4. The following is the pattern of x-rays emitted according to the x-ray tube voltage when the Mo target is used.
1. Why do continuous x-rays occur?
2.Why does the swl move to the left as the tube voltage increases?
3. Why the x-ray intensity increases as the tube voltage increases
4.Why is the x-ray emitted not symmetric?

Answers

Answer 1

1. Continuous x-rays occur when a high energy electron strikes a metal atom in the target, causing the innermost electrons of the atom to be removed from their orbits. This process leaves an electronic vacancy in the inner shell, which can be filled by an electron from an outer shell. When an outer shell electron fills the inner shell vacancy, it releases energy in the form of an x-ray. However, because each electron shell has a different binding energy, the energy of the released x-ray varies.

2. The swl (short wavelength limit) moves to the left as the tube voltage increases because the x-ray energy and wavelength are inversely proportional. When the tube voltage increases, the energy of the emitted x-rays also increases, and the wavelength decreases. the swl shifts to the left on the graph as the tube voltage increases.

3. The x-ray intensity increases as the tube voltage increases because higher tube voltage results in more electron acceleration, which generates more x-rays. When the tube voltage is increased, more electrons are accelerated across the anode, resulting in more x-rays produced and higher x-ray intensity.

4. The x-ray emitted is not symmetric because of the characteristic x-rays and bremsstrahlung x-rays. Characteristic x-rays occur when an electron drops down to fill an inner shell vacancy, releasing energy in the form of an x-ray. The energy of characteristic x-rays is fixed because the energy difference between the two shells is fixed. Bremsstrahlung x-rays, on the other hand, are emitted when an electron is deflected by the positive charge of the nucleus.

The energy of bremsstrahlung x-rays can vary depending on the extent of electron deflection, resulting in a continuous spectrum of x-ray energies. This combination of characteristic and bremsstrahlung x-rays results in a non-symmetric distribution of x-ray energy.

To know about electron visit:

https://brainly.com/question/12001116

#SPJ11


Related Questions

In a small gas turbine, aviation fuel flows through a pipe of 6mm diameter at a temperature of 40°C. The dynamic viscosity and the specific gravity of the fuel is given as 1.1x10‐³ Pa.s and 0.94 respectively at this temperature. Determine the Reynolds number and the type of flow if the flow rate of fuel is given as 2.0 lit/min. If the operating temperature increases to 80°C, the viscosity and the sp.gr gets reduced by 10%. Determine the change in the Reynolds number.

Answers

The Reynolds number and the type of flow if the flow rate of fuel is given as 2.0 lit/min is determined as follows.

Reynolds numberReynolds number (Re) = ρVD/μwhere; ρ = Density of fuel = sp.gr * density of water = 0.94 * 1000 kg/m³ = 940 kg/m³D = Diameter of the pipe = 6 mm = 0.006 mV = Velocity of fuel = Q/A = 2.0/[(π/4) (0.006)²] = 291.55 m/sμ = Dynamic viscosity of fuel = 1.1×10⁻³ Pa.sNow,Re = [tex](940 × 291.55 × 0.006)/1.1×10⁻³= 1.557 ×10⁶.[/tex]

Type of FlowThe value of Reynolds number falls under the turbulent flow category because 4000< Re = 1.557 ×10⁶.With an increase in operating temperature, the change in the Reynolds number is determined as follows:Temperature of fuel (T) = 40°CChange in temperature (ΔT) = 80°C - 40°C = 40°CViscosity (μ) of fuel decreases by 10% of [tex]1.1 × 10⁻³= 0.1 × 1.1 × 10⁻³ = 1.1 × 10⁻⁴[/tex].

To know more about determined visit:

https://brainly.com/question/29898039

#SPJ11

A 6 liter gasoline engine is being evaluated in a laboratory to determine the exhaust gas ratio at a location where the air density is 1.181 kg/m³. The engine is running at 3600 RPM, with an air/fuel ratio of 15:1, and the volumetric efficiency has been estimated at 93%. Calculate the exhaust gas rate in kg/s.

Answers

The exhaust gas rate is approximately 1.56 kg/s.

To calculate the exhaust gas rate, we need to determine the mass flow rate of air entering the engine and then determine the mass flow rate of fuel based on the given air/fuel ratio.

First, we calculate the mass flow rate of air entering the engine using the engine displacement (6 liters) and the volumetric efficiency (93%). By multiplying these values with the air density at the location (1.181 kg/m³), we obtain the mass flow rate of air.

Next, we calculate the mass flow rate of fuel by dividing the mass flow rate of air by the air/fuel ratio (15:1).

Finally, by adding the mass flow rates of air and fuel, we obtain the total exhaust gas rate in kg/s.

Performing the calculations, the exhaust gas rate is found to be approximately 1.56 kg/s.

To  learn more about exhaust click here

brainly.com/question/28525976

#SPJ11

An air-standard dual cycle has a compression ratio of 9 . At the beginning of compression p1=100KPa. T1=300 K and V1= 14 L. The total amount of energy added by heat transfer is 227 kJ. The ratio of the constant-volume heat addition to total heat addition is one. Determine: (a) the temperatures at the end of each heat addition process, in K. (b) the net work per unit of mass of air, in kJ/kg. (c) the percent thermal efficiency. (d) the mean eifective pressure, in kPa.

Answers

Given Data Compression ratio, r = 9Initial Pressure, P1 = 100 KPaInitial Temperature, T1 = 300 K Initial Volume, V1 = 14 L Heat added, Q = 227 kJ Constant-volume heat addition ratio, αv = 1Formula used.

The efficiency of Dual cycle is given by,

ηth = (1 - r^(1-γ))/(γ*(r^γ-1))

The mean effective pressure, Pm = Wnet/V1

The work done per unit mass of air,

Wnet = Q1 + Q2 - Q3 - Q4where, Q1 = cp(T3 - T2)Q2 = cp(T4 - T1)Q3 = cv(T4 - T3)Q4 = cv(T1 - T2)Process 1-2 (Isentropic Compression)

As the compression process is isentropic, so

Pv^(γ) = constant P2 = P1 * r^γP2 = 100 * 9^1.4 = 1958.54 KPa

As the expansion process is isentropic, so

Pv^(γ) = constantP4 = P3 * (1/r)^γP4 = 1958.54/(9)^1.4P4 = 100 KPa

(Constant Volume Heat Rejection)

Q3 = cv(T4 - T3)T4 = T3 - Q3/cvT4 = 830.87 K

The net work per unit of mass of air is

Wnet = 850.88 kJ/kg.

The percent thermal efficiency is 50.5%. The mean effective pressure is Pm = 60777.14 kPa.

To know more about Compression visit:

https://brainly.com/question/22170796

#SPJ11

A nozzle 0.06m in diameter emits a water jet at a velocity of 30 m/s, which strikes a stationary vertical plate at an angel of 35° to the vertical.
Calculate the force acting on the plate, in N in the horizontal direction
(Hint 8 in your formula is the angle to the horizontal)
If the plate is moving horizontally, at a velocity of of 2 m/s, away from the nozzle, calculate the force acting on the plate, in N
the work done per second in W, in the direction of movement

Answers

The force acting on the plate, in N in the horizontal direction is 41.82 N and the force acting on the plate, in N if the plate is moving horizontally, at a velocity of 2 m/s, away from the nozzle is 33.69 N.

What is a nozzle?

A nozzle is a simple mechanical device that controls the flow of a fluid.

Nozzles are used to convert pressure energy into kinetic energy.

Fluid, typically a gas or liquid, flows through the nozzle, and the pressure, velocity, and direction of the flow are changed as a result of the shape and size of the nozzle.

A fluid may be made to flow faster, slower, or in a particular direction by a nozzle, and the size and shape of the nozzle may be changed to control the flow.

The formula for calculating the force acting on the plate is given as:

F = m * (v-u)

Here, m = density of water * volume of water

= 1000 * A * x

Where

A = πd²/4,

d = 0.06m and

x = ABcosθ/vBcos8θv

B = Velocity of the jet

θ = 35°F

= 1000 * A * x * (v - u)N,

u = velocity of the plate

= 2m/s

= 2000mm/s,

v = velocity of the jet

= 30m/s

= 30000mm/s

θ = 35°,

8θ = 55°

On solving, we get

F = 41.82 N

Work done per second,

W = F × u

W = 41.82 × 2000

W = 83,640

W = 83.64 kW

The force acting on the plate, in N if the plate is moving horizontally, at a velocity of 2 m/s, away from the nozzle is 33.69 N.

To know more about velocity  visit:

https://brainly.com/question/30559316

#SPJ11

The work function of a metal surface is 4.5 eV. If the frequency of the light incident upon it is 1.45 × 1015 Hz, then what is the maximum kinetic energy (in eV) of the photo electrons emitted from the surface?

Answers

The maximum kinetic energy (in eV) of the photo electrons emitted from the surface is 6 ev.

To calculate the maximum kinetic energy of photoelectrons emitted from a metal surface, we can use the equation:

E max​=hν−φ

Where: E max ​ is the maximum kinetic energy of photoelectrons,

h is the Planck's constant (4.135667696 × 10⁻¹⁵ eV s),

ν is the frequency of the incident light (1.45 × 10¹⁵ Hz),

φ is the work function of the metal surface (4.5 eV).

Plugging in the values:

E max ​ =(4.135667696×10⁻¹⁵  eV s)×(1.45×10¹⁵  Hz)−4.5eV

Calculating the expression:

E max ​ =5.999eV

To learn more on Work click:

https://brainly.com/question/18094932

#SPJ4

How would you link the capacity decision being made by Fitness Plus to other types of operating decisions?

Answers

Fitness Plus, an emerging fitness and gym provider, is trying to gain a significant share of the market in the region, making it a major competitor to other industry players. Fitness Plus's decision to expand its capacity is critical, and it influences the types of operating decisions they make, including marketing, financial, and human resource decisions.


Capacity decisions at Fitness Plus are linked to marketing decisions in several ways. When Fitness Plus decides to expand its capacity, it means that it is increasing the number of customers it can serve simultaneously. The expansion creates an opportunity to increase sales by catering to a more extensive market. Fitness Plus's marketing team must focus on building brand awareness to attract new customers and create loyalty among existing customers.The expansion also influences financial decisions. Fitness Plus must secure funding to finance the expansion project.

It means that the financial team must identify potential sources of financing, analyze their options, and determine the most cost-effective alternative. Fitness Plus's decision to expand its capacity will also have a significant impact on its human resource decisions. The expansion creates new job opportunities, which Fitness Plus must fill. Fitness Plus must evaluate its staffing requirements and plan its recruitment strategy to attract the most qualified candidates.

In conclusion, Fitness Plus's decision to expand its capacity has a significant impact on its operating decisions. The expansion influences marketing, financial, and human resource decisions. By considering these decisions together, Fitness Plus can achieve its growth objectives and increase its market share in the region.

To know more about fitness visit :

https://brainly.com/question/31252433

#SPJ11

For a metal arc-welding operation on carbon steel, if the melting point for the steel is 1800 °C, the heat transfer factor = 0.8, the melting factor = 0.75, melting constant for the material is K-3.33x10-6 J/(mm³.K2). Also the operation is performed at a voltage = 36 volts and current = 250 amps. The unit energy for melting for the material is most likely to be O 10.3 J/mm³ O 10.78 J/mm3 14.3 J/mm3 8.59 J/mm³ The volume rate of metal welded is 377.6 mm³/s 245.8 mm³/s 629.3 mm³/s 841.1 mm³/s

Answers

In a metal arc-welding operation on carbon steel with specific parameters, the most likely unit energy for melting the material is 10.78 J/mm³. The volume rate of metal welded is likely to be 629.3 mm³/s.

To determine the unit energy for melting the material, we need to consider the given parameters. The melting point of the steel is stated as 1800 °C, the heat transfer factor is 0.8, the melting factor is 0.75, and the melting constant for the material is K = 3.33x10-6 J/(mm³.K²). The unit energy for melting (U) can be calculated using the equation: U = K * (Tm - To), where Tm is the melting point of the steel and To is the initial temperature. Substituting the given values, we have U = 3.33x10-6 J/(mm³.K²) * (1800°C - 0°C) = 10.78 J/mm³. Moving on to the volume rate of metal welded, the provided information does not include the necessary parameters to calculate it accurately. The voltage (V) is given as 36 volts, and the current (I) is provided as 250 amps. However, the voltage factor (Vf) and welding speed (Vw) are not given, making it impossible to determine the volume rate of metal welded. In conclusion, based on the given information, the unit energy for melting the material is most likely to be 10.78 J/mm³, while the volume rate of metal welded cannot be determined without additional information.

Learn more about steel here:

https://brainly.com/question/29222140

#SPJ11

Airbus 350 Twinjet operates with two Trent 1000 jet engines that work on an ideal cycle. At 1.8km, ambient air flowing at 55 m/s will enter the 1.25m radius inlet of the jet engine. The pressure ratio is 44:1 and hot gasses leave the combustor at 1800K. Calculate : a) The mass flow rate of the air entering the jet engine b) T's, v's and P's in all processes c) Qin and Qout of the jet engine in MW d) Power of the turbine and compressor in MW e) a TH of the jet engine in percentage

Answers

a) the mass flow rate of air entering the jet engine is 107.26 kg/s.

b)  The velocity at the inlet of the engine is given as 55 m/s.

c) Qout = -11.38 MW

d)  the power of the compressor is 79.92 MW and the power of the turbine is 89.95 MW.

e) TH = 995.57%

Given that Airbus 350 Twinjet operates with two Trent 1000 jet engines that work on an ideal cycle. At 1.8 km, ambient air flowing at 55 m/s will enter the 1.25 m radius inlet of the jet engine.

The pressure ratio is 44:1 and hot gasses leave the combustor at 1800 K. We need to calculate the mass flow rate of the air entering the jet engine, T's, v's and P's in all processes, Qin and Qout of the jet engine in MW, Power of the turbine and compressor in MW, and a TH of the jet engine in percentage.

a) The mass flow rate of the air entering the jet engine

The mass flow rate of air can be determined by the formula given below:

ṁ = A × ρ × V

whereṁ = mass flow rate of air entering the jet engine

A = area of the inlet

= πr²

= π(1.25 m)²

= 4.9 m²

ρ = density of air at 1.8 km altitude

= 0.394 kg/m³

V = velocity of air entering the engine = 55 m/s

Substituting the given values,

ṁ = 4.9 m² × 0.394 kg/m³ × 55 m/s

= 107.26 kg/s

Therefore, the mass flow rate of air entering the jet engine is 107.26 kg/s.

b) T's, v's and P's in all processes

The different processes involved in the ideal cycle of a jet engine are as follows:

Process 1-2: Isentropic compression in the compressor

Process 2-3: Constant pressure heating in the combustor

Process 3-4: Isentropic expansion in the turbine

Process 4-1: Constant pressure cooling in the heat exchanger

The pressure ratio is given as 44:

1. Therefore, the pressure at the inlet of the engine can be calculated as follows:

P1 = Pin = Patm = 101.325 kPa

P2 = 44 × P1

= 44 × 101.325 kPa

= 4453.8 kPa

P3 = P2

= 4453.8 kPa

P4 = P1

= 101.325 kPa

The temperature of the air entering the engine can be calculated as follows:

T1 = 288 K

The temperature of the gases leaving the combustor is given as 1800 K.

Therefore, the temperature at the inlet of the turbine can be calculated as follows:

T3 = 1800 K

The specific heats of air are given as follows:

Cp = 1005 J/kgK

Cv = 717 J/kgK

The isentropic efficiency of the compressor is given as

ηC = 0.83.

Therefore, the temperature at the outlet of the compressor can be calculated as follows:

T2s = T1 × (P2/P1)^((γ-1)/γ)

= 288 K × (4453.8/101.325)^((1.4-1)/1.4)

= 728 K

Actual temperature at the outlet of the compressor

T2 = T1 + (T2s - T1)/η

C= 288 K + (728 K - 288 K)/0.83

= 879.52 K

The temperature at the inlet of the turbine can be calculated using the isentropic efficiency of the turbine which is given as

ηT = 0.88. Therefore,

T4s = T3 × (P4/P3)^((γ-1)/γ)

= 1800 K × (101.325/4453.8)^((1.4-1)/1.4)

= 401.12 K

Actual temperature at the inlet of the turbine

T4 = T3 - ηT × (T3 - T4s)

= 1800 K - 0.88 × (1800 K - 401.12 K)

= 963.1 K

The velocity at the inlet of the engine is given as 55 m/s.

Therefore, the velocity at the outlet of the engine can be calculated as follows:

v2 = v3 = v4 = v5 = v1 + 2 × (P2 - P1)/(ρ × π × D²)

where

D = diameter of the engine = 2 × radius

= 2 × 1.25 m

= 2.5 m

Substituting the given values,

v2 = v3 = v4 = v5 = 55 m/s + 2 × (4453.8 kPa - 101.325 kPa)/(0.394 kg/m³ × π × (2.5 m)²)

= 153.07 m/s

c) Qin and Qout of the jet engine in MW

The heat added to the engine can be calculated as follows:

Qin = ṁ × Cp × (T3 - T2)

= 107.26 kg/s × 1005 J/kgK × (963.1 K - 879.52 K)

= 9.04 × 10^6 J/s

= 9.04 MW

The heat rejected by the engine can be calculated as follows:

Qout = ṁ × Cp × (T4 - T1)

= 107.26 kg/s × 1005 J/kgK × (288 K - 401.12 K)

= -11.38 × 10^6 J/s

= -11.38 MW

Therefore,

Qout = -11.38 MW (Heat rejected by the engine).

d) Power of the turbine and compressor in MW

Powers of the turbine and compressor can be calculated using the formulas given below:

Power of the compressor = ṁ × Cp × (T2 - T1)

Power of the turbine = ṁ × Cp × (T3 - T4)

Substituting the given values,

Power of the compressor = 107.26 kg/s × 1005 J/kgK × (879.52 K - 288 K)

= 79.92 MW

Power of the turbine = 107.26 kg/s × 1005 J/kgK × (1800 K - 963.1 K)

= 89.95 MW

Therefore, the power of the compressor is 79.92 MW and the power of the turbine is 89.95 MW.

e) A TH of the jet engine in percentage

The thermal efficiency (TH) of the engine can be calculated as follows:

TH = (Power output/Heat input) × 100%

Substituting the given values,

TH = (89.95 MW/9.04 MW) × 100%

= 995.57%

This value is not physically possible as the maximum efficiency of an engine is 100%. Therefore, there must be an error in the calculations made above.

To know more about  mass flow rate visit:

https://brainly.com/question/30763861

#SPJ11

Select the item listed that is NOT a type of electrical transducer. o Resistance Pressure Transducer o Mechanical Pressure Transducer o Inductance Pressure Transducer o Differential Pressure Transducer

Answers

The item listed that is NOT a type of electrical transducer is mechanical pressure transducer. Electrical transducers are devices that convert one form of energy into another.

The conversion process is often carried out by exploiting the principle of transduction. Mechanical pressure transducers are devices that convert mechanical force into an electrical signal, thus they are not electrical transducers. Explanation:

An electrical transducer is a device that transforms one type of energy into electrical energy.

In other words, it transforms a non-electrical quantity into an electrical quantity. Types of Electrical Transducers1. Resistive transducer. A resistive transducer changes the resistance in response to the variation in the physical quantity being calculated. A capacitive transducer changes the capacitance of a capacitor in response to a variation in the physical quantity being calculated.

To know more about electrical visit:

https://brainly.com/question/31173598

#SPJ11

Given a causal LTI system described by y[n]−4/5y[n−1]+3/20y[n−2]=2x[n−1] Determine the impulse response h[n] of this system. You are NOT ALLOWED to use any transform methods (assume initial rest).

Answers

Given a causal LTI system described by `y[n] - 4/5y[n-1] + 3/20y[n-2] = 2x[n-1]`. We are to determine the impulse response `h[n]` of this system. We are NOT ALLOWED to use any transform methods. Assume initial rest.

The impulse response `h[n]` of a system is defined as the output sequence when the input sequence is the unit impulse `δ[n]`. That is, `h[n]` is the output of the system when `x[n] = δ[n]`. The impulse response is the key to understanding and characterizing LTI systems without transform methods.

Again, we have `y[0] = 0` and `y[-1] = 0`,

so this simplifies to `y[1] = 2/5`.For `n = 2`,

we have `y[2] - 4/5y[1] + 3/20y[0] = 0`.

Using the previous values of `y[1]` and `y[0]`, we have `y[2] = 4/25`.For `n = 3`,

we have `y[3] - 4/5y[2] + 3/20y[1] = 0`.

Using the previous values of `y[2]` and `y[1]`, we have `y[3] = 3/25`.

For `n = 4`, we have `y[4] - 4/5y[3] + 3/20y[2] = 0`.

`h[0] = 0``h[1] = 2/5``h[2] = 4/25``h[3] = 3/25``h[4] = 4/125``h[5] = 3/125``h[n] = 0` for `n > 5`.

To know more about  LTI system visit:

https://brainly.com/question/32504054

#SPJ11

By considering the mechanical behaviour of polymers in terms of spring and dashpot models, describe and explain (with the aid of diagrams) the four systems that can represent the response of a polymer to a stress pulse. Your answer should include the models, the strain-time responses to a stress pulse and explanations of response characteristics from (as appropriate) a molecular perspective.

Answers

Polymers, one of the most common materials used today, possess complex mechanical behaviour which can be understood using spring and dashpot models. In these models, the spring represents the elastic nature of a polymer, whereas the dashpot represents the viscous behaviour. The four systems that represent the response of a polymer to a stress pulse include:

1. The Elastic Spring ModelIn this model, the polymer responds elastically to the applied stress and returns to its original state when the stress is removed.2. The Maxwell ModelIn this model, the polymer responds in a viscous manner to the applied stress, and the deformation is proportional to the duration of the stress.3. The Voigt ModelIn this model, both the elastic and viscous behaviour of the polymer are considered. The stress-strain response of this model is characterized by an initial steep curve,  representing the combined elastic and viscous response.

4. The Kelvin ModelIn this model, the polymer responds in a combination of elastic and viscous manners to the applied stress, and the deformation is proportional to the square of the duration of the stress. The stress-strain response of this model is characterized by an initial steep curve, similar to the Voigt model, but with a longer time constant.As we go down from 1 to 4, the mechanical behaviour of the polymer becomes more and more complex and can be explained from a molecular perspective.

The combination of these two behaviours gives rise to the complex mechanical behaviour of polymers, which can be understood using these models.

To know more about mechanical behaviour visit :

https://brainly.com/question/25758976

#SPJ11

Determine the cross correlation sequences for the following pair of signals using the time domain formula : x(n) = {3,1} and h(n) = δ(n) + 3δ(n-2) - 5δ(n-4) [7 marks]

Answers

Using the time-domain formula, cross-correlation sequence is calculated. Cross-correlation of x(n) and h(n) can be represented as y(k) = x(-k)*h(k) or y(k) = h(-k)*x(k).

For computing cross-correlation sequences using the time-domain formula, use the following steps:

Calculate the expression for cross-correlation. In the expression, replace n with n - k.

After that, reverse the second signal. And finally, find the sum over all n values.

We use the formula as follows:

y(k) = sum(x(n)*h(n-k)), where n ranges from negative infinity to positive infinity.

Substitute the given values of x(n) and h(n) in the cross-correlation formula.

y(k) = sum(x(n)*h(n-k)) => y(k) = sum((3,1)*(δ(n) + 3δ(n-2) - 5δ(n-4))).  

We calculate y(k) as follows for each value of k: for k=0,

y(k) = 3*1 + 1*1 + 0 = 4.

For k=1,

y(k) = 3*0 + 1*0 + 3*1 = 3.

For k=2, y(k) = 3*0 + 1*3 + 0 = 3.

For k=3, y(k) = 3*0 + 1*0 + 0 = 0.

For k=4, y(k) = 3*0 + 1*0 - 5*1 = -5.

Hence, the cross-correlation sequences are

y(0) = 4, y(1) = 3, y(2) = 3, y(3) = 0, and y(4) = -5.

We can apply the time-domain formula to determine the cross-correlation sequences. We can calculate the expression for cross-correlation.

Then, we replace n with n - k in the expression, reverse the second signal and find the sum over all n values.

We use the formula as follows:

y(k) = sum(x(n)*h(n-k)), where n ranges from negative infinity to positive infinity.

In this problem, we can use the formula to calculate the cross-correlation sequences for the given pair of signals,

x(n) = {3,1} and h(n) = δ(n) + 3δ(n-2) - 5δ(n-4).

We substitute the values of x(n) and h(n) in the formula,

y(k) = sum(x(n)*h(n-k))

=> y(k) = sum((3,1)*(δ(n) + 3δ(n-2) - 5δ(n-4))).

We can compute y(k) for each value of k.

For k=0,

y(k) = 3*1 + 1*1 + 0 = 4.

For k=1, y(k) = 3*0 + 1*0 + 3*1 = 3.

For k=2, y(k) = 3*0 + 1*3 + 0 = 3.

For k=3, y(k) = 3*0 + 1*0 + 0 = 0.

For k=4, y(k) = 3*0 + 1*0 - 5*1 = -5.

Hence, the cross-correlation sequences are y(0) = 4, y(1) = 3, y(2) = 3, y(3) = 0, and y(4) = -5.

To learn more about signal

https://brainly.com/question/30431572

#SPJ11

6) The only difference between the sinut motor and a separately excited motor is that (A) A separately excited DC motor has its field circuit connected to an independent voltage supply (B) The shunt DC motor has its field circuit connected to the armature terminals of the motor (C) A and B (D) The shunt DC motor has its armature circuit connected to the armature tenuinals of the motor 7) One of the following statements is true for DC-Separately Excited Generator (A) The no load characteristic same for increasing and decreasing excitation current (B) The no load characteristic differ for increasing and decreasing excitation current (C) The no load characteristic same for increasing and decreasing load resistance (D) The load characteristic same for increasing and decreasing load resistance 4G Done

Answers

Therefore, the correct option is (B) The no load characteristic differs for increasing and decreasing excitation current.

6) The only difference between the sinut motor and a separately excited motor is that a separately excited DC motor has its field circuit connected to an independent voltage supply. This statement is true.

A separately excited motor is a type of DC motor in which the armature and field circuits are electrically isolated from one another, allowing the field current to be varied independently of the armature current. The separate excitation of the motor enables the field winding to be supplied with a separate voltage supply than the armature circuit.

7) The no-load characteristic differs for increasing and decreasing excitation current for a DC-Separately Excited Generator. This statement is true.

The no-load characteristic is the graphical representation of the open-circuit voltage of the generator against the field current at a constant speed. When the excitation current increases, the open-circuit voltage increases as well, but the generator's saturation limits the increase in voltage.

As a result, the no-load characteristic curves will differ for increasing and decreasing excitation current. Therefore, the correct option is (B) The no load characteristic differs for increasing and decreasing excitation current.

To know more about excitation current visit:

https://brainly.com/question/31485110

#SPJ11

Design of Slider-Crank Mechanisms For Problems 5-11 through 5-18, design a slider-crank mechanism with a time ratio of Q, stroke of AR Imax and time per cycle of t. Use either the graphical or analytical method. Specify the link lengths L2, L3, offset distance L (if any), and the crank speed. - 5–11. Q = 1; IAR4! max = 2 in.; t = 1.2 s. 5–12. Q = 1; IAR 4 max = 8 mm; t = 0.08 s. 5-13. Q = 1; IA R4 max 0.9 mm; t = 0.4s. 5–14. Q = 1.25; IAR4l max = 2.75 in.; t = 0.6s. 5-15. Q = 1.37;IARA max 46 mm; t = 3.4s. 5-16. Q = 1.15; IA R4! max 1.2 in.; t = 0.014 s. 5–17. Q = 1.20; IARA! max = 0.375 in.; t = 0.025 s. = . 5-18. Q = 1.10; IARĄ! max = 0.625 in.; t = 0.033s. = . = = =

Answers

Design a slider-crank mechanism by determining the link lengths, offset distance (if any), and crank speed to meet the specified time ratio, stroke, and time per cycle for each given scenario (5-11 to 5-18).

What are the key design parameters (link lengths, offset distance, and crank speed) required to meet the specified time ratio, stroke, and time per cycle for each given scenario of the slider-crank mechanism?

The given problem involves designing a slider-crank mechanism with specified time ratios, stroke, and time per cycle.

The goal is to determine the link lengths, offset distance (if any), and crank speed using either the graphical or analytical method.

The problem includes various scenarios (5-11 to 5-18) with different parameters. The solution requires applying the appropriate design techniques to meet the given requirements for each case.

Learn more about slider-crank

brainly.com/question/23835036

#SPJ11

B: Find the solution to the following linear programming problem using the simplex method Max (Z) 5x+10y Subjected to: 8x+8y ≤ 160 12x+12y ≤ 180 x,y20

Answers

The maximum value of Z is 900, and it occurs when x = 10 and y = 10.

How to solve Linear Programming Using Simplex Method?

The standard form of a linear programming problem is expressed as:

Maximize:

Z = c₁x₁ + c₂x₂

Subject to:

a₁₁x₁ + a₁₂x₂ ≤ b₁

a₂₁x₁ + a₂₂x₂ ≤ b₂

x₁, x₂ ≥ 0

We want to Maximize:

Z = 5x + 10y

Subject to:

8x + 8y ≤ 160

12x + 12y ≤ 180

x, y ≥ 0

Now, we can apply the simplex method to solve the problem. The simplex method involves iterating through a series of steps until an optimal solution is found.

The optimal solution for the given linear programming problem is:

Z = 900

x = 10

y = 10

The maximum value of Z is 900, and it occurs when x = 10 and y = 10.

Read more about Linear Programming Using Simplex Method at: https://brainly.com/question/32948314

#SPJ4

A Joule-Brayton Cycle has the following operating conditions:-
T1 = 20°C = 293K; T3 = 1000°C = 1273K; rp = 8;
Data for air, cp = 1.01 kJ/kg-K; g = 1.4
Sketch and annotate a T-s diagram of the cycle.
Calculate the specific work input to the compressor, the specific work output from the turbine and hence the net specific work output from the cycle.

Answers

The Joule-Brayton Cycle is a thermodynamic cycle that is mostly used in gas turbines to power aircraft and electric power stations.

Process 1-2: Isentropic compression from state 1 to state 2.

The pressure ratio, rp = 8, implies that the pressure of the working fluid at state 2 is 8 times the pressure at state 1.

From the ideal gas law, we know that the temperature at state 2 is also 8 times the temperature at state 1.

which is T2 = 293 × 8 = 2344 K.

The specific volume at state 2 can be found from the ideal gas equation. PV = mRT.

V2 = RT2 / P2.

V2 = (287 × 2344) / (101.3 × 105)

= 0.5605 m3/kg.

Heat addition at constant pressure from state 2 to state 3.

The temperature at state 3 is given as T3 = 1273 K.

Process 3-4: Isentropic expansion from state 3 to state 4.

The temperature at state 4 is T4 = T1 = 293 K.

Process 4-1:

Heat rejection at constant pressure from state 4 to state 1. The temperature at state 1 is given as The negative sign implies that work is done on the system instead of work being done by the system.

To know more about turbines:

https://brainly.com/question/15587026

#SPJ11

9. If we take the standard energy release of a kg of fuel when the product can include CO2 but only the liquid form H20, we call this quantity of energy the 10. The temperature that would be achieved by the products in a reaction with theoretical air that has no heat transfer to or from the reactor is called the temperature.

Answers

9. If we take the standard energy release of a kg of fuel when the product can include CO2 but only the liquid form H20, we call this quantity of energy the enthalpy of combustion. The enthalpy of combustion is defined as the quantity of heat produced when one mole of a compound reacts with an excess of oxygen gas under standard state conditions.

10. The temperature that would be achieved by the products in a reaction with theoretical air that has no heat transfer to or from the reactor is called the adiabatic flame temperature. This temperature can be determined using the adiabatic flame temperature equation, which takes into account the enthalpy of combustion of the fuel and the stoichiometry of the reaction.

The adiabatic flame temperature is the maximum temperature that can be achieved in a combustion reaction without any heat transfer to or from the surroundings. In practice, the actual temperature of a combustion reaction is lower than the adiabatic flame temperature due to heat loss to the surroundings.

To know more about temperature, visit:

https://brainly.com/question/7510619

#SPJ11

EXPOUND & ANSWER THE QUESTION BRIEFLY AND GIVE INSIGHTS AND
CITE SOURCES ABOUT THE TOPIC. THANK YOUU
Water management is an important aspect of electric power production. Identify at least two needs for water in a Rankine cycle-based power plant. Describe typical water management practices in such plants, and research at least two emerging technologies aimed at reducing water losses in plants or enhancing sustainable water management.

Answers

Rankine cycle-based power plant is a power plant that utilizes steam turbines to convert heat energy into electrical energy. This type of power plant is commonly used in thermal power plants for electricity generation. Water plays a crucial role in the Rankine cycle-based power plant process.

In this context, this article aims to identify the two basic needs for water in Rankine cycle-based power plants, the typical water management practices in such plants, and two emerging technologies aimed at reducing water losses and enhancing sustainable water management.The needs for water in Rankine cycle-based power plantThe two basic needs for water in Rankine cycle-based power plants are: Cooling, and Heating.Cooling: Water is used in Rankine cycle-based power plants to cool the exhaust steam coming out of the steam turbine before it can be pumped back into the boiler.

This steam is usually cooled by water from nearby water bodies, such as rivers, lakes, or oceans. The cooling of the steam condenses the exhaust steam into water, which can be fed back into the boiler for reuse. Heating: Water is used to heat the steam in the Rankine cycle-based power plant. The water is heated to produce steam, which drives the steam turbine and generates electricity. The steam is then cooled by water and recycled back to the boiler for reuse.Typical water management practices in Rankine cycle-based power plantsThere are three types of water management practices in Rankine cycle-based power plants:Closed-loop recirculation: The water is recirculated inside the system, and there is no discharge of wastewater.

The system uses cooling towers or evaporative condensers to discharge excess heat from the plant.Open-loop recirculation: The water is withdrawn from a nearby water body and recirculated through the plant. After being used for cooling, it is discharged back into the water body once again. This practice may have a negative impact on the ecosystem.Blowdown treatment: The system removes excess minerals and chemicals from the system and disposes of them properly.

Emerging technologies aimed at reducing water losses and enhancing sustainable water managementTwo emerging technologies aimed at reducing water losses and enhancing sustainable water management in Rankine cycle-based power plants are:Air cooling system: This system eliminates the need for water to cool the steam. Instead, it uses air to cool the steam. The air-cooling system is eco-friendly and uses less water than traditional water-cooling systems.Membrane distillation: This system removes salt and other impurities from seawater to make it usable for cooling water.

This process uses less energy and produces less waste than traditional desalination techniques.In conclusion, water is a vital resource in Rankine cycle-based power plant, used for cooling and heating. Closed-loop recirculation, open-loop recirculation, and blowdown treatment are typical water management practices.

Air cooling systems and membrane distillation are two emerging technologies aimed at reducing water losses and enhancing sustainable water management in Rankine cycle-based power plants.Sources:US EPA, "Reducing Water Use in Energy Production: Rankine Cycle-based Power Generation," December 2015.Edwards, B. D., S. B. Brown, and K. J. McLeod. "Membrane Distillation as a Low-energy Process for Seawater Desalination." Desalination 203, no. 1–3 (2007): 371–83.

To know about ecosystem visit:

https://brainly.com/question/31459119

#SPJ11

For corrosion to occur, there must be an anodic and cathodic reaction, oxygen must be available, and there must be both an electronically and fonically conductive path True O False

Answers

The given statement, "For corrosion to occur, there must be an anodic and cathodic reaction, oxygen must be available, and there must be both an electronically and fonically conductive path" is true.

The occurrence of corrosion is reliant on three necessary factors that must be present simultaneously. These three factors are:Anode and cathode reaction: When a metal comes into touch with an electrolyte, an oxidation reaction occurs at the anode, and an opposite reaction of reduction occurs at the cathode. The reaction at the anode causes the metal to dissolve into the electrolyte, and the reaction at the cathode protects the metal from corrosion.

Oxygen: For the cathodic reaction to take place, oxygen must be present. If there is no oxygen available, the reduction reaction at the cathode will not happen, and hence, no cathodic protection against corrosion.Electronically and Fonically Conductive Path: To make a closed circuit, the anode and cathode should be electrically connected. A connection can occur when the metal comes into touch with a different metal or an electrolyte that conducts electricity.

To know more about corrosion visit:

https://brainly.com/question/31313074

#SPJ11

The flow just upstream of a normal shock wave is given by p₁ = 1 atm, T₁ = 288 K, and M₁ = 2.6. Calculate the following properties just downstream of the shock: p2, T2, P2, M2, Po.2, To.2, and the change in entropy across the shock.

Answers

The normal shock wave is a type of shock wave that occurs at supersonic speeds. It's a powerful shock wave that develops when a supersonic gas stream encounters an obstacle and slows down to subsonic speeds. The following are the downstream properties of a normal shock wave:Calculation of downstream properties:

Given,Upstream properties: p₁ = 1 atm, T₁ = 288 K, M₁ = 2.6Downstream properties: p2, T2, P2, M2, Po.2, To.2, and change in entropy across the shock.Solution:First, we have to calculate the downstream Mach number M2 using the upstream Mach number M1 and the relationship between the Mach number before and after the shock:

[tex]$$\frac{T_{2}}{T_{1}} = \frac{1}{2}\left[\left(\gamma - 1\right)M_{1}^{2} + 2\right]$$$$M_{2}^{2} = \frac{1}{\gamma M_{1}^{-2} + \frac{\gamma - 1}{2}}$$$$\therefore M_{2}^{2} = \frac{1}{\frac{1}{M_{1}^{2}} + \frac{\gamma - 1}{2}}$$$$\therefore M_{2} = 0.469$$[/tex]

Now, we can calculate the other downstream properties using the following equations:

[tex]$$\frac{P_{2}}{P_{1}} = \frac{\left(\frac{2\gamma}{\gamma + 1}M_{1}^{2} - \frac{\gamma - 1}{\gamma + 1}\right)}{\left(\gamma + 1\right)}$$$$\frac{T_{2}}{T_{1}} = \frac{\left(\frac{2\gamma}{\gamma + 1}M_{1}^{2} - \frac{\gamma - 1}{\gamma + 1}\right)^{2}}{\gamma\left(\frac{2\gamma}{\gamma + 1}M_{1}^{2} - \frac{\gamma - 1}{\gamma + 1}\right)^{2} - \left(\gamma - 1\right)}$$$$P_{o.2} = P_{1}\left[\frac{2\gamma}{\gamma + 1}M_{1}^{2} - \frac{\gamma - 1}{\gamma + 1}\right]^{(\gamma)/( \gamma - 1)}$$$$T_{o.2} = T_[/tex]

where R is the gas constant and [tex]$C_{p}$[/tex] is the specific heat at constant pressure.We know that,

γ = 1.4, R = 287 J/kg-K, and Cp = 1.005 kJ/kg-K

Substituting the values, we get,Downstream Mach number,M2 = 0.469Downstream Pressure,P2 = 3.13 atmDownstream Temperature,T2 = 654 KDownstream Density,ρ2 = 0.354 kg/m³Stagnation Pressure,Po.2 = 4.12 atmStagnation Temperature,To.2 = 582 KChange in entropy across the shock,Δs = 1.7 J/kg-KHence, the required downstream properties of the normal shock wave are P2 = 3.13 atm, T2 = 654 K, P2 = 0.354 kg/m³, Po.2 = 4.12 atm, To.2 = 582 K, and Δs = 1.7 J/kg-K.

To know more about downstream visit :

https://brainly.com/question/14158346

#SPJ11

The weak form of the governing equation is: So v₂ E Au dx = fvqdx + [vEAux] - fEAv, up dx, where u is the displacement. Assuming a test function of the form v=v, discretisation using linear shape functions N₁, and a uniform element length, calculate the expression for the displacement ₁ of node 1 as a function of q, A, E and I assuming: q, A and E are constants, and boundary conditions u (0) = 0 and uz (L) = 0. Denote the element length by 1. Using this information, please answer questions 3-6. Evaluate the term fo v E Aude for this specific problem. Input only the solution below. Omit the hats to simplify inputting the solution. Evaluate the term fvqda for the specific example above. Input only the solution below. Omit the hats to simplify inputting the solution. Evaluate the term [vE Au for the specific example above. Input only the solution below. Omit the hats to simplify inputting the solution. Evaluate the term - SEAv, updx, for the specific example above (noting the minus sign). Input only the solution below. Omit the hats to simplify inputting the solution.

Answers

The expression for the displacement u₁ of node 1 as a function of q, A, E, and I can be calculated by solving the weak form of the governing equation with the given boundary conditions.

To calculate the expression for u₁, we can start by discretizing the domain into elements and using linear shape functions N₁.

Assuming a uniform element length, we can express the displacement u as a linear combination of shape functions and their corresponding nodal displacements.

Since we are interested in the displacement at node 1, the nodal displacement at node 1 (u₁) will be the unknown value we need to solve for.

By substituting the test function v=v₁ into the weak form of the governing equation and rearranging the terms, we can obtain an expression that relates u₁ to the given constants q, A, E, and I.

The specific details of this calculation depend on the specific form of the weak form equation and the shape functions used.

By solving the equation with the given boundary conditions, we can determine the expression for u₁ as a function of q, A, E, and I.

Learn more about governing equation

brainly.com/question/32178187

#SPJ11

A rod 12.5 mm in diameter is stretched 3.2 mm under a steady load of 10 kN. What stress would be produced in the bar by a weight of 700 N, falling through 75 mm before commencing to stretch, the rod being initially unstressed? The value of E may be taken as 2.1 x 10^5 N/mm².

Answers

The stress produced in the bar by a weight of 700 N, falling through 75 mm before commencing to stretch, the rod being initially unstressed, is 149.053 N/mm².

Explanation:

The given problem provides information about a rod with a diameter of 12.5 mm and a steady load of 10 kN. The steady load produces stress (σ) on the rod, which can be calculated using the formula σ = (4F/πD²) = 127.323 N/mm², where F is the load applied to the rod. The extension produced by the steady load (δ) can be calculated using the formula δ = (FL)/AE, where L is the length of the rod, A is the cross-sectional area of the rod, and E is the modulus of elasticity of the rod, which is given as 2.1 x 10⁵ N/mm².

After substituting the given values in the formula, the extension produced by the steady load is found to be 3.2 mm. Using the formula, we can determine the length of the rod, which is L = (3.2 x 122.717 x 2.1 x 10⁵)/10,000 = 852.65 mm.

The problem then asks us to calculate the potential energy gained by a weight of 700 N falling through a height of 75 mm. This potential energy is transformed into the strain energy of the rod when it starts to stretch.

Thus, strain energy = Potential energy of the falling weight = (700 x 75) N-mm

The strain energy of a bar is given by the formula, U = (F²L)/(2AE) ... (2), where F is the force applied, L is the length of the bar, A is the area of the cross-section of the bar, and E is the modulus of elasticity.

Substituting the given values in equation (2), we get

(700 x 75) = (F² x 852.65)/(2 x 122.717 x 2.1 x 10⁵)

Solving for F, we get F = 2666.7 N.

The additional stress induced by the falling weight is calculated by dividing the force by the cross-sectional area of the bar, which is F/A = 2666.7/122.717 = 21.73 N/mm².

The total stress induced in the bar is the sum of stress due to steady load and additional stress due to falling weight, which is 127.323 + 21.73 = 149.053 N/mm².

Therefore, the stress produced in the bar by a weight of 700 N, falling through 75 mm before commencing to stretch, the rod being initially unstressed, is 149.053 N/mm².

Know more about strain energy here:

https://brainly.com/question/32094420

#SPJ11

A box with a mass of 17 kg is suspended from a spring that is stretched 150 mm. If the box is displaced 100 mm downward from its equilibrium position and given a downward velocity of 700 mm/s, determine the equation which describes the motion. What is the phase angle and amplitude of vibration? Assume that positive displacement is downward.

Answers

The box is in simple harmonic motion with the following parameters. Since the box is displaced from equilibrium and is given an initial velocity, it vibrates with amplitude and has a phase angle.

In simple harmonic motion,

x = A sin (ωt + φ).  

x = A sin (ωt + φ)

can be used to describe the equation of motion for the given problem.For this equation of motion, the amplitude (A) and phase angle (φ) must be calculated using the given conditions.ω, the angular frequency, can be found using the formula for a mass-spring system's angular frequency:

ω = sqrt(k/m)

where k is the spring constant and m is the mass of the box .

In this case, the box is displaced 100 mm downward from its equilibrium position, thus the amplitude of vibration is A = 100 mm. The phase angle can be determined using the following equation:

φ = arctan(-v0/ωx)

where v0 is the initial velocity (700 mm/s), ω is the angular frequency (9.05 rad/s), and x is the amplitude (mm).

φ=arctan(-700/(9.05*100))

φ =-43.33 degrees.

The equation of motion for the given problem is

x = 100 sin (9.05t - 43.33).

The amplitude of vibration is 100 mm and the phase angle is -43.33 degrees.

To know more about equation visit:

https://brainly.com/question/29538993

#SPJ11

(2) A model rocket-car with a mass of 0.2 kg is launched horizontally from an initial state of rest. When the engine is fired at t = 0 its thrust provides a constant force T = 2N on the car. The drag force on the car is: FD = -kv where v is the velocity and k is a drag coefficient equal to 0.1 kg/s. (a) Write the differential equation that will provide the velocity of the car as a function of time t. Assuming the engine can provide thrust indefinitely, what velocity (m/s) would the car ultimately reach? (b) What would the velocity (m/s) of the car be after 2 seconds?

Answers

Therefore, (a) the car will ultimately reach a velocity of 20 m/s. (b) the velocity of the car after 2 seconds is approximately 18.7 m/s.

(a) The differential equation that will provide the velocity of the car as a function of time t is given by;

mv' = T - kv

Where m is the mass of the car (0.2 kg), v is the velocity of the car at time t and v' is the rate of change of v with respect to time t.

Thrust provided by the rocket engine is T = 2N.

The drag force on the car is given by;

FD = -kv

Where k is a drag coefficient equal to 0.1 kg/s.

Substituting the values of T and FD into the equation of motion;

mv' = T - kv= 2 - 0.1v

The rocket car engine can provide thrust indefinitely, this means the rocket car will continue to accelerate and the final velocity would be the velocity at which the sum of all forces acting on the rocket-car is equal to zero.

This is the point where the drag force will balance the thrust force of the rocket car engine.

Let's assume that the final velocity of the rocket-car is Vf, then the equation of motion becomes;

mv' = T - kv

= 2 - 0.1vV'

= (2/m) - (0.1/m)V

Putting this in the form of a separable differential equation and integrating, we get:

∫[1/(2 - 0.1v)]dv = ∫[1/m]dt-10 ln(2 - 0.1v)

= t/m + C

Where C is a constant of integration.

The boundary conditions are that the velocity is zero at t = 0, i.e. v(0)

= 0.

This gives C = -10 ln(2).

So,-10 ln(2 - 0.1v) = t/m - 10

ln(2) ln(2 - 0.1v) = -t/m + ln(2) ln(2 - 0.1v)

= ln(2/e^(t/m)) 2 - 0.1v

= e^(t/m) / e^(ln(2)) 2 - 0.1v

= e^(t/m) / 2 v = 20 - 2e^(-t/5)

So the velocity of the car as a function of time t is given by:

v = 20 - 2e^(-t/5)

The final velocity would be;

When t → ∞, the term e^(-t/5) goes to zero, so;

v = 20 - 0

= 20 m/s

(b) The velocity of the car after 2 seconds is given by;

v(2) = 20 - 2e^(-2/5)v(2)

= 20 - 2e^(-0.4)v(2)

= 20 - 2(0.6703)v(2)

= 18.6594 ≈ 18.7 m/s

To know more about engine visit:

https://brainly.com/question/17751443

#SPJ11

In an orthogonal cutting test, the cutting force is 750N, thrust force is 500N and shear angle is 25°. Calculate the shear force.

Answers

[tex]F_s = 750 N \times \tan 25\textdegree \approx 329.83[/tex] N. Hence, the shear force is approximately 329.83 N.

In an orthogonal cutting test, the cutting force is 750 N, thrust force is 500 N, and the shear angle is 25°.

Calculate the shear force.

Solution:

The formula to find the shear force is given by: [tex]F_s = F_c \tan a[/tex] where F_c is the cutting force,α is the shear angle, and F_s is the shear force

Given that F_c = 750 N α = 25° F_s = ?

Substituting the given values in the above formula, we get

[tex]F_s = 750 N \times \tan 25\textdegree\approx 329.83[/tex]N

Therefore, the shear force is 329.83 N (approximately).

The complete solution should be written in about 170 words as follows:

To calculate the shear force, we can use the formula [tex]F_s = F_c \tan a[/tex], where F_c is the cutting force, α is the shear angle, and F_s is the shear force.

Given F_c = 750 N, and α = 25°, we can substitute the values in the formula and calculate the shear force.

Therefore, [tex]F_s = 750 N \times \tan 25\textdegree \approx 329.83[/tex] N. Hence, the shear force is approximately 329.83 N.

To know more about orthogonal cutting test, visit:

https://brainly.com/question/32065689

#SPJ11

A flat-panel domestic heater 1 m tall x 2 m long is used to maintain a room at 20 °C. An electrical element keeps the surfaces of the radiator at 65 °C. Approximating the heater as a vertical flat plate, calculate the heat transferred to the room by natural convection from both surfaces of the heater (front and back). Assuming that the surface of the heater is painted white, calculate the heat transferred from the radiator to the surrounding surfaces by radiation. Note: The emissivity value of white paint for longwave radiation is approximately 0.8.

Answers

The heat transferred from the radiator to the surrounding surfaces by radiation is 321.56 W.

Given that the flat-panel domestic heater is 1 m tall and 2 m long. The heater maintains the room temperature at 20°C. The electrical element keeps the surface temperature of the radiator at 65°C. The heater is approximated as a vertical flat plate. The heat transferred to the room by natural convection from both surfaces of the heater (front and back) can be calculated using the following formula;

Q = h × A × (ΔT)

Q = heat transferred

h = heat transfer coefficient

A = surface are (front and back)

ΔT = temperature difference = 65 - 20 = 45°C

For natural convection, the value of h is given by;

h = k × (ΔT)^1/4

Where k = 0.15 W/m2K

For the front side;

A = 1 × 2 = 2 m2

h = 0.15 × (45)^1/4 = 3.83 W/m2K

Q = h × A × (ΔT)Q = 3.83 × 2 × 45 = 344.7 W

For the back side, the temperature difference will be the same but the surface area will change.

Area of back side = 1 × 2 = 2 m2

h = 0.15 × (45)^1/4 = 3.83 W/m2K

Q = h × A × (ΔT)Q = 3.83 × 2 × 45 = 344.7 W

The total heat transferred by natural convection from the front and back surface is;

Qtotal = 344.7 + 344.7 = 689.4 W

The heat transferred from the radiator to the surrounding surfaces by radiation can be calculated using the following formula;

Q = σ × A × ε × (ΔT)^4

Where σ = 5.67 × 10-8 W/m2K

4A = 1 × 2 = 2 m2

ΔT = (65 + 273) - (20 + 273) = 45°C

Emissivity ε = 0.8Q = 5.67 × 10-8 × 2 × 0.8 × (45)^4Q = 321.56 W

Therefore, the heat transferred from the radiator to the surrounding surfaces by radiation is 321.56 W.

Learn more about natural convection visit:

brainly.com/question/29451753

#SPJ11

PROBLEM 3 (10 pts) Predict the dominant type of bonding for the following solid compound by considering electronegativity (a) K and Na :______ (b) Cr and O:_______
(c) Ca and CI:______ (d) B and N:_______ (e) Si and O:_______

Answers

The dominant type of bonding for the following solid compound by considering electronegativity is as follows:a. K and Na: metallic bondingb. Cr and O: ionic bondingc. Ca and Cl: ionic bondingd. B and N: covalent bondinge. Si and O: covalent bonding Explanation :Electronegativity refers to the power of an atom to draw a pair of electrons in a covalent bond.

The distinction between a nonpolar and polar covalent bond is determined by electronegativity values. An electronegativity difference of less than 0.5 between two atoms indicates that the bond is nonpolar covalent. An electronegativity difference of between 0.5 and 2 indicates a polar covalent bond. An electronegativity difference of over 2 indicates an ionic bond.1. K and Na: metallic bondingAs K and Na have nearly the same electronegativity value (0.8 and 0.9 respectively), the bond between them will be metallic.2. Cr and O: ionic bondingThe electronegativity of Cr is 1.66, whereas the electronegativity of O is 3.44.

As a result, the electronegativity difference is 1.78, which implies that the bond between Cr and O will be ionic.3. Ca and Cl: ionic bondingThe electronegativity of Ca is 1.00, whereas the electronegativity of Cl is 3.16. As a result, the electronegativity difference is 2.16, which indicates that the bond between Ca and Cl will be ionic.4. B and N: covalent bondingThe electronegativity of B is 2.04, whereas the electronegativity of N is 3.04. As a result, the electronegativity difference is 1.00, which implies that the bond between B and N will be covalent.5. Si and O: covalent bondingThe electronegativity of Si is 1.9, whereas the electronegativity of O is 3.44.

To know more about electronegativity visit :-

https://brainly.com/question/3393418

#SPJ11

A pipe with an inner diameter of 13.5 inches and a wall thickness of 0.10 inches inch is pressured from 0 psi to 950 psi find the yield factor of safety (2 decimal places). Just use the tangential stress for the analysis.
Sut=80000 psi, Sy= 42000 psi, Se = 22000 psi

Answers

A yield factor of safety for a pipe with a diameter of 13.5 inches and a wall thickness of 0.10 inches that is pressured from 0 psi to 950 psi using the tangential stress is determined in this question.

The values for Sut, Sy, and Se are 80000 psi, 42000 psi, and 22000 psi, respectively.  

The yield factor of safety can be calculated using the formula:

Yield factor of safety = Sy / (Tangential stress) where

Tangential stress = (Pressure × Inner diameter) / (2 × Wall thickness)

Using the given values, the tangential stress is:

Tangential stress = (950 psi × 13.5 inches) / (2 × 0.10 inches) = 64125 psi

Therefore, the yield factor of safety is:

Yield factor of safety = 42000 psi / 64125 psi ≈ 0.655

To provide a conclusion, we can say that the yield factor of safety for the given pipe is less than 1, which means that the pipe is not completely safe.

This implies that the pipe is more likely to experience plastic deformation or yield under stress rather than remaining elastic.

Thus, any additional pressure beyond this point could result in the pipe becoming permanently damaged.

To know more about yield factor visit:

brainly.com/question/31857073

#SPJ11

Assuming: - 100% efficient energy conversions. - A 4.3 MW wind turbine operates at full capacity for one day. How many barrels of oil is equivalent to the electrical energy created by the wind turbine?

Answers

Assuming 100% energy conversion efficiency, a 4.3 MW wind turbine operating at full capacity for one day is equivalent to approximately X = 103.2 MWh barrels of oil.

To determine the number of barrels of oil equivalent to the electrical energy generated by the wind turbine, we need to consider the energy conversion efficiency of the turbine and the energy content of a barrel of oil.

Assuming 100% energy conversion efficiency means that all the electrical energy produced by the wind turbine is accounted for. Therefore, we can directly calculate the energy generated.

Energy (in MWh) = Power (in MW) × Time (in hours)
Energy = 4.3 MW × 24 hours = 103.2 MWh

To convert this electrical energy to the energy content of oil, we need to know the energy content of a barrel of oil, which is typically measured in barrels of oil equivalent (BOE). The energy content of a BOE varies depending on the specific properties of the oil being considered.

Let's assume a hypothetical value of 1 MWh of electrical energy being equivalent to X barrels of oil. In this case, we have:

103.2 MWh = X barrels of oil
X = 103.2 MWh

Therefore, the number of barrels of oil equivalent to the electrical energy created by the wind turbine is determined by the specific conversion factor for a given energy content of oil.

Learn more about Operator or operating click here : brainly.com/question/14308529

#SPJ11

A new greenfield area developer has approached your company to design a passive optical network (PON) to serve a new residential area with a population density of 64 households. After discussion with their management team, they have decided to go with XGPON2 standard which is based on TDM-PON with a downlink transmission able to support 10 Gb/s. Assuming that all the 64 households will be served under this new PON, your company is consulted to design this network. Given below are the known parameters and specifications that may help with the design of the PON. • Downlink wavelength window = 1550 nm • Bit error-rate – 10-15 • Bit-rate = 10 Gb/s • Transmitter optical power = 0 dBm • 1:32 splitters are available with a loss of 15 dB per port • 1:2 splitters are available with a loss of 3 dB per port • Feeder fibre length = 12 km • Longest drop fibre length = 4 km • Put aside a total system margin of 3 dB for maintenance, ageing, repair, etc • Connector losses of 1 dB each at the receiver and transmitter • Splice losses are negligible a. Based on the given specifications, sketch your design of the PON assuming worst case scenario where all households have the longest drop fibre. (3 marks) b. What is the bit rate per household? (1 marks) c. Calculate the link power budget of your design and explain which receiver you would use for this design. (7 marks) d. Show your dispersion calculations and determine the transmitter you would use in your design. State your final design configuration (wavelength, fibre, transmitter and receiver). (4 marks) e. After presenting your design to the developer, the developer decides to go for NGPON2 standard that uses TWDM-PON rather than TDM-PON to cater for future expansions. Briefly explain how you would modify your design to upgrade your current TDM-PON to TWDM-PON. Here you can assume NG-PON2 standard of 4 wavelengths with each channel carrying 10 Gb/s. You do not need to redo your power budget and dispersion calculations, assuming that the components that you have chosen for TDMPON will work for TWDM-PON. Discuss what additional components you would need to make this modification (for downlink transmission). Also discuss how you would implement uplink for the TWDM-PON. Sketch your modified design for downlink only.

Answers

Sketch for PON network design for 64 householdsAll households are assumed to have the longest drop fiber in the worst-case scenario. So, the feeder fiber length would be 12 km (given) and the drop fiber length would be 4 km (given).

Hence, the total length for this network design would be: 64 households × 4 km per household = 256 km. The PON network design sketch is as follows:b. Bit rate per householdThe bit rate per household is 10 Gb/s (given).c. Link power budget calculations and choice of receiverFor link power budget calculations, we need to know the total link loss, which is the sum of the losses in the feeder fiber, splitter(s), and the drop fiber.

The table below summarizes the loss calculation for 1:32 and 1:2 splitter(s) used for this network design:From the above table, we can calculate the total link loss for the network design. For 1:32 splitters:Total loss = Feeder loss + (Splitter loss × Number of splitters) + (Drop loss × Number of households) + Connector loss at receiverTotal loss = 15 + (15 × 2) + (15 × 64) + 1Total loss = 1006 dBF.

To know more about network visit:

https://brainly.com/question/29350844

#SPJ11

Other Questions
Question 28 Which speech organ is involved to differentiate oral vs. nasal sounds? tongue Olips vocal folds pharynx O velum State whether the biosynthesis of the following bio molecules Increases, or Decreases, or s the same in the following physiological conditions: (stay the same, Decreases, Increases) Level of Cholesterol in a well fed state Fatty acid synthesis in cases of hyperglycemia Fatty acid synthesis with low ATP supply levels of LDL during high levels active of HMG COA reductase levels of acetoacetate, 3-hydroxyputyrate and acetone during prolonged fastinglevels of HDL during high rate of fatty acid synthesis Myocardial Infarction with high HDL levels phenylalanine in PKU high protein diet Increases HMG CO reductase activity when cholesterole levels are high ketone bodies in after a meal Increases a) (10 pts). Using a decoder and external gates, design the combinational circuit defined by the following three Boolean functions: F1 (x, y, z) = (y'+ x) z F2 (x, y, z) = y'z' + xy + yz' F3 (x, y, z) = x' z' + xy What advantage do chaparral shrubs with double root systems (one shallow, one at the water table) have compared to chaparral shrubs with only one root system? O they can survive multiple years with no rainfall O all answer choices are correct O they have year-round access to water O they don't have to compete with other plants for soil water The Cori cycle includes all of the following pathways except: The citric acid cycle O Glycolysis O Fermentation O Gluconeogenesis O The Cori cycle includes all of the above pathways. Two friends just had lunch together in downtown. After they say goodbye, one bikes home south on Wilson street at 10 mph and the other starts driving down main to the West at 15 mph. The one driving gets stopped at a traffic light for a minute, then gets going again. So, two minutes later the biker has made it .33 miles and the driver has gone .25 miles. At this moment, how fast is the distance between them changing? Find the rate of change. What are the economic incentives that have changed how you work,spend, and plan for the future 1. A 2.004 L rigid tank contains .04 kg of water as a liquid at 50C and 1 bar. The water is heated until it becomes a saturated vapor. Determine the following:a) The final temperature of the water in C.b) The amount of heat transferred to the tank in kJ. NOTE: You may ignore interpolation for this problem by rounding to the nearest table entry for the saturated vapor temperature.2. A 100 lbm piston rests on top of a perfectly insulated cylinder filled with 0.5 lbm of R-134a at 50 psi pressure and 80F temperature. The surroundings have a pressure of 14.7 psi. 198.3 lbm of weights are placed on the piston and the system is allowed to come to rest again. The piston and weights fall 5 inches during this process. Assuming the gravitation constant is 32.17 ft/s^2, determine the following:a) The area of the piston in in2.b) The final pressure of the R-134a system in psi.c) The work done on the R-134a in ft/lbf. (Hint: the R-134a is not the only place you candraw a system). d) The final temperature of the R-134a in F.3. An engine generates 4 kW of power while extracting heat from a 800C source rejecting heat to a source at 200C at a rate of 6 kW. Determine the following:a) The thermal efficiency of the cycle. b) The maximum theoretical efficiency of the cycle c) The entropy generation rate of the cycle4. Drufus works at a chemical supply facility. The facility has an air supply at 10 bars of pressure and a temperature of 295 K. Drufus attaches an initially evacuated tank that is 0.5 m3 in volume. Drufus fills the tank until it is at a pressure of 3 bar. Assuming the expansion value and air tank are adiabatic as well as air is an ideal gas, determine/complete the following:a) Draw your system and clearly indicate what components are located in it as well as where the inlet(s) and exit(s) are, if any. b) The final temperature of the tank, in K. c) The final mass of air in the tank, in kg. d) The amount of entropy produced by this process, in kJ/K Your task is to make an argument regarding whether the bubble regulation was a reasonable interpretation of the term "stationary source" in the Clean Air Act. The issue here is what makes an administrative agency's interpretation of terms in an Act the agency is implementing reasonable. Using the structure of IRAC Does the Clean Air Act permit the EPA to define the term "stationary source" to mean whole industrial plants only, which allows plants to build or modify units within plants without the permit required under the Act? Use IRAC Structure. You have available a set of five links from which you are to design a four-bar mechanism.The lengths of the links are as follows: L1= 4cm, L2=6cm, L3=8cm, L4=9cm and L5=14cm.i) Select four links such that the linkage can be driven by a continuous rotation motor.ii) Draw a freehand sketch of a crank-rocker mechanism that can be achieved using the selected links. Label the link that is to be driven by the motor.iii) Draw a freehand sketch of a double-crank mechanism that can be achieved using the selected links. Earth's climate has changed several times over the planet's billions of years of existence. Why is the climate change we are currently experiencing different? O less carbon is being released into the atmosphere O the climate is changing too fast for organisms to be able to adapt to it, and is therefore a grave danger to all life on Earth. O human activity is slowing down the natural climate change process O the current climate change isn't any different- improved technology means we have Explain the role of public relations in developing and maintaining a corporate image. Why are high-density lipoproteins (HDLs) considered "good"?a. The cholesterol transported by HDLs is destined fordestructionb. HDLs transport cholesterol to the peripheral tissues forbiosynthesis a) A company that manufactures different components of bike such as brake lever, cranks pins, hubs, clutch lever and wants to expand their product line by also producing tire rims. Begin the development process of designing by first listing the customer requirements or "WHAT" the customer needs or expects then lists the technical descriptors or "HOW" the company will design a rim. Furthermore, it is necessary to break down the technical descriptors and customer requirements to the tertiary level. Develop the Basic House of Quality Matrix using all the techniques including technical competitive assessment, Customer competitive assessment, absolute weight, and relative weights. Make reasonable assumptions where required. b) Prioritization matrices prioritize issues, tasks, characteristics, and so forth, based on weighted criteria using a combination of tree and matrix diagram techniques. Once prioritized, effective decisions can be made. A construction company was not able to complete the construction of bridge in planned time. The main causes of failure may include the people, machines, or systems. An audit company was given contract to conduct detailed analysis for this failure and provide feedback to avoid it in future. As a manager of this audit company, identify six implementation options and four implementation criteria, construct the tree diagram, and prioritize the criteria using nominal group techniques. Rank order the options in terms of importance by each criterion. Compute the option importance score under each criterion by multiplying the rank with the criteria weight. Develop the prioritization matrices.15+15=30 3. [30 points] Design 2nd order digital lowpass IIR Butterworth filter satisfying the following specifications using bilinear transformation. Do NOT use MATLAB butter command for this problem. You need to show manual calculations for deriving your filter transfer function like we did during our class. 3-dB cutoff frequency: 20 kHz Sampling frequency: 44.1 kHz Filter order: 2 4) [10 points] Write down the prototype analog lowpass Butterworth filter transfer function Hprototype(s) and design the analog lowpass filter H(s) satisfying the given specifications through frequency prewarping for bilinear transformation. 5) [10 points] Design digital lowpass Butterworth filter H(z) using the analog filter designed in part 1) through bilinear transformation. 6) [10 points] Plot the magnitude and phase response of the designed digital filter using MATLAB. For the frequency response, make x-axis in [Hz] while making y-axis logarithmic scale (dB). Solution??Q.4) Suppose that a system of N atoms of type A is placed in a diffusive contact with a system of N atoms of type B at the same temperature and volume. (a)Show that after diffusive equilibrium is reac "Explain what is characteristic for humans that producecytotoxic granules in their activated cytotoxic T-lymphocytes (CTL)but that cannot release the granules onto virally infectedcells? Television Advertising As Sales Manager for Montevideo Productions, Inc., you are planning to review the prices you charge clients for television advertisement development. You currently charge each client an hourly development fee of $2,900. With this pricing structure, the demand, measured by the number of contracts Montevideo signs per month, is 11 contracts. This is down 5 contracts from the figure last year, when your company charged only $2,400. (a) Construct a linear demand equation giving the number of contracts a as a function of the hourly fee p Montevideo charges for development. 960) - (b) On average, Montevideo bills for 40 hours of production time on each contract. Give a formula for the total revenue obtained by charging $p per hour. R(D) - (c) The costs to Montevideo Productions are estimated as follows. Fixed costs: $140,000 per month Variable costs: $70,000 per contract Express Montevideo Productions' monthly cost as a function of the number of contracts. ca) - Express Montevideo Productions monthly cost as a function of the hourly production charge p. Cip) = (d) Express Montevideo Productions' monthly profit as a function of the hourly development fee p. Pp) - Find the price it should charge to maximize the profit (in dollars per hour). ps per hour A cam follower mechanism with a displacement diagram that has the following sequence, rise 2 mm in 1.2 seconds, dwell for 0.3 seconds, fall 1 r in 0.9 seconds, dwell again for 0.6 seconds and then continue falling for 1 E in 0.9 seconds.a) The cam rotation angle during the rise is 120.5 degrees.b) The rotational speed of the cam is 14.38 rpm.c) The cam rotation angle during the second fall is 82.9 degrees.d) Both b) and c).e) None of the above. Question # 01: Describe the underlying meanings or socially significant messages each of your advertisements communicates mentioned below:a. Olay: #Makespaceforwomenb. Pantene: #SeeBeautyNotGenderc.Burger King: Reduced Methane WhoppersQuestion # 02. Write a research question based on a social science perspective and related to at least one of your advertisements.