Answer:
C. 20%Step-by-step explanation:
Outcomes with red = 16Total trials = 16 + 30 + 34 = 80P(red) = 16/80 = 1/5 = 20%Correct choice is C
Answer:
20%
Step-by-step explanation:
80 x 20% = 16 red marbles
how do you calculate the population mean
Find two positive numbers satisfying the given requirements. The sum of the first and twice the second is 400 and the product is a maximum.
Answer:
100 and 200Step-by-step explanation:
Let the first number be 'a' and the second number be 'b'. If the sum of the first and twice the second is 400 then;
a+2b = 400 ....
From the equation above, a = 400 - 2b ... 2
If the product of the numbers is a maximum then;
ab = (400-2b)b
let f(b) be the product of the function.
f(b) = (400-2b)b
f(b) = 400b-2b²
For the product to be at the maximum then f'(b) must be equal to zero i.e f'(b) = 0
f'(b)= 400-4b = 0
400-4b = 0
400 = 4b
b = 400/4
b = 100
Substituting b= 100 into the equation a = 400 - 2b to get a;
a = 400 - 2(100)
a = 400 - 200
a = 200
The two positive integers are 100 and 200.
Need Help
Please Show Work
Answer:
-36
Step-by-step explanation:
3*12=36
she is going down (negative) so, it is -36
not sure if this is what you are asking for, if not try this
0-12-12-12=-36
Please Help! The point (8, -2) satisfies the equation of which line? (1) y+2=2(x+8) (2) y-2=2(x-8) (3) y+2=2(x-8) (4) y-2=2(x+8)
Answer:
(3) y+2=2(x-8)
Step-by-step explanation:
Substitute the point into the equation and see if it is true
(8,-2)
(1) y+2=2(x+8)
-2+2 = 2(8+8)
0 = 2(16)
False
(2) y-2=2(x-8)
-2-2 = 2(8-8)
-4 =2 (0)
False
(3) y+2=2(x-8)
-2+2 = 2( 8-8)
0 = 2(0)
True
(4) y-2=2(x+8)
-2-2 = 2(8+8)
-4 = 2(16)
False
Answer:
[tex]\boxed{y+2=2(x-8) }[/tex]
Step-by-step explanation:
[tex]x=8[/tex]
[tex]y=-2[/tex]
[tex]\sf Check \ the \ third \ option.[/tex]
[tex]-2+2=2(8-8)[/tex]
[tex]\sf Both \ sides \ must \ be \ equal.[/tex]
[tex]0=2(0)[/tex]
[tex]0=0[/tex]
HELP PLEASE!
The length of a rectangle is 2V5. The width of the same rectangle is 5V5. Find the perimeter and area of the rectangle.
Answers:
[tex]\text{Perimeter} = 14\sqrt{5}\\\\\text{Area} = 50\\\\[/tex]
=======================================================
Work Shown:
[tex]L = 2\sqrt{5} = \text{length}[/tex]
[tex]W = 5\sqrt{5} = \text{width}[/tex]
P = perimeter
[tex]P = 2*(L+W)\\\\P = 2*(2\sqrt{5}+5\sqrt{5})\\\\P = 2*(7\sqrt{5})\\\\P = 14\sqrt{5}\\\\[/tex]
-------------
A = area
[tex]A = L*W\\\\A = (2\sqrt{5})*(5\sqrt{5})\\\\A = (2*5)(\sqrt{5}*\sqrt{5})\\\\A = 10\sqrt{5*5}\\\\A = 10\sqrt{25}\\\\A = 10*5\\\\A = 50\\\\[/tex]
Find the sum of the even numbers between 199 to 1999
[tex]S_n=\dfrac{n(a_1+a_n)}{2}\\a_1=200\\a_n=1998\\n=?\\\\a_n=a_1+(n-1)d\\d=2\\1998=200+(n-1)\cdot2\\2n-2=1798\\2n=1800\\n=900\\\\S_{900}=\dfrac{900\cdot(200+1998)}{2}=450\cdot 2198=989100[/tex]
The Sum is 989100.
what is sum of Even numbers?The sum of even numbers formula is determined by using the formula to find the arithmetic progression. The sum of even numbers goes on until infinity. The sum of even numbers formula can also be evaluated using the sum of natural numbers formula. We need to obtain the formula for 2 + 4+ 6+ 8+ 10 +...... 2n.
The sum of even numbers = 2(1 + 2+ 3+ .....n). This implies 2(sum of n natural numbers) = 2[n(n+1)]/2 = n(n+1)
Given:
a1 = 200
an= 1998
So, using formula
S= n(a1 + an)/2
now,
d=2
an= a1+(n-1)d
1998= 200 + (n-1) 2
1998-200= (n-1)2
1798/2=n-1
n= 900
S900= 900( 200 + 1998)/2
=450*2198
= 989100
Hence, the sum is 989100.
Learn more about this concept here:
https://brainly.com/question/18837188
#SPJ2
5 times 3 times 2
show work
Answer:
30
Step-by-step explanation:
5x3=p
px2 = a
5x3 = 15 x 2 = 30
Answer:
5 times 3 times 2=30
Step-by-step explanation:
5×3=15×2=30
A speedboat moves at a rate of 25 km/hr in still water. How long will it take
someone to ride the boat 87 km downstream if the river's current moves at a rate of
4 km/hr?
Answer:
3 hours
Step-by-step explanation:
Downstream, the speeds add up:
25 + 4 = 29 km/hIt will take:
87/29= 3 hrsTo ride 87 km.
The ratio of frogs to toads was 3 to 7. If there were 1280 frogs and toads in all, how many were frogs?
Answer:
348 frogs
Step-by-step explanation:
ratio = 3:7
total of ratio = 10
frogs = 3/10 × 1280 = 348 frogs
Answer:
let the ratio be 3x and 7x.
3x+7x=1280
10x=1280
x=128
Now
frogs =3x=3*128=384
toads =7x=7*128=896
Solve the equation for x. √x+5-3=4
Answer:
x=4
Step-by-step explanation:
To solve for x, we must get x by itself on one side of the equation.
[tex]\sqrt{x} +5-3=4[/tex]
First, we can combine like terms on the left side. Subtract 3 from 5.
[tex]\sqrt{x} +(5-3)=4[/tex]
[tex]\sqrt{x} +2=4[/tex]
2 is being added on to the square root of x. The inverse of addition is subtraction. Subtract 2 from both sides of the equation.
[tex]\sqrt{x} +2-2=4-2[/tex]
[tex]\sqrt{x} = 4-2[/tex]
[tex]\sqrt{x} =2[/tex]
The square root of x is being taken. The inverse of a square root is a square. Square both sides of the equation.
[tex](\sqrt{x} )^{2} =2^2[/tex]
[tex]x=2^2[/tex]
Evaluate the exponent.
2^2= 2*2 =4
[tex]x=4[/tex]
Let's check our solution. Plug 4 in for x and solve.
[tex]\sqrt{x} +5-3=4[/tex]
[tex]\sqrt{4} +5-3=4[/tex]
[tex]2+5-3=4[/tex]
[tex]7-3=4[/tex]
[tex]4=4[/tex]
Our solution checks out, so we know x=4 is correct.
Calculate two iterations of Newton's Method for the function using the given initial guess. (Round your answers to four decimal places.) f(x) = x2 − 8, x1 = 2
Answer:
The first and second iteration of Newton's Method are 3 and [tex]\frac{11}{6}[/tex].
Step-by-step explanation:
The Newton's Method is a multi-step numerical method for continuous diffentiable function of the form [tex]f(x) = 0[/tex] based on the following formula:
[tex]x_{i+1} = x_{i} -\frac{f(x_{i})}{f'(x_{i})}[/tex]
Where:
[tex]x_{i}[/tex] - i-th Approximation, dimensionless.
[tex]x_{i+1}[/tex] - (i+1)-th Approximation, dimensionless.
[tex]f(x_{i})[/tex] - Function evaluated at i-th Approximation, dimensionless.
[tex]f'(x_{i})[/tex] - First derivative evaluated at (i+1)-th Approximation, dimensionless.
Let be [tex]f(x) = x^{2}-8[/tex] and [tex]f'(x) = 2\cdot x[/tex], the resultant expression is:
[tex]x_{i+1} = x_{i} -\frac{x_{i}^{2}-8}{2\cdot x_{i}}[/tex]
First iteration: ([tex]x_{1} = 2[/tex])
[tex]x_{2} = 2-\frac{2^{2}-8}{2\cdot (2)}[/tex]
[tex]x_{2} = 2 + \frac{4}{4}[/tex]
[tex]x_{2} = 3[/tex]
Second iteration: ([tex]x_{2} = 3[/tex])
[tex]x_{3} = 3-\frac{3^{2}-8}{2\cdot (3)}[/tex]
[tex]x_{3} = 2 - \frac{1}{6}[/tex]
[tex]x_{3} = \frac{11}{6}[/tex]
In the morning, Sophie goes to the church then goes to the school. In the afternoon she goes to school to home. The map shows the distance between school and home as 5 cm. If every 4 cm on the scale drawing equals 8 kilometers, how far apart are the school and home?
Answer:
10 km
Step-by-step explanation:
Distance = 5 cm
4 cm = 8 km
In km, how far apart is school and home?
Cross Multiply
[tex]\frac{4cm}{8km}[/tex] · [tex]\frac{5cm}{1}[/tex]
Cancel centimeters
[tex]\frac{40(km)(cm)}{4cm}[/tex]
Divide
= [tex]\frac{40km}{4}[/tex]
= 10 km
Find the surface area of the figure and round your answer to the nearest tenth if necessary
Answer:
351.86
Step-by-step explanation:
the formula is
surface area=2πrh+2πr²
r= radius
h=height
Quadrilateral RSTV is dilated with respect to the origin by a scale factor of 1.5 to produce quadrilateral R'S'T'V' . Vertex R is located at (6, -9). Which ordered pair represents R' after the dilation?
Answer:
(9, -13.5)
Step-by-step explanation:
It's given in the question that a quadrilateral RSTV is dilated with a scale factor of 1.5 with respect to the origin to form R'S'T'V'.
Rule for dilation is,
(x, y) → (kx, ky)
where 'k' is the scale factor.
If vertex R of the quadrilateral is (6, -9),
By the given rule of dilation,
R(6, 9) → R'[(1.5 × 6), -(1.5 × 9)]
→ R'(9, -13.5)
Therefore, Option given in bottom right (9, -13.5) will be the answer.
A vehicle purchased for $20700 depreciates at a constant rate of 5% . Determine the approximate value of the vehicle 10 years after purchase.
Answer:
I believe it is 12,393.86
Reduce 24/64 to its lowest terms.
Answer:
[tex]\frac{3}{8}[/tex]
Step-by-step explanation:
To simplify the fraction [tex]\frac{24}{64}[/tex], we need to find its greatest common factor.
Both 24 and 64 are divisible by 2, but that's not the biggest.
Both 24 and 64 are divisible by 4, but that's not the biggest either.
Both 24 and 64 are divisible by 8, and that's the highest we can go.
So:
[tex]\frac{24\div8}{64\div8} = \frac{3}{8}[/tex].
Hope this helped!
Find the greatest rational number r such that the ratios 8/15 ÷ r and 18/35 ÷ r are whole numbers?
The answer is "[tex]\bold{\frac{2}{105}}[/tex]", and the further calculation can be defined as follows:
When the "r" is the greatest common divisor for the two fractions.
So, we will use Euclid's algorithm:
[tex]\to \bold{(\frac{8}{15}) -(\frac{188}{35})}\\\\\to \bold{(\frac{8}{15} -\frac{188}{35})}\\\\\to \bold{(\frac{56-54}{105})}\\\\\to \bold{(\frac{2}{105})}\\\\[/tex]
this is [tex]\bold{(\frac{8}{15}) \ \ mod \ \ (\frac{18}{35})}[/tex]
we can conclude that the GCD for [tex]\bold{\frac{54}{105}}[/tex], when divided by [tex]\bold{\frac{2}{105}}[/tex], will be the remainder is 0. Rational numbers go from [tex]\bold{\frac{2}{105}}[/tex] with the latter being the highest.
So, the final answer is "[tex]\bold{\frac{2}{105}}[/tex]".
Learn more:
greatest rational number:brainly.com/question/16660879
write each equation explicitly in terms of x. then indicate whether the equation is a function.
y^2-x^2+1=50
Answer:
Hello,
Step-by-step explanation:
[tex]y^2-x^2+1=50\\y^2=x^2+49\\2\ functions \ :\\\\y=\sqrt{x^2+49} \\\\or\\\\y=-\sqrt{x^2+49} \\[/tex]
Using function concepts, it is found that:
The explicit equation in terms of x is given by: [tex]y = \pm \sqrt{x^2 + 49}[/tex]The equation is not a function, as there are multiple outputs for a single input.----------------------
The expression is given by:
[tex]y^2 - x^2 + 1 = 50[/tex]
In terms of x, the equation is given by:
[tex]y^2 = 50 + x^2 - 1[/tex]
[tex]y^2 = x^2 + 49[/tex]
[tex]y = \pm \sqrt{x^2 + 49}[/tex]
----------------------
An equation is a function if for each value of the input, there is only one output.Testing the input x = 0:
[tex]y = \pm \sqrt{0^2 + 49}[/tex]
[tex]y = \pm \sqrt{49}[/tex]
[tex]y = \pm 7[/tex]
Two output values for one input, thus, it is not a function.
A similar problem is given at https://brainly.com/question/24603090
Help me and I will for real give u brainleist
should be 2 3 andd 5
think of the - (- as a plus sign (this is what i was always taught) to add them so it would in turn be (-5) + 12 which equals 7 and choice 3 and 5 also equal this
a family spent $93 at a carnival.
*they spent $18 on tickets and $30 on food. they spent the rest of the money on games.
which equation can be used to to find "g", the amount of money used on games.
Answer: 93-(18+30)=g
93-48=g
45=g
Step-by-step explanation: yup
The answer is 93-18-30-g=0 or 18+30+g=93
PLEASE HELP! You do not have to answer all questions but can someone explain to me on where I am even suppose to begin? I don't even know how to answer a single one of these questions.
Step-by-step explanation:
For problems 1 through 15, evaluate the function at the given x value.
1. f(5) = 2(5) − 1 = 9
2. f(3) = 3² − 3(3) − 1 = -1
3. f(0) = 2(0) + 5 = 5
So on and so forth.
Then, match each answer with the corresponding letter.
The answer to #1 was 9. 9 corresponds to the letter A.
The answer to #2 was -1. -1 corresponds to the letter C.
The answer to #3 was 5. 5 corresponds to the letter P.
Finally, write each letter with its corresponding problem number.
So everywhere you see a 1, write A.
Everywhere you see a 2, write C.
Everywhere you see a 3, write P.
Continue until every blank has a letter and the problem is solved.
Answer:
For problems 1 through 15, evaluate the function at the given x value.
1. f(5) = 2(5) − 1 = 9
2. f(3) = 3² − 3(3) − 1 = -1
3. f(0) = 2(0) + 5 = 5
So on and so forth.
Step-by-step explanation:
What is the range of the function in the graph?
Answer:
b=70
Step-by-step explanation:
The range is the value that the output takes
In this graph, the output is constant at 70
The output value is b
b=70
what is 11.3 minus 2.564
Solve for x
Answer choices:
4
5
8
3
2
opposite angles are equal
[tex]\\ \sf\longmapsto 13x+19=84[/tex]
[tex]\\ \sf\longmapsto 13x=84-19[/tex]
[tex]\\ \sf\longmapsto 13x=65[/tex]
[tex]\\ \sf\longmapsto x=\dfrac{65}{13}[/tex]
[tex]\\ \sf\longmapsto x=5[/tex]
Answer:
[tex]\boxed {\boxed {\sf x=5}}[/tex]
Step-by-step explanation:
We are asked to solve for x.
We are given a pair of intersecting lines and 2 angles measuring (13x+19)° and 84°. The angles are opposite each other, so they are vertical angles. This means they are congruent or have the same angle measure.
Since the 2 angles are congruent, we can set them equal to each other.
[tex](13x+19)=84[/tex]
Solve for x by isolating the variable. This is done by performing inverse operations.
19 is being added to 13x. The inverse operation of addition is subtraction. Subtract 19 from both sides of the equation.
[tex]13x+19-19= 84 -19[/tex]
[tex]13x= 84 -19[/tex]
[tex]13x=65[/tex]
x is being multiplied by 13. The inverse operation of multiplication is division. Divide both sides by 13.
[tex]\frac {13x}{13}= \frac{65}{13}[/tex]
[tex]x= \frac{65}{13}[/tex]
[tex]x= 5[/tex]
For this pair of vertical angles, x is equal to 5.
trig..experts...help! Will give brainly!
Answer:
Step-by-step explanation:
189² = 215² + 123² - 2(215)(123)cos x°
35,721 = 46,225 + 15,129 - 52,890 cos x°
35,721 = 61,354 - 52,890 cos x°
52,890 (cos x° ) = 25,633
cos x° = 25,633 ÷ 52,890 ≈ 0.4846
x° ≈ 61.01°
What is the intersection of the lines given by 2y=-x+3 and -y=5x+1? Enter the answer as an ordered pair.
Answer:
(-5/9, 16/9)
Step-by-step explanation:
2y = -x + 3
-y = 5x + 1
To find the intersection, you need to substitute the y-value from the second equation into the first equation. Rearrange the second equation so that it is equal to y.
-y = 5x + 1
-1(-y) = -1(5x + 1)
y = -5x - 1
Substitute this equation into the y-value of the first equation.
2y = -x + 3
2(-5x - 1) = -x + 3
-10x - 2 = -x + 3
(-10x - 2) + 2 = (-x + 3) + 2
-10x = -x + 5
(-10x) + x = (-x + 5) + x
-9x = 5
(-9x)/(-9) = (5)/(-9)
x = -5/9
Plug this x value into one of the equations and solve for y.
2y = -x + 3
2y = -(-5/9) + 3
2y = 5/9 + 3
2y = 32/9
(2y)/2 = (32/9)/2
y = 32/18 = 16/9
The ordered pair is (-5/9, 16/9).
A fair die is tossed once, what is the probability of obtaining neither 5 nor 2?
Answer:
4/6 or 66.666...%
Step-by-step explanation:
If you want to find the probability of obtaining neither a 5 nor a 2 you find how many times they occur and add them together in this case 5 occurs once and 2 also occurs once out of 6 numbers so 1/6 + 1/6 equals 2/6, you now know that 4/6 of them won't be a 5 nor a 2 and because it is a fair die the likelihood of it falling on a number is the same for all sides so the answer is 4/6 or 66.67%.
Which of the following sets are equal to {x|x < 9 and x> 2}
{3,4,5,6,7,8}
{2,3,4,5,6,7,8,9}
{}
{2,3,4,5,6,7}
Answer:
{3, 4, 5, 6, 7, 8}Step-by-step explanation:
{x|x < 9 and x > 2}= {3, 4, 5, 6, 7, 8}[tex]\tt{ \green{P} \orange{s} \red{y} \blue{x} \pink{c} \purple{h} \green{i} e}[/tex]
what is 38.4 cm + 38.4 cm ???
Answer:
76.8 cm
Step-by-step explanation:
Answer:
76.8 cm
Step-by-step explanation:
38.4 cm + 38.4 cm = 76.8 cm
(1 point) Consider the function f(x)=2x3−9x2−60x+1 on the interval [−4,9]. Find the average or mean slope of the function on this interval. Average slope: By the Mean Value Theorem, we know there exists at least one value c in the open interval (−4,9) such that f′(c) is equal to this mean slope. List all values c that work. If there are none, enter none . Values of c:
Answer: c = 4.97 and c = -1.97
Step-by-step explanation: Mean Value Theorem states if a function f(x) is continuous on interval [a,b] and differentiable on (a,b), there is at least one value c in the interval (a<c<b) such that:
[tex]f'(c) = \frac{f(b)-f(a)}{b-a}[/tex]
So, for the function f(x) = [tex]2x^{3}-9x^{2}-60x+1[/tex] on interval [-4,9]
[tex]f'(x) = 6x^{2}-18x-60[/tex]
f(-4) = [tex]2.(-4)^{3}-9.(-4)^{2}-60.(-4)+1[/tex]
f(-4) = 113
f(9) = [tex]2.(9)^{3}-9.(9)^{2}-60.(9)+1[/tex]
f(9) = 100
Calculating average:
[tex]6c^{2}-18c-60 = \frac{100-113}{9-(-4)}[/tex]
[tex]6c^{2}-18c-60 = -1[/tex]
[tex]6c^{2}-18c-59 = 0[/tex]
Resolving through Bhaskara:
c = [tex]\frac{18+\sqrt{1740} }{12}[/tex]
c = [tex]\frac{18+41.71 }{12}[/tex] = 4.97
c = [tex]\frac{18-41.71 }{12}[/tex] = -1.97
Both values of c exist inside the interval [-4,9], so both values are mean slope: c = 4.97 and c = -1.97