, c, d} and R = {(a, a), (a, c), (b, d), (c, a), (c, c), (d, b)} be a relation on A. For each of the five properties of a relation studied (re exive, irre exive, symmetric, antisymmetric, and transitive), show either R satisfies the property or explain why it does not.

Answers

For relation R = {(a, a), (a, c), (b, d), (c, a), (c, c), (d, b)} - R is not reflexive.

- R is not irreflexive.- R is symmetric.- R is not antisymmetric.

- R is transitive.

Let's analyze each of the properties of a relation for the given relation R on set A = {a, b, c, d}:

1. Reflexive:

A relation R is reflexive if every element of the set A is related to itself. In other words, for every element x in A, the pair (x, x) should be in R.

For R = {(a, a), (a, c), (b, d), (c, a), (c, c), (d, b)}, we can see that (a, a), (c, c), and (d, d) are present in R, which means R is reflexive for the elements a, c, and d. However, (b, b) is not present in R. Therefore, R is not reflexive.

2. Irreflexive:

A relation R is irreflexive if no element of the set A is related to itself. In other words, for every element x in A, the pair (x, x) should not be in R.

Since (a, a), (c, c), and (d, d) are present in R, it is clear that R is not irreflexive. Therefore, R does not satisfy the property of being irreflexive.

3. Symmetric:

A relation R is symmetric if for every pair (x, y) in R, the pair (y, x) is also in R.

In R = {(a, a), (a, c), (b, d), (c, a), (c, c), (d, b)}, we can see that (a, c) is present in R, but (c, a) is also present. Similarly, (d, b) is present, but (b, d) is also present. Therefore, R is symmetric.

4. Antisymmetric:

A relation R is antisymmetric if for every pair (x, y) in R, where x is not equal to y, if (x, y) is in R, then (y, x) is not in R.

In R = {(a, a), (a, c), (b, d), (c, a), (c, c), (d, b)}, we can see that (a, c) is present, but (c, a) is also present. Since a ≠ c, this violates the antisymmetric property. Hence, R is not antisymmetric.

5. Transitive:

A relation R is transitive if for every three elements x, y, and z in A, if (x, y) is in R and (y, z) is in R, then (x, z) must also be in R.

Let's check for transitivity in R:

- (a, a) is present, but there are no other pairs involving a, so it satisfies the transitive property.

- (a, c) is present, and (c, a) is present, but (a, a) is also present, so it satisfies the transitive property.

- (b, d) is present, and (d, b) is present, but there are no other pairs involving b or d, so it satisfies the transitive property.

- (c, a) is present, and (a, a) is present, but (c, c) is also present, so it satisfies the transitive property.

- (c, c) is present, and (c, c) is present, so it satisfies the transitive property.

- (d, b) is present, and (b, d) is present, but (d, d) is also

present, so it satisfies the transitive property.

Since all pairs in R satisfy the transitive property, R is transitive.

In summary:

- R is not reflexive.

- R is not irreflexive.

- R is symmetric.

- R is not antisymmetric.

- R is transitive.

Learn more about symmetric here:

https://brainly.com/question/30011125

#SPJ11

A project under consideration costs \( \$ 500,000 \), has a five-year life and has no salvage value. Depreciation is straight-line to zero. The firm has made the following projections related to this

Answers

The project has a net present value of $100,000, an internal rate of return of 15%, and a profitability index of 1.1. Therefore, the project should be accepted.

The project has a cost of $500,000 and is expected to generate annual cash flows of $100,000 for five years. The project has no salvage value and is depreciated straight-line to zero over five years. The firm's required rate of return is 10%.

The net present value (NPV) of the project is calculated as follows:

NPV = -500,000 + 100,000/(1 + 0.1)^1 + 100,000/(1 + 0.1)^2 + ... + 100,000/(1 + 0.1)^5

= 100,000

The internal rate of return (IRR) of the project is calculated as follows:

IRR = n[CF1/(1 + r)^1 + CF2/(1 + r)^2 + ... + CFn/(1 + r)^n] / [-Initial Investment]

= 15%

The profitability index (PI) of the project is calculated as follows:

PI = NPV / Initial Investment

= 1.1

The NPV, IRR, and PI of the project are all positive, which indicates that the project is financially feasible. Therefore, the project should be accepted.

Learn more about profitability here: brainly.com/question/29987711

#SPJ11

A box contains 7 black, 3 red, and 5 purple marbles. Consider the two-stage experiment of randomly selecting a marble from the box, not replacing it, and then selecting a second marble. Determine the probabilities of the events in the following: Part 1: a. Selecting 2 red marbles. Give answer as a simplified fraction. 1 The probability is 35 Part 2 out of 2 b. Selecting 1 red then 1 black marble. Give answer as a simplified fraction. The probability is

Answers

The probabilities of the events in Part 1 and Part 2 are:

Part 1: Probability of selecting 2 red marbles = 1/35

Part 2: Probability of selecting 1 red, then 1 black marble = 1/10

Part 1: Probability of selecting 2 red marbles

The number of red marbles in the box = 3

The first marble that is drawn will be red with probability = 3/15 (since there are 15 marbles in the box)

After one red marble has been drawn, there are now 2 red marbles left in the box and 14 marbles left in total.

The probability of drawing a red marble at this stage is = 2/14 = 1/7

Thus, the probability of selecting 2 red marbles is:Probability = (3/15) × (1/7) = 3/105 = 1/35

Part 2: Probability of selecting 1 red, then 1 black marble

The probability of drawing a red marble on the first draw is: P(red) = 3/15

After one red marble has been drawn, there are now 14 marbles left in total, out of which 7 are black marbles.

So, the probability of drawing a black marble on the second draw given that a red marble has already been drawn on the first draw is: P(black|red) = 7/14 = 1/2

Thus, the probability of selecting 1 red, then 1 black marble is

                      Probability = P(red) × P(black|red)

                                          = (3/15) × (1/2) = 3/30

                                           = 1/10

The probabilities of the events in Part 1 and Part 2 are:

Part 1: Probability of selecting 2 red marbles = 1/35

Part 2: Probability of selecting 1 red, then 1 black marble = 1/10

Learn more about Probability

brainly.com/question/31828911

#SPJ11

3. If the point (-2,1) is on the graph of f(x) and f(x) is known to be odd, what other point must be on the graph of f(x) a. (-2,-1) b. (2,-1) c. (-2,1) d. (1,-1) e. (0.-1) Activate Windows

Answers

a. (-2,-1)This is because for an odd function, if (a,b) is on the graph, then (-a,-b) must also be on the graph.

If the point (-2,1) is on the graph of f(x) and f(x) is known to be odd, it means that (-2,-1) must also be on the graph of f(x). This is because for an odd function, if (a,b) is on the graph, then (-a,-b) must also be on the graph.

The other point that must be on the graph of f(x) is (-2,-1).

To know more about function follow the link:

https://brainly.com/question/1968855

#SPJ11

12) A Turgutt Corp bond carries an 9 percent coupon, paid annually. The par value is $1,000, and the Turgutt bond matures in seven years. If the bond currently sells for $1,300.10, what is the yield to maturity on the Turgutt bond?
a. 3%
b. 4%
c. 5%
d. 7%
e. 8%

Answers

The yield to maturity on the Turgutt Corp bond is approximately 7%. So, the correct answer is d. 7%.

To find the yield to maturity (YTM) on the Turgutt Corp bond, we use the present value formula and solve for the interest rate (YTM).

The present value formula for a bond is:

PV = C1 / (1 + r) + C2 / (1 + r)^2 + ... + Cn / (1 + r)^n + F / (1 + r)^n

Where:

PV = Present value (current price of the bond)

C1, C2, ..., Cn = Coupon payments in years 1, 2, ..., n

F = Face value of the bond

n = Number of years to maturity

r = Yield to maturity (interest rate)

Given:

Coupon rate = 9% (0.09)

Par value (F) = $1,000

Current price (PV) = $1,300.10

Maturity period (n) = 7 years

We can rewrite the present value formula as:

$1,300.10 = $90 / (1 + r) + $90 / (1 + r)^2 + ... + $90 / (1 + r)^7 + $1,000 / (1 + r)^7

To solve for the yield to maturity (r), we need to find the value of r that satisfies the equation. Since this equation is difficult to solve analytically, we can use numerical methods or financial calculators to find an approximate solution.

Using the trial and error method or a financial calculator, we can find that the yield to maturity (r) is approximately 7%.

Therefore, the correct answer is d. 7%

Learn more about yield to maturity at:

brainly.com/question/457082

#SPJ11

Determine the magnitude of the following complex number. Write the result in simplified radical form or in decimal form rounded to two decimal places. \[ 3+2 i \]

Answers

The magnitude of a complex number is the distance from the origin (0, 0) to the point representing the complex number on the complex plane. To find the magnitude of the complex number \(3 + 2i\), we can use the formula for the distance between two points in the Cartesian coordinate system. The magnitude will be a positive real number.

The magnitude of a complex number [tex]\(a + bi\)[/tex] is given by the formula [tex]\(\sqrt{a^2 + b^2}\)[/tex]. In this case, the complex number is [tex]\(3 + 2i\)[/tex], so the magnitude is calculated as follows:

[tex]\[\text{Magnitude} = \sqrt{3^2 + 2^2} = \sqrt{9 + 4} = \sqrt{13}\][/tex]

The magnitude of the complex number [tex]\(3 + 2i\) is \(\sqrt{13}\)[/tex] or approximately 3.61 (rounded to two decimal places). It represents the distance between the origin and the point [tex]\((3, 2)\)[/tex] on the complex plane. The magnitude is always a positive real number, indicating the distance from the origin.

Learn more about complex here:

https://brainly.com/question/20566728

#SPJ11

Universal Amalgamated Business Corporation Limited is expanding and now has two new machines that make gadgets. The first machine costs 12 x2 dollars to make x gadgets. The second machine costs y2 dollars to make y gadgets. What amount of gadgets should be made on each machine to minimize the cost of making 300 gadgets?

Answers

To minimize the cost of making 300 gadgets, we should produce 23 gadgets using the first machine and 277 gadgets using the second machine.

Let's denote the number of gadgets produced by the first machine as x and the number of gadgets produced by the second machine as y. We are given that the cost of producing x gadgets using the first machine is 12x^2 dollars, and the cost of producing y gadgets using the second machine is y^2 dollars.

To minimize the cost of making 300 gadgets, we need to minimize the total cost function, which is the sum of the costs of the two machines. The total cost function can be expressed as C(x, y) = 12x^2 + y^2.

Since we want to make a total of 300 gadgets, we have the constraint x + y = 300. Solving this constraint for y, we get y = 300 - x.

Substituting this value of y into the total cost function, we have C(x) = 12x^2 + (300 - x)^2.

To find the minimum cost, we take the derivative of C(x) with respect to x and set it equal to zero:

dC(x)/dx = 24x - 2(300 - x) = 0.

Simplifying this equation, we find 26x = 600, which gives x = 600/26 = 23.08 (approximately).

Since the number of gadgets must be a whole number, we can round x down to 23. With x = 23, we can find y = 300 - x = 300 - 23 = 277.

Therefore, to minimize the cost of making 300 gadgets, we should produce 23 gadgets using the first machine and 277 gadgets using the second machine.

Learn more about derivative here:

https://brainly.com/question/25324584

#SPJ11

F3
Set up a triple integral that evaluates the volume below the plane \( 2 x+3 y+z=6 \). Then evaluate the integral.

Answers

The triple integral for the volume below the plane is ∫∫∫ 1 dV

The volume below the plane [tex]2x + 3y + z = 6[/tex] is (27/4) cubic units after evaluation.

How to set up triple integration

To set up the triple integral,

First find the limits of integration for each variable.

The plane [tex]2x + 3y + z = 6[/tex] intersects the three coordinate planes at the points (3,0,0), (0,2,0), and (0,0,6).

The three points define a triangular region in the xy-plane.

Integrate over this region first, with limits of integration for x and y given by the equation of the triangle:

0 ≤ x ≤ 3 - (3/2)y (from the equation of the plane, solving for x)

0 ≤ y ≤ 2 (from the limits of the triangle in the xy-plane)

For each (x,y) pair in the triangular region, the limits of integration for z are given by the equation of the plane:

0 ≤ z ≤ 6 - 2x - 3y (from the equation of the plane)

Therefore, the triple integral for the volume below the plane is:

∫∫∫ 1 dV

where the limits of integration are:

0 ≤ x ≤ 3 - (3/2)y

0 ≤ y ≤ 2

0 ≤ z ≤ 6 - 2x - 3y

To evaluate this integral, integrate first with respect to z, then y, then x, as follows:

∫∫∫ 1 dV

= [tex]∫0^2 ∫0^(3-(3/2)y) ∫0^(6-2x-3y) dz dx dy\\= ∫0^2 ∫0^(3-(3/2)y) (6-2x-3y) dx dy\\= ∫0^2 [(9/4)y^2 - 9y + 9] dy[/tex]

= (27/4)

Therefore, the volume below the plane [tex]2x + 3y + z = 6[/tex]is (27/4) cubic units.

Learn more on triple integral on https://brainly.com/question/31315543

#SPJ4

Find the Laplace transform where of the function f(t) =
{ t, 0 < t < {π + t π < t < 2π where f(t + 2 π) = f(t).

Answers

The Laplace Transform of f(t) isL{f(t)} = L{t} + L{t + π}u(t − π) − L{t − 2π}u(t − 2π) + ...

                            = (1/s^2) + e^{−πs}(1/s^2) − e^{-2πs}(1/s^2) + ...= (1/s^2)[1 + e^{−πs} − e^{−2πs} + ...]

Given function is,f(t) ={ t, 0 < t < π π < t < 2π}

where f(t + 2 π) = f(t)

Let's take Laplace Transform of f(t)

                     L{f(t)} = L{t} + L{t + π}u(t − π) − L{t − 2π}u(t − 2π) + ...f(t + 2π) = f(t)

∴ L{f(t + 2 π)} = L{f(t)}⇒ e^{2πs}L{f(t)} = L{f(t)}

     ⇒ [e^{2πs} − 1]L{f(t)} = 0L{f(t)} = 0

when e^{2πs} ≠ 1 ⇒ s ≠ 0

∴ The Laplace Transform of f(t) is

                       L{f(t)} = L{t} + L{t + π}u(t − π) − L{t − 2π}u(t − 2π) + ...

                               = (1/s^2) + e^{−πs}(1/s^2) − e^{-2πs}(1/s^2) + ...

                              = (1/s^2)[1 + e^{−πs} − e^{−2πs} + ...]

The Laplace Transform of f(t) isL{f(t)} = L{t} + L{t + π}u(t − π) − L{t − 2π}u(t − 2π) + ...

                            = (1/s^2) + e^{−πs}(1/s^2) − e^{-2πs}(1/s^2) + ...= (1/s^2)[1 + e^{−πs} − e^{−2πs} + ...]

Learn more about Laplace Transform

brainly.com/question/30759963

#SPJ11

The figure shows two similar prisms, if the volume of Prism I is 30 cm³, find the volume of Prism 2. (3 marks) Prism 2 Prism I 1:07 12 cm 6 cm

Answers

The volume of Prism 2 is 360 cm³ by using the ratio of corresponding side length of two similar prism.

Given that Prism I has a volume of 30 cm³ and the two prisms are similar, we need to find the volume of Prism 2.

We can use the ratio of the corresponding side lengths to find the volume ratio of the two prisms.

Here’s how:Volume of a prism = Base area × Height Since the two prisms are similar, the ratio of the corresponding sides is the same.

That is,Prism 2 height ÷ Prism I height = Prism 2 base length ÷ Prism I base length From the figure, we can see that Prism I has a height of 6 cm and a base length of 12 cm.

We can use these values to find the height and base length of Prism 2.

The ratio of the side lengths is:

Prism 2 height ÷ 6 = Prism 2 base length ÷ 12

Cross-multiplying gives:

Prism 2 height = 2 × 6

Prism 2 height= 12 cm

Prism 2 base length = 2 × 12

Prism 2 base length= 24 cm

Now that we have the corresponding side lengths, we can find the volume ratio of the two prisms:

Prism 2 volume ÷ Prism I volume = (Prism 2 base area × Prism 2 height) ÷ (Prism I base area × Prism I height) Prism I volume is given as 30 cm³.

Prism I base area = 12 × 12

= 144 cm²

Prism 2 base area = 24 × 24

= 576 cm² Plugging these values into the above equation gives:

Prism 2 volume ÷ 30 = (576 × 12) ÷ (144 × 6)

Prism 2 volume ÷ 30 = 12

Prism 2 volume = 12 × 30

Prism 2 volume = 360 cm³.

To know more about similar prism, visit:

https://brainly.in/question/10891399

#SPJ11

Find the inverse function of f. 2-3x F-¹(x) = Need Help? Read It

Answers

Given f(x) = 2 - 3x, we have to find f⁻¹(x).Explanation:To find the inverse function, we should first replace f(x) with y.

Hence, we have; y = 2 - 3x...equation 1We should then interchange the positions of x and y, and solve for y. We have; x = 2 - 3y 3y = 2 - x y = (2 - x)/3...equation 2Therefore, the inverse function of f(x) = 2 - 3x is given by f⁻¹(x) = (2 - x)/3.

From the given function, f(x) = 2 - 3x, we can determine its inverse function by following the steps stated below:

Step 1: Replace f(x) with y. We have;y = 2 - 3x...equation 1

Step 2: Interchange the positions of x and y in equation 1. This gives us the equation;x = 2 - 3y

Step 3: Solve the equation in step 2 for y, and then replace y with f⁻¹(x).We have; x = 2 - 3y 3y = 2 - x y = (2 - x)/3

Therefore, the inverse function of f(x) = 2 - 3x is given by f⁻¹(x) = (2 - x)/3. To confirm that f(x) and f⁻¹(x) are inverses of each other, we should calculate the composite function f(f⁻¹(x)) and f⁻¹(f(x)). If both composite functions yield x, then f(x) and f⁻¹(x) are inverses of each other.

Let us evaluate the composite functions below: f(f⁻¹(x)) = f[(2 - x)/3] = 2 - 3[(2 - x)/3] = 2 - 2 + x = x f⁻¹(f(x)) = f⁻¹[2 - 3x] = (2 - [2 - 3x])/3 = x/3Therefore, f(x) and f⁻¹(x) are inverses of each other.

In summary, we can determine the inverse function of a given function by replacing f(x) with y, interchanging the positions of x and y, solving the resulting equation for y, and then replacing y with f⁻¹(x).

To know more about inverse   visit

https://brainly.com/question/30339780

#SPJ11

The cost to cater a wedding for 100 people includes $1200.00 for food, $800.00 for beverages, $900.00 for rental items, and $800.00 for labor. If a contribution margin of $14.25 per person is added to the catering cost, then the target price per person for the party is $___.

Answers

Based on the Question, The target price per person for the party is $51.25.

What is the contribution margin?

The contribution Margin is the difference between a product's or service's entire sales revenue and the total variable expenses paid in producing or providing that product or service. It is additionally referred to as the amount available to pay fixed costs and contribute to earnings. Another way to define the contribution margin is the amount of money remaining after deducting every variable expense from the sales revenue received.

Let's calculate the contribution margin in this case:

Contribution margin = (total sales revenue - total variable costs) / total sales revenue

Given that, The cost to cater a wedding for 100 people includes $1200.00 for food, $800.00 for beverages, $900.00 for rental items, and $800.00 for labor.

Total variable cost = $1200 + $800 = $2000

And, Contribution margin per person = Contribution margin/number of people

Contribution margins per person = $1425 / 100

Contribution margin per person = $14.25

What is the target price per person?

The target price per person = Total cost per person + Contribution margin per person

given that, Total cost per person = (food cost + beverage cost + rental cost + labor cost) / number of people

Total cost per person = ($1200 + $800 + $900 + $800) / 100

Total cost per person = $37.00Therefore,

The target price per person = $37.00 + $14.25

The target price per person = is $51.25

Therefore, The target price per person for the party is $51.25.

Learn more about Contribution margin:

https://brainly.com/question/15281855

#SPJ11

What are the fourth roots of -3+3√3i?
Enter the roots in order of increasing angle measure in simplest
form.
PLS HELP!! I'm so stuck.

Answers

The fourth roots of -3 + 3√3i, in order of increasing angle measure, are √2 cis(-π/12) and √2 cis(π/12).

To determine the fourth roots of a complex number, we can use the polar form of the complex number and apply De Moivre's theorem. Let's begin by representing -3 + 3√3i in polar form.

1: Convert to polar form:

We can find the magnitude (r) and argument (θ) of the complex number using the formulas:

r = √(a^2 + b^2)

θ = tan^(-1)(b/a)

In this case:

a = -3

b = 3√3

Calculating:

r = √((-3)^2 + (3√3)^2) = √(9 + 27) = √36 = 6

θ = tan^(-1)((3√3)/(-3)) = tan^(-1)(-√3) = -π/3 (since the angle lies in the second quadrant)

So, -3 + 3√3i can be represented as 6cis(-π/3) in polar form.

2: Applying De Moivre's theorem:

De Moivre's theorem states that for any complex number z = r(cosθ + isinθ), the nth roots of z can be found using the formula:

z^(1/n) = (r^(1/n))(cos(θ/n + 2kπ/n) + isin(θ/n + 2kπ/n)), where k is an integer from 0 to n-1.

In this case, we want to find the fourth roots, so n = 4.

Calculating:

r^(1/4) = (6^(1/4)) = √2

The fourth roots of -3 + 3√3i can be expressed as:

√2 cis((-π/3)/4 + 2kπ/4), where k is an integer from 0 to 3.

Now we can substitute the values of k from 0 to 3 into the formula to find the roots:

Root 1: √2 cis((-π/3)/4) = √2 cis(-π/12)

Root 2: √2 cis((-π/3)/4 + 2π/4) = √2 cis(π/12)

Root 3: √2 cis((-π/3)/4 + 4π/4) = √2 cis(7π/12)

Root 4: √2 cis((-π/3)/4 + 6π/4) = √2 cis(11π/12)

So, the fourth roots of -3 + 3√3i, in order of increasing angle measure, are:

√2 cis(-π/12), √2 cis(π/12), √2 cis(7π/12), √2 cis(11π/12).

To know more about fourth roots refer here:

https://brainly.com/question/10470855#

#SPJ11

Alain Dupre wants to set up a scholarship fund for his school. The annual scholarship payment is to be
​$4,800 with the first such payment due two years after his deposit into the fund. If the fund pays
10.5​% compounded annually​, how much must Alain​ deposit?

Answers

Alain Dupre must deposit approximately $3,937.82 into the scholarship fund in order to ensure annual payments of $4,800 with the first payment due two years later.

To determine the deposit amount Alain Dupre needs to make in order to set up the scholarship fund, we can use the concept of present value. The present value represents the current value of a future amount of money, taking into account the time value of money and the interest rate.

In this case, the annual scholarship payment of $4,800 is considered a future value, and Alain wants to determine the present value of this amount. The interest rate is given as 10.5% compounded annually.

The formula to calculate the present value is:

PV = FV / (1 + r)^n

Where:

PV = Present Value

FV = Future Value

r = Interest Rate

n = Number of periods

We know that the first scholarship payment is due in two years, so n = 2. The future value (FV) is $4,800.

Substituting the values into the formula, we have:

PV = 4800 / (1 + 0.105)^2

Calculating the expression inside the parentheses, we have:

PV = 4800 / (1.105)^2

PV = 4800 / 1.221

PV ≈ $3,937.82

By calculating the present value using the formula, Alain can determine the initial deposit required to fund the scholarship. This approach takes into account the future value, interest rate, and time period to calculate the present value, ensuring that the scholarship payments can be made as intended.

Learn more about expression here:

https://brainly.com/question/28170201

#SPJ11

Question 4
Donna is starting a consulting business and purchased new office equipment and furniture selling for $13.220. Donna paid 20% as a down payment and financed the balance with a 36-month installment loan with an APR of 6%. Determine:

Answers

Donna purchased office equipment and furniture for $13,220. She made a 20% down payment and financed the remaining balance with a 36-month installment loan at an annual percentage rate (APR) of 6%.

The down payment made by Donna is 20% of the total purchase price, which can be calculated as $13,220 multiplied by 0.20, resulting in $2,644. This amount is subtracted from the total purchase price to determine the financed balance, which is $13,220 minus $2,644, equaling $10,576.

To determine the monthly installment payments, we need to consider the APR of 6% and the loan term of 36 months. First, the annual interest rate needs to be calculated. The APR of 6% is divided by 100 to convert it to a decimal, resulting in 0.06. The monthly interest rate is then found by dividing the annual interest rate by 12 (the number of months in a year), which is 0.06 divided by 12, equaling 0.005.

Next, the monthly payment can be calculated using the formula for an installment loan:

Monthly Payment = (Loan Amount x Monthly Interest Rate) / [tex](1 - (1 + Monthly Interest Rate) ^ {-Loan Term})[/tex]

Plugging in the values, we have:

Monthly Payment = ($10,576 x 0.005) / [tex](1 - (1 + 0.005) ^ {-36})[/tex]

After evaluating the formula, the monthly payment is approximately $309.45.

Therefore, Donna's monthly installment payment for the office equipment and furniture is $309.45 for a duration of 36 months.

Learn more about percentage here:
https://brainly.com/question/32575737

#SPJ11

Write the following expression as a single trigonometric ratio: \( \frac{\sin 4 x}{\cos 2 x} \) Select one: a. \( 2 \sin x \) b. \( 2 \sin 2 x \) c. \( 2 \tan 2 x \) d. \( \tan 2 x \)

Answers

The expression sin 4x / cos 2x simplifies to 2 sin 2x (option b).

To simplify the expression sin 4x / cos 2x, we can use the trigonometric identity:

sin 2θ = 2 sin θ cos θ

Applying this identity, we have:

sin 4x / cos 2x = (2 sin 2x cos 2x) / cos 2x

Now, the cos 2x term cancels out, resulting in:

sin 4x / cos 2x = 2 sin 2x

So, the expression sin 4x / cos 2x simplifies to 2 sin 2x, which is option b.

To know more about expression:

https://brainly.com/question/28170201


#SPJ4

The half-life of gold-194 is approximately 1.6 days. Step 2 of 3: How much of a 15 gram sample of gold-194 would remain after 4 days? Round to three decimal places. Answer How to enter your answer (op

Answers

After 4 days, approximately 2.344 grams of gold-194 would remain from a 15 gram sample, assuming its half-life is approximately 1.6 days.

The half-life of a radioactive substance is the time it takes for half of the initial quantity to decay. In this case, the half-life of gold-194 is approximately 1.6 days.

To find out how much gold-194 would remain after 4 days, we need to determine the number of half-life periods that have passed. Since 4 days is equal to 4 / 1.6 = 2.5 half-life periods, we can calculate the remaining amount using the exponential decay formula:

Remaining amount = Initial amount *[tex](1/2)^[/tex](number of half-life periods)[tex](1/2)^(number of half-life periods)[/tex]

For a 15 gram sample, the remaining amount after 2.5 half-life periods is:

Remaining amount = 15 [tex]* (1/2)^(2.5)[/tex] ≈ 2.344 grams (rounded to three decimal places).

Therefore, approximately 2.344 grams of gold-194 would remain from a 15 gram sample after 4 days.

Learn more about exponential here:

https://brainly.com/question/28596571

#SPJ11

Discrete Mathematics
Prove or disprove by truth table or logical laws:
"Implication is associative"

Answers

The two sides are not equivalent, and implication is not associative.

In Discrete Mathematics, Implication is associative is a statement to prove or disprove by truth table or logical laws.

We can define implication as a proposition that implies or results in the truth value of another proposition.

In logical operations, it refers to the connection between two propositions that will produce a true value when the first is true or the second is false. In a logical formula, implication can be represented as p → q, which reads as p implies q.

In the associative property of logical operations, when a logical formula involves more than two propositions connected by the same logical operator, we can change the order of their grouping without affecting the truth value. For instance, (p ∧ q) ∧ r ≡ p ∧ (q ∧ r).

However, this property does not hold for implication, which is not associative, as we can see below with a truth table:

p q r p → (q → r) (p → q) → r (p → q) → r ≡ p → (q → r)

T T T T T T T T F F F T T T F T T T F T F T F F F F T T T T F T F T F T F F T T F T F T T T F F T F F F T F F F T T T T F F F F F F F F T T F F F T T F T F F F F F F F F F F F F F F

The truth table shows that when p = T, q = T, and r = F, the left-hand side of the equivalence is true, but the right-hand side is false.

Therefore, the two sides are not equivalent, and implication is not associative.

To know more about truth table, visit:

https://brainly.com/question/30588184

#SPJ11

6. If A is a non-singular n x n matrix, show that ATA is non-singular and det (ATA) > 0.

Answers

ATA is non-singular and det(ATA) > 0.

Let A be an n × n matrix.

We want to show that ATA is non-singular and det(ATA) > 0.

Recall that a square matrix is non-singular if and only if its determinant is nonzero.

Since A is non-singular, we know that det(A) ≠ 0.

Now, we have `det(ATA) = det(A)²`.

Since det(A) ≠ 0, we have det(ATA) > 0.

Therefore, ATA is non-singular and det(ATA) > 0.

If A is a non-singular n x n matrix, show that ATA is non-singular and det(ATA) > 0.

Let A be an n × n matrix.

Since A is non-singular, we know that det(A) ≠ 0.

Thus, we have det(A) > 0 or det(A) < 0.

If det(A) > 0, then A is said to be a positive definite matrix.

If det(A) < 0, then A is said to be a negative definite matrix.

If det(A) = 0, then A is said to be a singular matrix.

The matrix ATA can be expressed as follows: `ATA = (A^T) A`

Where A^T is the transpose of matrix A.

Now, let's find the determinant of ATA.

We have det(ATA) = det(A^T) det(A).

Since A is non-singular, det(A) ≠ 0.

Thus, we have det(ATA) = det(A^T) det(A) ≠ 0.

Therefore, ATA is non-singular.

Also, `det(ATA) = det(A^T) det(A) = (det(A))^2 > 0`

Thus, we have det(ATA) > 0.

Therefore, ATA is non-singular and det(ATA) > 0.

Learn more about matrix

brainly.com/question/29000721

#SPJ11

Let Ax = b, where A = [aij], 1 < i, j < n, with n >= 3, aii = i.j and b=[bi] with bi = i, 1 <=i<= n. Professor asked his students John, Marry and Jenny about this system of equations. John replied that this system of equations is inconsistent, Marry said that this system of equation has unique solution and Jenny said that this system of equations is consistent and has infinitely many solutions. 'Who is right (Give justifications)

Answers

Based on the given information, John, Marry, and Jenny have different opinions regarding the consistency and uniqueness of the system of equations Ax = b, where A is a matrix and b is a vector.

To determine who is right, let's analyze the system of equations. The matrix A has elements aij, where aii = i*j and 1 < i, j < n. The vector b has elements bi = i, where 1 <= i <= n.

For a system of equations to have a unique solution, the matrix A must be invertible, i.e., it must have full rank. In this case, since A has elements aii = i*j, where i and j are greater than 1, the matrix A is not invertible. This implies that Marry's statement that the system has a unique solution is incorrect.

For a system of equations to be inconsistent, the matrix A must have inconsistent rows, meaning that one row can be obtained as a linear combination of the other rows. Since A has elements aii = i*j, and i and j are greater than 1, the rows of A are not linearly dependent. Therefore, John's statement that the system is inconsistent is incorrect.

Considering the above observations, Jenny's statement that the system of equations is consistent and has infinitely many solutions is correct. When a system of equations has more variables than equations (as is the case here), it typically has infinitely many solutions.

In summary, Jenny is right, and her justification is that the system of equations Ax = b is consistent and has infinitely many solutions due to the matrix A having non-invertible elements.

Learn more about equations here:

https://brainly.com/question/29657983

#SPJ11

Define a set of strings S by - a∈S - If σ∈S, then −σσσ∈S Prove that every string in S contains an odd number of a 's. Proof by Induction: Base case: a∈S. So, S has an odd number of a 's. Inductive Step: Consider the cases generated by a. Case 1: Consider aaa. It has an odd number of a 's Case 2: Consider aaaaaaa. It has 7 's and thus an odd number of a 's So by PMI this holds.

Answers

We have shown that every string in S contains an odd number of "a's".

The base case is straightforward since the string "a" contains exactly one "a", which is an odd number.

For the inductive step, we assume that every string σ in S with fewer than k letters (k ≥ 1) contains an odd number of "a's". Then we consider two cases:

Case 1: We construct a new string σ' by appending "a" to σ. Since σ ∈ S, we know that it contains an odd number of "a's". Thus, σ' contains an even number of "a's". But then, by the rule that −σσσ∈S for any σ∈S, we have that −σ'σ'σ' is also in S. This string has an odd number of "a's": it contains one more "a" than σ', which is even, and hence its total number of "a's" is odd.

Case 2: We construct a new string σ' by appending "aaa" to σ. By the inductive hypothesis, we know that σ contains an odd number of "a's". Then, σ' contains three more "a's" than σ does, so it has an odd number of "a's" as well.

Therefore, by induction, we have shown that every string in S contains an odd number of "a's".

Learn more about number  from

https://brainly.com/question/27894163

#SPJ11

Find an equation for the parabola that has its vertex at the origin and satisfies the given condition. \[ \text { Focus } F\left(0,-\frac{1}{4}\right) \] \( -11 \) Points] Find an equation for the par

Answers

The equation for the parabola with its vertex at the origin and a focus at (0, -1/4) is y = -4[tex]x^{2}[/tex].

A parabola with its vertex at the origin and a focus at (0, -1/4) has a vertical axis of symmetry. Since the vertex is at the origin, the equation for the parabola can be written in the form y = a[tex]x^{2}[/tex].

To find the value of 'a,' we need to determine the distance from the vertex to the focus, which is the same as the distance from the vertex to the directrix. In this case, the distance from the origin (vertex) to the focus is 1/4.

The distance from the vertex to the directrix can be found using the formula d = 1/(4a), where 'd' is the distance and 'a' is the coefficient in the equation. In this case, d = 1/4 and a is what we're trying to find.

Substituting these values into the formula, we have 1/4 = 1/(4a). Solving for 'a,' we get a = 1.

Therefore, the equation for the parabola is y = -4[tex]x^{2}[/tex], where 'a' represents the coefficient, and the negative sign indicates that the parabola opens downward.

Learn more about parabola here:

https://brainly.com/question/29075153

#SPJ11

Solve the following problem. n=29; i=0.02; PMT= $190; PV = ? PV = $ (Round to two decimal places.)

Answers

Therefore, the present value is $4,955.72.

In this problem, we are given n, i, and PMT, we are to find the PV.

The general formula for present value is as follows:

PV = PMT [(1 − (1 + i)−n)/i)] + FV(1 + i)−n

Where

PV = Present Value

PMT = Payment

i = Interest rate

n = number of payments

FV = Future Value

To find PV, we will substitute the given values in the above formula:

PV = 190 [(1 − (1 + 0.02)−29)/0.02)] + 0(1 + 0.02)−29

There is no future value in this case.So, the PV will be calculated as follows:

PV = 190 [(1 − (1.02)−29)/0.02)]

PV = 190 [26.03013]

PV = $4,955.72 (rounded to two decimal places)

To know more about decimal visit:

https://brainly.com/question/33109985

#SPJ11

Take the system \( x^{\prime}=10 x^{2}+7 y^{2}+4 x y, \quad y^{\prime}=e^{10 x}+7 y^{2} \) The Jacobian matrix is

Answers

The Jacobian matrix of the given system is: [tex]\[J(x, y) = \begin{bmatrix}\frac{\partial x'}{\partial x} & \frac{\partial x'}{\partial y} \\\frac{\partial y'}{\partial x} & \frac{\partial y'}{\partial y}\end{bmatrix}= \begin{bmatrix}20x + 4y & 14y + 4x \\10e^{10x} & 14y\end{bmatrix}\][/tex].The Jacobian matrix is a matrix of partial derivatives that provides information about the local behavior of a system of differential equations.

In this case, the Jacobian matrix has four entries, representing the partial derivatives of the given system with respect to x and y. The entry [tex]\(\frac{\partial x'}{\partial x}\)[/tex] gives the derivative of x' with respect to x, [tex]\(\frac{\partial x'}{\partial y}\)[/tex] gives the derivative of x' with respect to y, [tex]\(\frac{\partial y'}{\partial x}\)[/tex] gives the derivative of y' with respect to x, and [tex]\(\frac{\partial y'}{\partial y}\)[/tex] gives the derivative of y' with respect to y.

In the given system, the Jacobian matrix is explicitly calculated as shown above. Each entry is obtained by taking the partial derivative of the corresponding function in the system. These derivatives provide information about how small changes in x and y affect the rates of change of x' and y'. By evaluating the Jacobian matrix at different points in the xy-plane, we can analyze the stability, equilibrium points, and local behavior of the system.

To learn more about Jacobian refer:

https://brainly.com/question/30887183

#SPJ11

Let B be the basis of ℙ3 consisting of the Hermite polynomials​
1, 2t, −2+4t2, and −12t+8t3; and let p(t)=−5+16t2+8t3. Find the
coordinate vector of p relative to B.

Answers

The coordinate vector of p relative to the Hermite polynomial basis {1, 2t, [tex]-2 + 4t^2[/tex], [tex]-12t + 8t^3[/tex]} is given by [-5/2, 8, -13/4, -11/2].

Let B be the basis of ℙ3 consisting of the Hermite polynomials 1, 2t, [tex]-2 + 4t^2[/tex], and [tex]-12t + 8t^3[/tex]; and let [tex]p(t) = -5 + 16t^2 + 8t^3[/tex].

Find the coordinate vector of p relative to B.

The Hermite polynomial basis for ℙ3 is given by: {1, 2t, [tex]-2 + 4t^2[/tex], [tex]-12t + 8t^3[/tex]}

Since p(t) is a polynomial of degree 3, we can find its coordinate vector with respect to B by determining the coefficients of each of the basis elements that form p(t).

We must solve the following system of equations:

[tex]ai1 + ai2(2t) + ai3(-2 + 4t^2) + ai4(-12t + 8t^3) = -5 + 16t^2 + 8t^3[/tex]

The coefficients ai1, ai2, ai3, and ai4 will form the coordinate vector of p(t) relative to B.

Using matrix notation, the system can be written as follows:

We can now solve this system of equations using row operations to find the coefficient of each basis element:

We then obtain:

Therefore, the coordinate vector of p relative to the Hermite polynomial basis {1, 2t, [tex]-2 + 4t^2[/tex], [tex]-12t + 8t^3[/tex]} is given by [-5/2, 8, -13/4, -11/2].

The answer is a vector of 4 elements.

To know more about Hermite polynomial, visit:

https://brainly.com/question/28214950

#SPJ11

Other Questions
If445 g of N2O and H2O decomposes to N2O and H2O , how many grams ofN2O are formed?If445g of NH4NO3 decomposes to N2O and H2O, how many grams of N2O areformed? A blood specimen has a hydrogen ion concentration of 40 nmol/liter and a partial pressure of carbon dioxide (PCO2) of 60 mmHg. Calculate the hydrogen ion concentration. Predict the type of acid-base abnormality that the patient exhibits a chicken farmer choose chickens with the most amount of breast meat to breed. after many generations, she had breed chickens with breasts so large the chickens had trouble walking. this is an example of: Tachycardia with marked rise of blood pressure occur after administration of : Select one O a. Isoprenaline b. Noradrenaline O c. Dobutamine d. Adrenaline d e. Atropine An ideal Rankine Cycle operates between the same two pressures as the Carnot Cycle above. Calculate the cycle efficiency, the specific net work out and the specific heat supplied to the boiler. Neglect the power needed to drive the feed pump and assume the turbine operates isentropically. Help2. What is the advantage of using Sabouraud agar? Explain how the blue wall of silence contributes to policecorruption. Consider this scenario for your initial response:As a teacher, you wish to engage the children in learning and enjoying math through outdoor play and activities using a playground environment (your current playground or an imagined playground).Share activity ideas connected to each of the 5 math domains that you can do with children using the outdoor playground environment. You may list different activities for each domain or you may come up with ideas that connect to multiple math domains. For each activity idea, state the associated math domain and list a math related word or phrase that could be used to engage in "math talk" to extend child learning. Examples of math words or phrases include symmetry, cylinder, how many, inch, or make a pattern. Mattie Evans drove 80 miles in the same amount of time that it took a turbopropeller plane to travel 480 miles. The speed of the plane was 200 mph faster than the speed of the car. Find the speed of the plane. The speed of the plane was mph. Gene flow willwill cause increase genetic drift in populationsreduce the frequency of rare alleles in a populationreduce genetic differentiation among populationspromote in OPTION AA large tract of South-Australian Mallee has been donated to long-term conservation. It has beenheavily cleared and grazed for >100-years, and is negatively affected by alien invasive pests andweeds, 15-years of drought, and poor management of fire and irrigation practices.You have been tasked with developing a new monitoring program to evaluate the impacts of abroad-scale restoration project. This project will include a variety of components, including: (i) alienspecies removal and exclusion; (ii) planting and restoration; and (iii) experimental landscapewatering.Whilst you have been funded to develop the program, you do not have an infinite budget. Chooseone of the three components above (i iii) and discuss the following aspects of your program.Provide a rationale for your decisions based on the broad goals of the program.Page 3 of 5Page 4 of 5(A) Identify how you might use rapid assessment methods, or similar, to collect the necessarydata for your chosen restoration component.(B) How will these methods be implemented over the long term to allow the consequences ofyour restoration program to be detected?Specify what part of the ecological community you will target for monitoring the response outcomeof your chosen restoration component, and identify the spatial and temporal scales of sampling. Black, Brown, and White were partners and carried ona small business manufacturing precast-concreteproducts, cinder blocks, and such. Black, without theknowledge of her partners, agreed to sell the businessto Gray. Can Brown and White block the sale, and why?If Black's deal were to sell Gray $10,000 worth ofblocks for $8,000, what could Brown and White doabout the matter? What bonds do proteases cleave? Name one protease and draw an example of the bond cleaved by such protease . Which variable rises after capillary beds?a. Blood pressureb. Blood vessel areac. blood velocityd. blood volume Animals in an experiment are to be kept under a strict diet. Each animal should receive 30 grams of protein and 8 grams of fat. The laboratory technician is able to purchase two food mixes: Mix A has 10% protein and 6% fat; mix B has 40% protein and 4% fat. How many grams of each mix should be used to obtain the right diet for one animal? One animal's diet should consist of grams of Mix A. One animal's diet should consist of grams of Mix B. What is the purpose of a polymerase chain reaction? Describe each stage of the reaction in detail. A steam power plant operates on an ideal reheat regenerative Rankine cycle with two turbine stages, one closed feed water heater and one open feed water heater. Steam is superheated and supplied to the high-pressure turbine at 200 bar and 700 C. Steam exits at 30 bar and a fraction of it is bled to a closed feed water heater. The remaining steam is reheated in the boiler to 600 C before entering the low-pressure turbine. During expansion in the low pressure turbine, another fraction of the steam is bled off at a pressure of 2 bar to the open feed water heater. The remaining steam is expanded to the condenser pressure of 0.2 bar. Saturated liquid water leaving the condenser is pumped to the pressure of the open feed heater. Water leaving this is then pumped through the closed feed heater and mixed with the pumped cross flow bled steam. The whole of the water is returned to the boiler and super heater and the cycle is repeated.i) Starting with state 1 at the entrance to the high-pressure turbine, draw a fully annotated schematic diagram of the steam power plant, and a sketch an accompanying temperature - specific entropy diagram.ii) Plot on the supplied enthalpy entropy steam chart (Mollier diagram) states 1 to 5 and the process lines for steam expansion through the high-pressure turbine, reheat through the boiler, and expansion to the condenser pressure. Clearly mark on the chart all state properties. Ensure that you include the annotated steam chart along with your solutions to obtain relevant marks for the above question part.iii) Determine the fractions of steam extracted from the turbines and bled to the feed heaters. State all assumptions used and show all calculation steps.iv) Calculate the thermal efficiency of the plant and the specific steam consumption, clearly stating all assumptions.v) Explain why the thermal efficiency of the steam cycles may be increased through use of regenerative feed heaters. Make use of suitable sketches and clearly identify the main thermodynamic reasons As an energy engineer, has been asked from you to prepare a design of Pelton turbine in order to establish a power station worked on the Pelton turbine on the Tigris River. The design specifications are as follow: Net head, H=200m; Speed N=300 rpm; Shaft power=750 kW. Assuming the other required data wherever necessary. This is all one question. Please answer all 47. (8 points) A monopolist sells in two states and practices price discrimination by charging different prices in each state. The monopolist produces at constant marginal cost MC = 10. Demand in market 1 is Q1 = 50 -- P1. Market 2 demand is Q2 = 90 - 1.5p2 If the monopolist decides to practice third-degree price discrimination, what should the price and quantity be in each market? Which of the following is an incorrect statement about "calories"?a. All one needs to know to accurately calculate one's daily calorie needs is knowledge of their sex and their weight. b. Two hundred calories from an avocado (which offers healthy fats and other nutrients) can be a better choice than eating 100 calories of deli meat. c. Fiber helps to slow the absorption of sugar. d. Healthy eating and drinking choices is about more than calories.e. A zero-calorie pop/soda, for example, might also provide zero nutrients, and come packed with artificial sweetners. f. Consuming 100 calories in the form of an apple will provide a more "full" feeling than drinking 100 calories of pop/soda/Red Bull, etc.