Step-by-step explanation:
Because the sentence is speaking that he has done already so we will use the past verb ran
Rick says he has ran two miles already
Answer:
b. run
Step-by-step explanation:
Rick says he has run two miles already
It will be "ran" if the sentence had said, "Rick 'ran' two miles already."
BRAINLIST PLS!
A wire that is 76 feet long needs to be divided into lengths using the ratio 1 to 13. What is the longer length? Round your answer to two decimal places if necessary.
Answer:
70.59 feet
Step-by-step explanation:
There are a total of 14 parts when the wire is divided into a ratio of 1 to 13.
1. Divide 76 by 14
76 ÷ 14 = 5.43
2. Multiply the longer length of 13 parts
5.43 · 13 = 70.59
The longer length of the wire 70.59 feet
There are a total of 14 parts when the wire is divided into a ratio of 1 to 13.
1. Divide 76 by 14
76 ÷ 14 = 5.43
2. Multiply the longer length of 13 parts
5.43 · 13 = 70.59
What is a decimal in numbers?In algebra, a decimal number can be defined as a range whose entire number part and the fractional element are separated by means of a decimal point. The dot in a decimal range is referred to as a decimal point. The digits following the decimal factor show a price smaller than one.
Learn more about Algebra here https://brainly.com/question/723406
#SPJ2
Line AB and Line CD are parallel lines. Which translation of the plane can we use to prove angles x and y are congruent, and why?
Answer:
Option C.
Step-by-step explanation:
In the given figure we have two parallel lines AB and CD.
A transversal line FB intersect the parallel lines at point B and C.
We know that the if a transversal line intersect two parallel lines, then corresponding angles are congruent.
[tex]\angle ABC=\anle ECF[/tex]
[tex]x=y[/tex]
To prove this by translation, we need a translation along the directed line segment CB maps ine CD onto line AB and angle y onto angle x.
Therefore, the correct option is C.
what is the answer 2×3+4×100-50+10
Answer:
366
Step-by-step explanation:
2×3+4×100-50+10
PEMDAS says multiply and divide from left to right
6 + 400 - 50 +10
Then add and subtract
406-50+10
356+10
366
Answer:
[tex]\boxed{366}[/tex]
Step-by-step explanation:
[tex]2 \times 3+4 \times 100-50+10[/tex]
Multiplication is first.
[tex]6+400-50+10[/tex]
Add or subtract the numbers.
[tex]350+10+6[/tex]
[tex]366[/tex]
In a game of rock-paper-scissors, you have a 1/3 chance of winning, a 1/3 chance of losing, and a 1/3 chance of tying in any given round. What is the probability that you will win at least twice in 3 rounds, given that there aren't any tied rounds in this particular match
Answer: 1/5
Step-by-step explanation:
given data;
chances of winning = 1/3
chances of losing = 1/3
chances of tying in a given round = 1/3
solution:
probability that you would win atleast 2 in any 3 matches without a tied match is
1/3 / ( 2 - 1/3 )
= 1/3 / 5/3
= 1/5
the probability of winning 2 of 3 games without a tie is 1/5
Use implicit differentiation to find an equation of the tangent line to the curve at the given point.
x2 + y2 = (4x2 + 2y2 − x)2
(0, 0.5)
(cardioid)
Answer:
y = x + 0.5
Step-by-step explanation:
This is a very trivial exercise, follow the steps below:
Step 1: Perform the implicit differentiation of the given equation
[tex]x^2 + y^2 = (4x^2 + 2y^2 - x)^2[/tex]
[tex]2x + 2y \frac{dy}{dx} = 2(4x^2 + 2y^2 - x) ( 8x + 4y\frac{dy}{dx} - 1)\\\\[/tex]
Step 2: Make dy/dx the subject of the formula, this will be the slope of the curve:
[tex]x + y \frac{dy}{dx} = (4x^2 + 2y^2 - x) ( 8x + 4y\frac{dy}{dx} - 1)\\\\x + y \frac{dy}{dx} = 32x^3 + 16x^2y \frac{dy}{dx} - 4x^2 + 16xy^2 + 8y^3\frac{dy}{dx} - 2y^2 - 8x^2 - 4xy\frac{dy}{dx} + x \\\\\frac{dy}{dx}(y + 4xy - 8y^3) = 32x^3 - 12x^2 + 16xy^2 - 2y^2\\\\\frac{dy}{dx} = \frac{32x^3 - 12x^2 + 16xy^2 - 2y^2}{y + 4xy - 8y^3}[/tex]
Step 3: Find dy/dx at the point (0, 0.5)
[tex]\frac{dy}{dx}|(0,0.5) = \frac{32(0)^3 - 12(0)^2 + 16(0)(0.5)^2 - 2(0.5)^2}{(0.5) + 4(0)(0.5) - 8(0.5)^3}\\\\\frac{dy}{dx}|(0,0.5) =\frac{-0.5}{-0.5} \\\\\frac{dy}{dx}|(0,0.5) =1\\\\m = \frac{dy}{dx}|(0,0.5) =1[/tex]
Step 4: The equation of the tangent line to a curve at a given point is given by the equation:
[tex]y - y_1 = m(x-x_1)\\\\y - 0.5 = 1(x - 0)\\\\y = x + 0.5[/tex]
A congressman wants to measure the level of support in his district for campaign finance reform and determine if there is a gender gap among voters with respect to this issue. One aid suggests that they find separate confidence intervals for the percent of men and the percent of women who favor reform and then see if the intervals overlap. Another aid suggests that they find a confidence interval for the difference in the proportions of men and women who favor reform. The question is: Is there a gender gap
Answer:
Campaign Finance Reform
Gender Gap among Voters in the District
There is a gender gap among women and men who favor campaign finance reform.
Step-by-step explanation:
In issues such as the above, a gender gap always exist between women and men who think that there is the need to reform the campaign finance. Women ordinarily favor a reduction in the campaign finance. On the other hand, men do not mind so much about the candidate expenditure in campaigns. Reducing the huge campaign finance will ensure that political campaigns and aspiration to political offices are not left to money bags. Many women would like to get involved, but they are limited by funding. So, anytime the issue of reforming the whole electoral system, especially with respect to campaigns, women favor the reforms more than men. The gap is always there. The main issue is how would this gap be measured?
A young Greek by the name of Zeno is riding his horse to his friends house which is two miles away. He travels half the distance in one hour. But his horse gets tired, and only travels half the remaining distance the second hour, and, again, only half the remaining distance in the third hour. How many miles did Zeno travel in those three hours?
Answer:
1.75 miles
Step-by-step explanation:
Zeno's friend's house is two miles away. He travels half the distance in one hour.
0.5 × 2 = 1
The second hour, his horse travels half the remaining distance.
0.5 × 1 = 0.5
The third hour, his horse travels half the remaining distance.
0.5 × 0.5 = 0.25
1 + 0.5 + 0.25 = 1.75
Zeno travels 1.75 miles in three hours.
Hope this helps.
Using the unit circle, determine the value of cos(945°).
========================================================
Explanation:
The angle 945 degrees is not between 0 and 360. We need to adjust it so that we find a coterminal angle in this range. To do this, subtract off 360 repeatedly until we get into the right range
945 - 360 = 585, not in range, so subtract again
585 - 350 = 225, we're in range now
Since 945 and 225 are coterminal angles, this means cos(945) = cos(225)
From here, we use the unit circle. Your unit circle should show the angle 225 in quadrant 3, which is the lower left quadrant. The terminal point here at this angle is [tex]\left(-\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}\right)[/tex]
The x coordinate of this terminal point is the value of cos(theta). Therefore [tex]\cos(225^{\circ}) = -\frac{\sqrt{2}}{2}[/tex] and this is also the value of cos(945) as well
Using the periodic property of cos function, you can evaluate the value of cos(945°).
The value of cos(945°) is given by:
[tex]cos(945^\circ) = -\dfrac{1}{\sqrt{2}}[/tex]
Given that:To find the value of cos(945°) using the unit circle.What are periodic functions?
A function returning to same value at regular intervals of specific length(called period of that function).
It is [tex]2\pi[/tex]
Thus, we have:
[tex]cos(x) = cos(2\pi +x) \: \forall \: x \in \mathbb R[/tex]
Using the periodic property of cosine:[tex]cos(945^\circ) = cos(2 \times 360^\circ + 225^\circ) = cos(2\pi + 2\pi + 225)\\ cos(945^\circ) = cos(2\pi) + 225) = cos(225^\circ)[/tex]
There is a trigonometric identity that:[tex]cos(\pi + \theta) = -cos(\theta)[/tex]
Thus:
[tex]cos(945^\circ) = cos(225^\circ) = cos(180^\circ + 45^\circ) = -cos(45^\circ) = -\dfrac{1}{\sqrt{2}}\\ cos(945^\circ) = -\dfrac{1}{\sqrt{2}}[/tex]
Note that wherever i have used [tex]\pi[/tex], it refers to [tex]\pi ^ \circ[/tex] (in degrees).
Thus, the value of cos(945°) is given by:
[tex]cos(945^\circ) = -\dfrac{1}{\sqrt{2}}[/tex]
Learn more about periodicity of trigonometric functions here:
https://brainly.com/question/12502943
A cube 4 units on each side is composed of 64 unit cubes. Two faces of the larger cube that share an edge are painted blue, and the cube is disassembled into 64 unit cubes. Two of the unit cubes are selected uniformly at random. What is the probability that one of two selected unit cubes will have exactly two painted faces while the other unit cube has no painted faces?
Answer:
P = 0.0714
Step-by-step explanation:
If two faces of the larger cube that share and edge are painted blue, it means that 28 of the 64 unit cubes are painted in at least one side and 36 cubes have no painting faces.
Additionally, from the 28 cubes painted only 4 have exactly two painted faces.
Then, to calculate the number of ways in which we can select x elements from a group of n, we can use the following equation:
[tex]nCx=\frac{n!}{x!(n-x)!}[/tex]
So, the probability that one of two selected unit cubes will have exactly two painted faces while the other unit cube has no painted faces is:
[tex]P=\frac{4C1*36C1}{64C2}=0.0714[/tex]
Because there are 64C2 ways to select 2 cubes from the 64, and from that, there are 4C1*36C1 ways to select one cube with exactly two painted faces and one cube with no painted faces.
Please answer this correctly without making mistakes
Answer:
I believe 45.50
Step-by-step explanation: The locksmith is 18.3 miles W from furniture, the hotel is 27.2 E from furniture store so 18.3+27.2=45.50
PLSS HELP I NEED THIS
Answer:
t = kp, i think
?? help out plssss ill do the thing wtv its called
Steps to solve:
1 = -4 + 3/8x
~Add 4 to both sides
1 + 4 = -4 + 4 + 3/8x
~Simplify
5 = 3/8x
~Multiply 8/3 to both sides
5 * 8/3 = 3/8x * 8/3
~Simplify
13 1/3 = x
As we look through the answer choices, we can see that none resembles any of the steps I did above but by looking at the answers for each one, the only logical answer is B since it has a final answer of x = 40/3 or 13 1/3.
Best of Luck!
When 394 Beach Boys fans were surveyed, 113 said that California girls was their fav song. Find a point estimate for the true proportion of BB fans who favor that song??
1. 0.713
2. 113
3. 0.287
4. 0.95
5. None of the above
Answer: 3. 0.287
Step-by-step explanation:
Let p be the true proportion of BB fans who favor that song.
As per given, Sample size for survey of Beach Boys fans = 394
Number of Beach Boys fans said that California girls was their fav song = 113
Then, the sample proportion of BB fans who favor that song: [tex]\hat{p}=\dfrac{113}{394}[/tex]
[tex]=0.286802030457\approx0.287[/tex]
Since sample proportion is the best estimate for the true proportion.
Hence, a point estimate for the true proportion of BB fans who favor that song is 0.287.
So, the correct option is 3. 0.287 .
Which best describes the meaning of the statement if A then B
Answer:
[tex]a => b \equiv ( \neg a \ \lor \ b )[/tex]
Step-by-step explanation:
You can understand the statement from many perspectives, but in terms of proposition logic it is best to understand it as "negation of a" or " b" in mathematical terms is written like this
[tex]a => b \equiv ( \neg a \ \lor \ b )[/tex]
You can show that they are logically equivalent because they have the same truth table.
Really need help on question 10.
Answer:
44 degrees
Step-by-step explanation:
4 multiplied by 7 is 28.
28 + 2 = 30
angle ABC = 30 degrees
3 multiplied by 7 is 21
21 - 7 = 14.
angle CBD = 14 degrees.
30 + 14 = 44.
The answer is ABD = 44 degrees
a beetle sets out on a journey. on the first day it crawls 1m in a straight line. on the second day it makes a right-angled turn (in either direction) and crawls 2m in a straight line. on the third day it makes a right-angled turn (in either direction) and crawls 3m in a straight line. this continues each day with the beetle making a right-angled turn ( in either direction and crawling 1m further than it did the day before. what is the least number of days before the beetle could find itself stopped at its starting point?
Answer:
7
Step-by-step explanation:
The signed sum of sequential odd numbers must be zero, as must the signed sum of sequential even numbers.
The minimum number of sequential even numbers that have a sum of 0 is 3: 2+4-6 = 0.
The minimum number of sequential odd numbers with a sum of zero is 4: 1-3-5+7=0.
Since we start with an odd number, we can get these sets of numbers in 7 days. The attached diagram shows one possible route.
Graph y less than or equal to 3x
Answer:
See Image Below.
Step-by-step explanation:
The Shaded region is the area of numbers that this equation satisfies.
Answer:
Please see attached image
Step-by-step explanation:
In order to graph the inequality, start from plotting the boundary line defined by the equality;
y = 3 x
You just need two points to accomplish such. so let's use two simple values for x and find what the y-values are:
for x = 0 then y = 3 (0) = 0
for x = 1 then y = 3 (1) = 3
Then use the points (0, 0) and (1, 3) to plot the boundary line.
After this, grab any point on the plane either clearly above the boundary line, or clearly below it and check if the inequality satisfies. For example, you can pick the point (3, 0) which is on the x line, 3 units to the right of the origin, and clearly below the boundary line we just plot.
When you use it in the inequality, you get:
(0) [tex]\leq[/tex] 3 (3)
0 [tex]\leq[/tex] 9
which is a true statement, therefore, the points below the boundary lie are also solutions of the inequality.
Then the solution consists of all the points in the boundary line we just plotted (and indicated by drawing a solid line), plus all the points below the line, as depicted in the attached image.
THe graph is going further than the outline ben 10 benden
Answer:
EB = 9
Step-by-step explanation:
CD = AB
The line with the value of five that also forms a right angle with EB is a perpendicular bisector to AB.
So the value of EB is half of AB (AB is equal to CD).
18/2 = 9
A stained-glass window is shaped like a right triangle. The hypotenuse is 15feet. The length of one leg is three more than the other. Find the lengths of the legs.
let us build equation for unknown legs
If we keep the length pf one leg as x
the other leg would be x +3
so we can build a relationship using pythagoras theorem
x^2 + (x+3)^2 = 15^2
x^2 + x^2 + 6x + 9 = 225
2x^2 + 6x + 9 = 225
2x^2 + 6x+ 9-225 = 0
2x^2 + 6x - 216 = 0
x^2 + 3x - 108 = 0 dividing whole equation by 2
x^2 + 12x - 9x - 108 = 0
x ( x + 12 ) - 9 (x + 12) = 0
(x -9) ( x +12) = 0
solutions for x are
x = 9 or x = -12
as lengths cannot be negative
one side length is 9cm
and other which is( x + 3)
9 + 3
12cm
The lengths of the legs of the right angled triangle is 9 feet and 12 feet.
Pythagoras theorem is used to show the relationship between the sides of a right angled triangle. It is given by:
Hypotenuse² = First Leg² + Second leg²
Let x represent the length of one leg. The other leg is three more = x + 3, hypotenuse = 15 ft. Hence:
15² = x² + (x + 3)²
x² + 6x + 9 + x² = 225
2x² + 6x - 216 = 0
x² + 3x - 108 = 0
x = - 12 or x = 9
Since the length cant the negative hence x= 9, x + 3 = 12
The lengths of the legs of the right angled triangle is 9 feet and 12 feet.
Find out more at: https://brainly.com/question/10040532
Find the area of the trapezoid in the figure below round your final answer to the nearest tenth
Answer: 60.9 u^2
Step-by-step explanation:
The area of a trapezoid can be calculated as seen in the attachment.
Thus:
[tex]A = \frac{3.7+14.2}{2} * 6.8\\A = \frac{17.9}{2} *6.8\\A = 8.95*6.8\\A = 60.86\\Round\\\left[\begin{array}{c}A=60.9\end{array}\right][/tex]
Hope it helps <3
Answer:
60.9 units^2
Step-by-step explanation:
Well the formula for the area of a trapezoid is,
[tex]\frac{b1+b2}{2} h[/tex]
So b1 and b2 are 142 and 3.7,
14.2 + 3.7 = 17.9
17.9 ÷ 2 = 8.95
8.95 × 6.8 = 60.86
60.9 units^2 rounded to the nearest tenth.
Thus,
the area of the trapezoid is 60.9 units^2.
Hope this helps :)
Use the given conditions to write an equation for the line in point-slope form
Passing through (7,3) and (4,4)
OA
1
1.
y-3 = - =(x-
5(x-4) or y-4 = - 3(x - 7)
B.
1
1
y-3= - 3(x-7) or y- 4= - 3(x - 4)
O C. y - 3 = 7(x + 7) or y-4= 4(x-3).
OD
1
1
y + 3 = - 3(x+7) or y+4= - 3(x+4)
Answer:
(Y-3)= -1/3(x-7)
Or
(Y-4)= -1/3(x-4)
Steb by step explanation:
The condition for the line is (7,3) and (4,4).
Point slope form of equation is in this format below.
(Y-y1)= m(x-x1)
We have the given parameters in the above format except the m
M = gradient
Gradient= (y2-y1)/(x2-x1)
Gradient=(4-3)/(4-7)
Gradient= 1/-3
Gradient= -1/3
So
(Y-y1)= m(x-x1)
(Y-3)= -1/3(x-7)
Or
(Y-4)= -1/3(x-4)
URGENT !!!!
A greengrocer has 38 lb of carrots when he opens on Monday morning. During the dayhe gets a delivery of 60 lb of carrots and sells 29 lb of the carrots. How many pounds ofcarrots are left when he closes on Monday evening?
He has 69 lb of carrots left when he closes
The volume of a cylinder varies jointly with the base (area) and the height. The volume is 40 inches^3 when the base (area) is 6 inches^2 and the height is 20 inches. Find the volume of the cylinder (after finding the variation constant) when the base (area) is 8 inches^2 and the height is 12 inches.
Answer: K = ¹/₃, V = 32in³
Step-by-step explanation:
Volume of s cylinder (V) = πr²h where πr² is the base area.
Now from the question,
V ∞ πr²h
V = kπr²h where k is the constant of proportionality which is also the variation constant.
40 = 6 x 20 x k
40 = 120k and
k = ⁴⁰/₁₂₀
= ¹/₃.
Now to find the volume when base area is 8in² and h is 12,
V = 8 x 12 x ¹/₃
V = 32in³
CAN ANYONE HELP ME PLEASE? Two numbers total of 52 and have a difference of 30. Find the two numbers. The larger number is ? and the smaller number is ?
Answer:
41 and 11.
Step-by-step explanation:
Let's say the 2 numbers are x and y.
Since they add up to 52, x + y = 52.
Seeing as the difference is 30, x - y = 30 assuming x is the larger number.
We have left:
x + y = 52
x - y = 30
By solving these simultaneous equations (adding the 2 equations together for instance), we are left with 2x = 82
Therefore x = 41.
Since x + y = 52
41 + y = 52
Therefore y = 11
Therefore we have: the larger number is 41 and the smaller number is 11.
Una masa de 16 libras viaja con una velocidad de 30 m/s . Cuál es su energía cinética?
Energía cinética = 1 / 2mv²
Donde m es la masa y v es la velocidad
De la pregunta
la masa es de 16 libras
la velocidad es de 30 m / s
16 libras es equivalente a 7.257 kg
Entonces la energía cinética es
1/2(7.257)(30)²
Que es 3265.65 juliosEspero que esto te ayude
find the area of the triangle shown
Answer
B. 27
firist divide 9÷2=4.5
the formula
=1/2×4.5×6
=13.5
cause there are 2 triangles. let's multiply 13.5 with 2
13.5×2= 27²
WILL MAKE BRAINLIST----- Describe both rotational symmetry and reflection symmetry. Find four examples of symmetry in your classroom.
Answer:
When an obect has rotational symmetry, that means the object will look the same after a certain amount of rotating. When an object has reflection symmetry, it means the object mirrors itself at the midpoint.
Step-by-step explanation:
Find the value of y.
Answer:
[tex] \sqrt{55} [/tex]Step-by-step explanation:
∆ BCD ~ ∆ DCA
[tex] \frac{bc}{dc} = \frac{dc}{ac} [/tex]
Plug the values:
[tex] \frac{5}{y} = \frac{y}{6 + 5} [/tex]
[tex] \frac{5}{y} = \frac{ y}{11} [/tex]
Apply cross product property
[tex]y \times y = 11 \times 5[/tex]
Calculate the product
[tex] {y}^{2} = 55[/tex]
[tex]y = \sqrt{55} [/tex]
Hope this helps...
Good luck on your assignment..
Amy and Bob decide to paint one wall of a building. Working alone, Amy takes 12 hours to paint the entire wall while Bob takes 18 hours for the same. Amy painted the wall for 4 hours and then Bob took over and completed the wall. How long did it take for them to paint the entire wall
Answer:
16 hours
Step-by-step explanation:
From the above question, we are given the following information
For one wall, working alone,
Amy can paint for 12 hours
Which means, in
1 hour , Amy would have painted = 1/12 of the wall
Bob can paint for 18 hours
Which means ,
in 1 hour, Bob would have painted = 1/18 of the wall.
We are told Amy painted the wall for 4 hours and then Bob took over and completed the wall.
Step 1
Find the portion of the wall Amy painted before Bob took over.
Amy painted the wall for 4 hours before Bob took over.
If:
1 hour = 1/12 of the wall for Amy
4 hours =
Cross multiply
4 × 1/12 ÷ 1
= 4/12 = 1/3
Amy painted one third(1/3) of the wall
Step 2
Find the number of hours left that Bob used in painting the remaining part of the wall
Let the entire wall = 1
If Amy painted 1/3 of the wall
Bob took over and painted = 1 - 1/3
= 2/3 of the wall
If,
Bob painted 1/18 of the wall = 1 hour
2/3 of the wall = ?? = Y
Cross multiply
2/3 × 1 = 1/18 × Y
Y = 2/3 ÷ 1/18
Y = 2/3 × 18/1
Y = 36/3
Y = 12 hours.
This means, the number of hours Bob worked when he took over from Amy = 12 hours.
Step 3
The third and final step is to calculate how many hours it took them to paint the wall
Number of hours painted by Amy + Number of hours painted by Bob
= 4 hours + 12 hours
= 16 hours
Therefore, it took them 16 hours to paint the entire wall.
Find the general solution of the differential equation and check the result by differentiation. (Use C for the constant of integration.)
1. dy/dt = 35t^4
2. dy/dx = 5x^(5/7)
Answer:
1. Y= 7t^5 +C
2. Y= 35/12x^(12/7)+C
Step-by-step explanation:
The general solution will be determined by integrating the equations as the integration is a simple integration.
For dy/dt = 35t^4
The general solution y
= integral (35t^4)dt
The general solution y
=( 35/(4+1))*t^(4+1)
= 35/5t^5
= 7t^5 +C
To prove by differentiating the above.
Y= 7t^5 +C
Dy/Dt= (5*7)t^(5-1) +0
Dy/Dt= 35t^4
For dy/dx = 5x^(5/7)
Y=integral 5x^(5/7)Dx
Y= 5/(5/7 +1)*x^(5/7+1)
Y= 5/(12/7) *x^(12/7)
Y= 35/12x^(12/7)+C
To prove by differentiating
Y= 35/12x^(12/7)+C
Dy/Dx= (35/12)*(12/7) x^(12/7-1) +0
Dy/Dx=(35/7)x^(5/7)
Dy/Dx= 5x^(5/7)