Step-by-step explanation:
data given
men 330 ,days30
men? ,days11
from
men(m) are inversely proportional todays (d)
m=k/d
330×30=k
k=9900
now,
m=9900/11m
m=900
data given
friends 20, time 2hours
friends 30, time?
from
friends (f) are inversely proportional to time (t)
f=k/t
k=20×2
k=40
now,
t=40/30
t=1.3(1:18)
answer ,men required are900answer the food will last for1:18Evaluate the expression without using a calculator. sin−1(cos(2)) sin^−1 (cos( − /2))
The value of the expression sin⁻¹(cos(2)) sin⁻¹(cos(-π/2)) is 0.
Describe Algebraic Expression?An algebraic expression is a combination of variables, constants, and mathematical operations such as addition, subtraction, multiplication, and division. These expressions can be used to represent mathematical relationships and patterns in a variety of contexts.
Algebraic expressions can include one or more variables, which are letters or symbols that represent unknown values or values that can vary. For example, in the expression 3x + 5, "x" is the variable.
To evaluate the expression sin⁻¹(cos(2)) sin⁻¹(cos(-π/2)), we first need to determine the value of cos(2) and cos(-π/2).
cos(2) cannot be evaluated directly since the range of cosine function is -1 to 1, and 2 is outside this range. Therefore, we can conclude that sin⁻¹(cos(2)) does not exist.
Next, we can evaluate cos(-π/2) using the unit circle, which is a circle of radius 1 centered at the origin of the coordinate plane. The angle -π/2 is located on the negative y-axis, where the cosine function is 0. Therefore, cos(-π/2) = 0.
Substituting this value into the expression, we get:
sin⁻¹(0) = 0
Therefore, the value of the expression sin⁻¹(cos(2)) sin⁻¹(cos(-π/2)) is 0.
To know more about function visit:
https://brainly.com/question/30954499
#SPJ1
What is a formula for the nth term of the given sequence? 18 , 21 , 24
Answer:
3n+15
Step-by-step explanation:
18, 21, 24
+3. +3
3n
18-3=15
3n+15
The thickness of a one-dollar bill is 1.1 × 10-4 meters. Each measurement below is the thickness of a stack of one-dollar bills. Drag each measurement to the correct dollar amount.
Thickness of 10 dollar bill is 1.1×10⁻³meters
Thickness of 1.25 × 10³ dollar bill is 1.375×10⁻¹meters
Thickness of 137 dollar bill is1.507 ×10⁻²meters
Define thicknessThickness is the measure of the distance between opposite surfaces of an object. In other words, it is the distance between two parallel planes that bound an object or material. Thickness is often used to describe the dimension of a flat or sheet-like object, such as paper, fabric, or metal, as well as the distance between the front and back surfaces of a three-dimensional object, such as a book or a wall. Thickness can be measured in units such as millimeters, inches, or micrometers.
The thickness of a one-dollar bill is 1.1 × 10⁻⁴ meters
Thickness of 10 dollar bill=10×1.1 × 10⁻⁴
=1.1×10⁻³meters
Thickness of 1.25 × 10³ dollar bill=1.25 × 10³ ×1.1 × 10⁻⁴
=1.375×10⁻¹meters
Thickness of 137 dollar bill=137 ×1.1 × 10⁻⁴
=1.507 ×10⁻²meters
To know more about millimeters, visit:
https://brainly.com/question/25862563
#SPJ1
Amy and Zack each have 24 feet of fencing for their rectangular gardens. Amy makes her fence 6 feet long. Zack makes his fence 8 feet long. Whose garden has the better area? How much greater?
Answer:
The answer is Zack garden
The ratio of union members to nonunion members working for a company is 4 to 5. If there are 140 nonunion members working for the company,
what is the total number of employees?
The total number of employees is 112.
Explain numbers
Numbers are symbols or representations used to quantify or count objects, quantities, or measurements. They form the basis of mathematical operations, such as addition, subtraction, multiplication, and division, and are used in various fields such as science, finance, and engineering. Numbers can be positive, negative, whole, or fractional, and are essential for communication and calculation in our daily lives.
According to the given information
Let's use x to represent the total number of employees.
According to the problem, the ratio of union members to nonunion members is 4 to 5. This means that out of every 4 + 5 = 9 employee, 4 are union members and 5 are nonunion members.
So, we can set up the following proportion:
4/9 = x/(x - 140)
To solve for x, we can cross-multiply and simplify:
4(x - 140) = 9x
4x - 560 = 9x
560 = 5x
x = 112
Therefore, the total number of employees is 112.
To know more about numbers visit
brainly.com/question/17429689
#SPJ1
A farmer is building a fence to enclose a rectangular area against an existing wall, shown in the figure below. Three of the sides will require fencing and the fourth wall already exists. If the farmer has 176 feet of fencing,
what is the largest area the farmer can enclose?
Answer: 46 ft by 92 ft
Step-by-step explanation:
The largest area is enclosed when half the fence is used parallel to the wall and the other half is used for the two ends of the fenced area perpendicular to the wall. Half the fence is 184 ft/2 = 92 ft. Half that is used for each end of the enclosure.
2 only can you solve associative, identity and inverse of this
The set 2Z is associative under the operation *, has an identity element of 2, and every element (except for 0) has an inverse element.
Solving the associative, identity and inverse of this the setThe set 2Z is defined as follows:
2Z = {2n | n ∈ Z, a * b = a + b}
Associative element:
There exists an associative element in 2Z if, for all a, b, and c in 2Z, the equation a*(bc) = (ab)*c holds.
Let a, b, and c be arbitrary elements of 2Z:
a = 2n₁
b = 2n₂
c = 2n₃
Then we have:
a*(bc) = a(2n₂2n₃) = a(4n₂n₃) = 2n₁ + 4n₂n₃ = 2(n₁ + 2n₂n₃)
(a*b)c = (2n₁2n₂)*2n₃ = (4n₁n₂)*2n₃ = 8n₁n₂n₃ = 2(2n₁n₂n₃)
Therefore, a*(bc) = (ab)*c, and 2Z is associative under the operation *.
Identity element:
There exists an identity element in 2Z if there exists an element e in 2Z such that, for all a in 2Z, the equation ae = ea = a holds.
Let e be an arbitrary element of 2Z:
e = 2n
Then we have:
ae = a2n = a + 2n = 2m, where m = n + (a/2) ∈ Z
ea = 2na = a + 2n = 2m', where m' = n + (a/2) ∈ Z
Therefore, e = 2n is an identity element in 2Z.
Inverse element:
There exists an inverse element in 2Z if, for all a in 2Z, there exists an element b in 2Z such that ab = ba = e, where e is the identity element.
Let a be an arbitrary element of 2Z:
a = 2n
Then we need to find an element b in 2Z such that ab = ba = e = 2.
We have:
ab = ba = 2n*b = 2
Therefore, b = 1/(2n) is the inverse of a in 2Z if n ≠ 0.
Read more about set at
https://brainly.com/question/24462379
#SPJ1
8. You and 4 friends are going to an event, and you want to keep the cost below $100 per person. Write and solve an inequality to find the total cost, x.
Calculate Volume of Air passing through Filter HEPA Filter 100ft/min *- Airflow 4ft 2ft Volume = Filter Area x Airflow Velocity
The volume of air passing through the HEPA filter is 800 cubic feet per minute (CFM).
Describe Volume?In general, volume refers to the amount of space occupied by a three-dimensional object. In physics, volume is a measure of the amount of space an object takes up, typically measured in cubic meters (m³) or cubic centimeters (cm³).
In mathematics, volume is often used to refer to the measure of the size of a solid object or region in three-dimensional space. This measure can be calculated using various methods depending on the shape of the object or region, such as integration, formulae, or counting.
For example, the volume of a cube can be calculated by multiplying its length, width, and height together. The volume of a sphere can be calculated using the formula 4/3πr³, where r is the radius of the sphere.
In finance, volume can also refer to the number of shares or contracts traded in a particular market or stock exchange over a given period of time. High trading volume often indicates a more active market, while low trading volume may indicate less interest or activity in a particular security or market.
The formula for calculating the volume of air passing through a filter is:
Volume = Filter Area x Airflow Velocity
Given that the airflow velocity is 100 ft/min and the dimensions of the filter are 4 ft x 2 ft, we can calculate the filter area as:
Filter Area = Length x Width
Filter Area = 4 ft x 2 ft
Filter Area = 8 square feet
Now we can substitute the values into the formula:
Volume = Filter Area x Airflow Velocity
Volume = 8 sq ft x 100 ft/min
Volume = 800 cubic feet per minute (CFM)
Therefore, the volume of air passing through the HEPA filter is 800 cubic feet per minute (CFM).
To know more about area visit:
https://brainly.com/question/7624796
#SPJ1
How long did Lizzie practice on Thursday and Friday altogether?
J
P
D
Lizzie's Drum Practice
P
S
P
D
P
S
S
Monday Tuesday Wednesday Thursday Friday
= 5 minutes
DONE
0
minutes
7 8
4
00
5
1 2
0
9
6
3
Answer:
Lizzie practiced for a total of 14 minutes on Thursday and Friday combined.
On Thursday, she practiced for 5 minutes according to the table.
On Friday, she practiced for 9 minutes according to the table.
Adding these two times together, we get:
5 minutes + 9 minutes = 14 minutes
Therefore, Lizzie practiced for a total of 14 minutes on Thursday and Friday combined.
Identify the correct equation of the graph.
-10
O f(b) = (6+4)² +8
O f(b) = (b+8)² +4
Of(b)=(6-8)²-4
O
-5
10
5
-5
-10
V
5
O f(b) = (b-8)² +4
Of(b) = (6-4)²-8
Of(b) (6-4)² +8
10
Check
Thus, the correct equation for the given parabolic graph is found as: f(b) = (b – 8)² + 4.
Explain about the quadratic function in vertex form:A parabola has a lowest point if it opens upward. A parabola has a highest point if it opens downward.
The vertex of the parabola is located at this lowest or highest point.
Vertex form of a quadratic function:
f(x) = a(x – h)² + k, where a, h, and k are constants.
The vertex of the parabola is at because it is translated h horizontal units and k vertical units from the origin (h, k).
(h,k) are the vertex of parabola.
From the given graph:
f(b) is the given function:
Vertex (h,k) = (8, 4)
Thus, h= 8 and k = a = 1, x = b.
Put the values in quadratic function:
f(b) = 1(b – 8)² + 4
f(b) = (b – 8)² + 4
Thus, the correct equation for the given parabolic graph is found as: f(b) = (b – 8)² + 4.
Know more about the quadratic function in vertex form:
https://brainly.com/question/28201865
#SPJ1
Tentor, Inc., purchases disposable coffee cups on which to print logos for sporting events, proms, birthdays, and other special occasions. The owner received a large shipment of 861 cups this afternoon, and to ensure the quality of the shipment, he selected a random sample of 410 cups and identified 353 as defective.
What is the estimated proportion of defectives in the population? (Round the final answer to 3 decimal places.)
Answer
What is the standard error of the sample proportion? (Round your answer to 3 decimal places.)
Answer
What are the upper and lower bounds for a 98% confidence level? (Round the final answers to 3 decimal places.)
Upper bound is Answer
Lower bound is Answer
It is estimated that 0.861 percent of the population is faulty. The sample proportion's standard error is 0.022. A 98% confidence level has an upper bound of 0.910 and a lower bound of 0.812.
What is a proportion?The comparative relationship between two or more things in terms of their size, amount, or number is referred to as a "proportion." Either a ratio or a fraction can be used to express it. The term "proportion" in statistics refers to the division of the total number of events by the frequency of each event.
The formula p = x/n, where p is the estimated proportion of defectives in the population, x is the number of defectives in the sample, and n is the sample size, can be used to determine the estimated proportion of defectives in the population.
When we substitute values, we obtain:
p = 353/410 = 0.861
As a result, the population's estimated defectiveness rate is 0.861.
The formula SE = √(p(1-p)/n), where SE is the standard error and n is the sample size, can be used to get the standard error of the sample percentage.
When we substitute values, we obtain:
SE is equal to√(0.861(1.0.861)/410) = 0.022.
As a result, the sample proportion's standard error is 0.022.
Using the following formula, the upper and lower bounds for a 98% confidence level can be determined:
Lower bound = z*SE - p
Upper bound = z*SE + p
where z is the z-score for a 98% degree of confidence.
We discover that the z-score corresponding to a 98% confidence level is roughly 2.33 using a z-table or calculator.
When we substitute values, we obtain:
Lower bound is equal to 0.861 - 2.33*0.022, or 0.812.
Upper bound is equal to 0.861 + 2.33 * 0.022 = 0.910.
Consequently, the range of a 98% confidence level is as follows:
Maximum: 0.910
Upper limit: 0.812
To know more about proportion visit:
brainly.com/question/30657439
#SPJ1
It is estimated that 0.861 percent of the population is faulty. The sample proportion's standard error is 0.022. A 98% confidence level has an upper bound of 0.910 and a lower bound of 0.812.
What is a proportion?
The comparative relationship between two or more things in terms of their size, amount, or number is referred to as a "proportion." Either a ratio or a fraction can be used to express it. The term "proportion" in statistics refers to the division of the total number of events by the frequency of each event.
The formula p = x/n, where p is the estimated proportion of defectives in the population, x is the number of defectives in the sample, and n is the sample size, can be used to determine the estimated proportion of defectives in the population.
When we substitute values, we obtain:
p = 353/410 = 0.861
As a result, the population's estimated defectiveness rate is 0.861.
The formula SE = √(p(1-p)/n), where SE is the standard error and n is the sample size, can be used to get the standard error of the sample percentage.
When we substitute values, we obtain:
SE is equal to[tex]\sqrt{\frac{0.861(1.0.861)}{410)}[/tex]= 0.022.
As a result, the sample proportion's standard error is 0.022.
Using the following formula, the upper and lower bounds for a 98% confidence level can be determined:
Lower bound = z*SE - p
Upper bound = z*SE + p
where z is the z-score for a 98% degree of confidence.
We discover that the z-score corresponding to a 98% confidence level is roughly 2.33 using a z-table or calculator.
When we substitute values, we obtain:
Lower bound is equal to 0.861 - 2.33*0.022, or 0.812.
Upper bound is equal to 0.861 + 2.33 * 0.022 = 0.910.
Consequently, the range of a 98% confidence level is as follows:
Maximum: 0.910
Upper limit: 0.812
To know more about proportion refer the below link
https://brainly.com/question/18514274
#SPJ1
Home values in a town have declined 26% per year for each of the past
four years. What was the total percentage decrease in home values
during the four-year period?
Answer: 104%
Step-by-step explanation: 26% times 4 years
A coordinate plane with 2 lines drawn. The first line is labeled f(x) and passes through the points (0, negative 2) and (1, 1). The second line is labeled g(x) and passes through the points (negative 4, 0) and (0, 2). The lines intersect at about (2.5, 3.2)
How does the slope of g(x) compare to the slope of f(x)?
The slope of g(x) is the opposite of the slope of f(x).
The slope of g(x) is less than the slope of f(x).
The slope of g(x) is greater than the slope of f(x).
The slope of g(x) is equal to the slope of f(x)
Therefore, the correct answer is: The slope of g(x) is less than the slope of f(x).
Where do the X and Y axes intersect on the coordinate plane, at position 0 0?The origin is the location where the two axes meet. On both the x- and y-axes, the origin is at 0. The coordinate plane is divided into four portions by the intersection of the x- and y-axes. The term "quadrant" refers to these four divisions.
We can use the slope formula to get the slopes of the lines f(x) and g(x):
slope of f(x) = (change in y)/(change in x) = (1 - (-2))/(1 - 0) = 3/1 = 3
slope of g(x) = (change in y)/(change in x) = (2 - 0)/(0 - (-4)) = 2/4 = 1/2
The slope of g(x) is 1/2, which is less than the slope of f(x), which is 3.
Therefore, the correct answer is: The slope of g(x) is less than the slope of f(x).
To know more about slope visit:-
https://brainly.com/question/3605446
#SPJ1
Answer:
B
Step-by-step explanation:
Briana helps her mother make a quilt The quilt is 6 feet wide and 12 feet long
Briana and her mother will need to measure and cut the fabric for the quilt. They will need to decide on a pattern and color scheme for the quilt. They will need to sew the pieces of fabric together to create the quilt top. They will need to layer the quilt top with batting and backing fabric and then quilt the layers together. Finally, they will need to bind the edges of the quilt.
Find the critical value t
The answer of the given question based on the Critical value is , , the critical value to for the confidence level c = 0.99 and sample size n = 22 is 2.819.
What is Critical value?
In statistics, critical value is value that is used to determine whether to reject null hypothesis in hypothesis test. It is based on chosen level of significance, which is the maximum probability of making a Type I error (rejecting true null hypothesis). The critical value is determined by sampling distribution of the test statistic, which is often a t-statistic or z-statistic, depending on the test and the characteristics of the population being studied.
To find the critical value t for a 99% confidence level and a sample size of 22, we need to use a t-distribution table or a calculator.
Using a t-distribution table with 21 degrees of freedom (n-1), we find that critical value for a 99% confidence level is approximately 2.819.
Therefore, critical value for confidence level c = 0.99 and sample size n = 22 is 2.819 (rounded to nearest thousandth).
To know more about Null hypothesis visit:
brainly.com/question/30404845
#SPJ1
1C. What do you do if you're collecting data and you're unable to survey everyone in a group because the group is
too large?
If the group is too large to survey everyone, you may consider using a sampling technique to select a representative subset of the group for the survey.
How to use Sampling Technique?Here are some common sampling techniques you could use:
Simple random sampling: randomly select individuals from the group to be surveyed.Stratified sampling: divide the group into subgroups based on certain criteria, and then randomly select individuals from each subgroup to be surveyed.Cluster sampling: divide the group into clusters, randomly select some of the clusters, and survey everyone in the selected clusters.Systematic sampling: select individuals from the group at regular intervals.When selecting a sampling technique, it's important to consider the size of the group, the available resources, and the research question. It's also important to ensure that the sampling technique is unbiased and representative of the group being studied.
Learn more about sampling technique here: https://brainly.com/question/17743025
#SPJ1
The area of a rectangle gets reduced by 9 square units if its length is reduced by 5 units and the breadth is increased by 3 units. If we increase the length by 3 units and breadth by 2 units, th
e area is increased by 67 square units. Find the length and breadth of the rectangle.
Answer:
length = 17; breadth = 9
Step-by-step explanation:
Let x = area of rectangle; a = length; b = breadth.
+) a × b = x (1)
+) (a - 5) × (b + 3) = x - 9 => x = ab + 3a - 5b - 15 + 9 (2)
+) (a + 3) × (b + 2) = x + 67 => x = ab + 2a + 3b + 6 - 67 (3)
Replace (1) into (2) & (3):
[tex]\left \{ {{3a - 5b=6} \atop {2a+3b=61}} \right. = > \left \{ {{a=17} \atop {b=9}} \right.[/tex]
Approximately of the Earth's surface is made up of the oceans. What fraction of the surface is not made up of oceans?
The fraction of Earth that is not made up of ocean = 1/4.
Explain about the fraction:The numbers we are familiar with are whole numbers, such as 1, 2, and so on.
Numbers expressed as fractions have a numerator and a denominator, separated by a line known as a vinculum.
In essence, a fraction explains how a portion of a group interacts with the entire group.
Given that-
fraction of Earth made up of water = 3/4The fraction of Earth that is not made up of ocean = 1 - fraction of Earth made up of water
The fraction of Earth that is not made up of ocean = 1 - 3/4
The fraction of Earth that is not made up of ocean = (4 - 3)/4
The fraction of Earth that is not made up of ocean = 1/4
Thus, the fraction of Earth that is not made up of ocean = 1/4.
Know more about the fraction:
https://brainly.com/question/78672
#SPJ1
Complete question:
Approximately 3/4 of the Earth's surface is made up of the oceans. What fraction of the surface is not made up of oceans?
The ability to determine the age of some individuals can be difficult if there are not quality government records of birth. Bone growth takes place at the growth plates at the end of long bones. Once all growth plates fuse, growth stops, and an individual is considered a biological adult. The age at which growth plates fuse for males is approximately normally distributed with a mean of 18.8 years and a standard deviation of 15.1months. Complete parts (a) through (d).
The answers to each question are:
(a) 0.351.
(b) 0.317.
(c) 20.24 years.
(d) 16.
What is the mean and standard deviation?
The standard deviation is a summary measure of the differences of each observation from the mean. If the differences themselves were added up, the positive would exactly balance the negative and so their sum would be zero. Consequently, the squares of the differences are added.
(a) What is the probability that a randomly selected male has growth plates that fuse between the ages of 18 and 20 years?
To answer this question, we need to standardize the values of 18 and 20 using the mean and standard deviation provided. Let X be the age at which growth plates fuse for males. Then,
Z = (X - mean) / standard deviation
Z for X = 18 is (18 - 18.8) / (15.1/12) = -0.53
Z for X = 20 is (20 - 18.8) / (15.1/12) = 0.53
Using a standard normal distribution table or a calculator, we can find the probability of Z being between -0.53 and 0.53, which is approximately 0.351.
Therefore, the probability that a randomly selected male has growth plates that fuse between the ages of 18 and 20 years is 0.351.
(b) What is the probability that a randomly selected male has growth plates that fuse between the ages of 16 and 18 years?
We need to standardize the values of 16 and 18 using the mean and standard deviation provided.
Z for X = 16 is (16 - 18.8) / (15.1/12) = -2.03
Z for X = 18 is (18 - 18.8) / (15.1/12) = -0.53
Using a standard normal distribution table or a calculator, we can find the probability of Z being between -2.03 and -0.53, which is approximately 0.317.
Therefore, the probability that a randomly selected male has growth plates that fuse between the ages of 16 and 18 years is 0.317.
(c) What is the age at which growth plates fuse for the top 5% of males?
We need to find the age X such that the probability of a male having growth plates fuse at an age less than X is 0.95 (since 5% is the complement of 95%).
Using a standard normal distribution table or a calculator, we can find the Z-score corresponding to the 95th percentile, which is approximately 1.645.
Then, we can solve for X using the formula:
Z = (X - mean) / standard deviation
1.645 = (X - 18.8) / (15.1/12)
Simplifying the equation, we get:
X = 18.8 + (1.645)(15.1/12) = 20.24
Therefore, the age at which growth plates fuse for the top 5% of males is approximately 20.24 years.
(d) What percentage of males have growth plates that fuse before the age of 16?
We need to find the probability of a male having growth plates fuse before the age of 16, which is equivalent to finding the probability of Z being less than -2.03 (calculated in part (b)).
Using a standard normal distribution table or a calculator, we can find the probability of Z being less than -2.03, which is approximately 0.0228.
Therefore, approximately 2.28% of males have growth plates that fuse before the age of 16.
hence, the answers to each question are:
(a) 0.351.
(b) 0.317.
(c) 20.24 years.
(d) 16.
To learn more about the mean and standard deviation visit:
brainly.com/question/475676
#SPJ1
4. The elevation at ground level is 0 feet. An elevator starts 80 feet below ground level. After
traveling for 20 seconds, the elevator is 30 feet below ground level. Which statement describes
the elevator's rate of change in elevation during this 20-second interval?
A. The elevator traveled upward at a rate
1 rate of 2½ feet per second.
B. The elevator traveled downward at a rate of 2 feet per second.
C. The elevator traveled upward at a rate of 4 feet per second.
D. The elevator traveled downward at a rate of 4 feet per second.
a
Answer:
[tex]m = \frac{ - 30 - ( - 80)}{20 - 0} = \frac{50}{20} = 2 \frac{1}{2} [/tex]
A. The elevator traveled upward at a rate of 2 1/2 feet per second. -30 > -80.
A four-sided shape with the top side labeled as 10.2 cm. The height is labeled 5 cm. A portion of the base from the perpendicular to a vertex is labeled 4 cm. The portion of the base from the perpendicular to the right vertex is 6.2 cm.
What is the area of the figure?
25.5 cm2
45.5 cm2
51 cm2
56.1 cm2
The area of the figure is 51 cm², which is option C.
What is area?In mathematics, area refers to the measure of the size of a two-dimensional surface or shape. It is typically expressed in square units, such as square meters (m²) or square centimeters (cm²), and can be calculated for a variety of geometric shapes, including squares, rectangles, triangles, circles, and more complex shapes such as trapezoids or polygons.
To find the area of the figure, we need to identify the shape of the figure. From the given information, we know that the figure has a top side, a height, and a base. We are also told that the base is divided into two parts by a perpendicular, and one of the parts is labeled as 4 cm, while the other part from the perpendicular to the right vertex is 6.2 cm.
Based on this information, we can draw the figure as a trapezoid, where the top side is the shorter base, the height is the vertical distance between the two bases, and the longer base is the sum of the two parts of the base.
Using the given information, we can calculate the longer base:
longer base = 4 cm + 6.2 cm = 10.2 cm
Now we can use the formula for the area of a trapezoid to find the area of the figure:
A = (1/2)h(b₁ + b₂)
where h is the height, b₁ is the shorter base, and b₂ is the longer base.
Plugging in the given values, we get:
A = (1/2)(5 cm)(10.2 cm + 10.2 cm) = 51 cm²
Therefore, the area of the figure is 51 cm² , which is option C.
To know more about area visit:
https://brainly.com/question/25292087
#SPJ1
Complete Question:
A four-sided figure has one side labeled 10.2 cm, a height of 5 cm, and a portion of the base from the perpendicular to a vertex labeled 4 cm. The portion of the base from the perpendicular to the right vertex is labeled 6.2 cm. What is the area of the figure?
Jasper's aunt gave him a big bin of 500 beads made out of assorted materials to use for the wind chimes he makes. Jasper takes out a handful of beads, looks at the types of beads, then puts them back. Here are the materials of the handful he selected: glass, clay, wood, glass, wood, clay, metal, clay, wood, glass, wood, clay, metal, wood, clay Based on the data, estimate how many glass beads are in the bin. If necessary, round your answer to the nearest whole number.
We can estimate that there are approximately 134 glass beads in the bin.
What is probability?
Probability is a measure of the likelihood of an event occurring.
To estimate the number of glass beads in the bin, we can use the proportion of glass beads in the handful that Jasper selected.
There are 15 beads in the handful, and 4 of them are glass. So, the proportion of glass beads in the handful is:
4/15 ≈ 0.267
We can assume that the proportion of glass beads in the bin is similar to the proportion in the handful. Therefore, we can estimate the number of glass beads in the bin as:
0.267 x 500 ≈ 134
Therefore, we can estimate that there are approximately 134 glass beads in the bin.
To learn more about probability from the given link:
https://brainly.com/question/30034780
#SPJ1
What’s the greatest common factor of 42 and 50:(8 different answers)
Answer:
Step-by-step explanation:
The GCF of 42 and 50 is 2.
k^2+6k=0 solve the quadratic equation by factoring
Answer:
K = √-6k
i did the math and got this answer and it was right
4.4.3 Quiz: Stretching and Compressing Functions
f(x) = x². What is g(x)?
10
g(x)
Y
5- f(x)
O B. g(x) =
(2,2)
Click here for long description
2
O A. g(x) = (x)²
O c. g(x) =
OD. g(x) = 2x²
2
5
x²
x²
X
The equation of the function g(x) is g(x) = 1/2x²
Calculating the function g(x)If we want to stretch or compress the function f(x) = x^2, we can multiply or divide the input variable x by a constant value a.
Specifically, if we use g(x) = f(ax), then g(x) is a stretched or compressed version of f(x).
To find the value of a that will make g(x) pass through the point (2,2), we can substitute these values into the equation g(x) = f(ax):
[tex]g(2)=f(a*2)=f(2a)=(2a)^2 =4a^2 =2[/tex]
So, we have
a = 1/2
Recall that
g(x) = f(ax)
So, we have
g(x) = f(1/2x)
This means that
g(x) = 1/2x²
Hence. the function is g(x) = 1/2x²
Read more about trasnformation at
https://brainly.com/question/1548871
#SPJ1
Julia drew s sketches of flowers. She split them evenly among her 3 pen pals. Write an expression that shows how many sketches each pen pal received.
Answer:
s/3
Step-by-step explanation:
since she drew s drawings and split them among 3 penpals, it would be s/3, for example, 6 drawings/ 3 would be 2 drawings for each person.
In a word processing document or on a separate piece of paper, use the guide to construct a two column proof proving AC > EF, given BC = EF. Upload the entire proof below.
Given:
BC = EF
Prove:
AC > EF
STATMENT REASON
1. 1.
2. 2. Betweenness
3. AC > BC 3.
4. 4.
The given information and the transitive property of inequalities, we can prove that [tex]AC[/tex] is greater than [tex]EF[/tex] .
What is the transitive property of inequalities?Statement Reason
[tex]BC = EF[/tex] Given
Betweenness Given
[tex]AC > BC[/tex] Given
[tex]AC > EF[/tex] Transitive property [tex](3, 1)[/tex]
Explanation:
[tex]BC = EF[/tex] Given: Given statement that BC is equal to EF.
Betweenness Given: Given statement that states the concept of betweenness, where BC is between AC and EF.
AC > BC Given: Given statement that [tex]AC[/tex] is greater than BC.
[tex]AC > EF[/tex] Transitive property: Using the transitive property, we can conclude that [tex]AC[/tex] is greater than EF (based on statement 3 and 1).
Therefore, using the given information and the transitive property of inequalities, we can prove that AC is greater than [tex]EF[/tex] .
Learn more about transitive here:
https://brainly.com/question/2437149
#SPJ1
Use the image to determine the direction and angle of rotation.
graph of triangle ABC in quadrant 4 and a second polygon A prime B prime C prime in quadrant 3
90° clockwise rotation
90° counterclockwise rotation
180° clockwise rotation
360° counterclockwise rotation
The correct direction and angle of rotation between triangle ABC in quadrant 4 and polygon A' B' C' in quadrant 3 is: 90° clockwise rotation.
What is he concept of transformations in geometry?A transformation in geometry is a procedure that modifies the location, scale, or orientation of a shape. Translations, rotations, reflections, and dilations are examples of common transformations.
Rotations are transformations that involve rotating a shape around a fixed point called the center of rotation. The direction of rotation can be either clockwise or counterclockwise, and the angle of rotation is the amount of rotation in degrees.
A' is located to the left of A, which indicates a clockwise rotation.
B' is located below B, which also indicates a clockwise rotation.
C' is located to the right of C, which indicates a clockwise rotation as well.
The correct response is a 90° clockwise rotation since all of the relevant vertices of polygon A' B' C' are turned clockwise in relation to triangle ABC. I regret if the prior replies left you perplexed.
Learn more about polygon here:
https://brainly.com/question/28276384
#SPJ1
Answer:
(A) 90° clockwise rotation
Step-by-step explanation:
Took the test (FLVS) got it right. ;)
6. center (-2, 8), tangent to y = -4
The radius of the circle is 12, and the equation of the circle is:
(x + 2)² + (y - 8)² = 144
What is a circle?
It is the center of an equidistant point drawn from the center. The radius of a circle is the distance between the center and the circumference.
To find the equation of a circle that is tangent to a horizontal line at a given point, we can use the standard form of the equation of a circle:
(x - h)² + (y - k)² = r²
where (h, k) is the center of the circle and r is the radius.
In this case, the center of the circle is (-2, 8), which gives us:
(x + 2)² + (y - 8)² = r²
To find the radius, we need to know where the circle intersects the y = -4 line. Since the circle is tangent to the line, the distance from the center of the circle to the line is equal to the radius.
The distance between a point (x, y) and a horizontal line y = k is given by |y - k|.
In this case, the distance between the center (-2, 8) and the line y = -4 is |8 - (-4)| = 12.
Therefore, the radius of the circle is 12, and the equation of the circle is:
(x + 2)² + (y - 8)² = 144
To learn more about the circle visit:
brainly.com/question/11833983
#SPJ1
Complete question:
What is the center at (-2, 8), tangent to the line y = -4?