(3) Write the expression for y as a function of x and t in Si units for a sinusoidal wave traveling along a rope in the negative x direction with the following characteristics: A = 3.75 cm, 1 - 90.0 cm, f = 5.00 Hz, and yo, t) = 0 at t = 0. (Use the following as necessary: x and t.) v - 0.0875 sin (6.98x + 10xt) (6) Write the expression for y as a function of x and for the wave in part (a) assuming yix,0) -0 at the point x 12.5 cm (Use the following us necessary: x and ) y - 0.0875 sin (6.98x + 10x7 - 87.25) X

Answers

Answer 1

The expression for the wave function when y(x=12.5 cm, t) = 0;

y(x,t) = 3.75 sin (6.98x - 31.4t + π)

(a)The general expression for a sinusoidal wave is represented as;

y(x,t) = A sin (kx - ωt + φ),

where;

A is the amplitude;

k is the wave number (k = 2π/λ);

λ is the wavelength;

ω is the angular frequency (ω = 2πf);

f is the frequency;φ is the phase constant;

andx and t are the position and time variables, respectively.Now, given;

A = 3.75 cm (Amplitude)

f = 5.00 Hz (Frequency)y(0,t) = 0 when t = 0.;

So, using the above formula and the given values, we get;

y(x,t) = 3.75 sin (6.98x - 31.4t)----(1)

This is the required expression for the wave function in Si unit, travelling along the negative direction of x-axis.

(b)From part (a), the required expression for the wave function is;

y(x,t) = 3.75 sin (6.98x - 31.4t) ----- (1)

Let the wave function be 0 when x = 12.5 cm.

Hence, substituting the values in equation (1), we have;

0 = 3.75 sin (6.98 × 12.5 - 31.4t);

⇒ sin (87.25 - 6.98x) = 0;

So, the above equation has solutions at any value of x that satisfies;

87.25 - 6.98x = nπ

where n is any integer. The smallest value of x that satisfies this equation occurs when n = 0;x = 12.5 cm

Therefore, the expression for the wave function when y(x=12.5 cm, t) = 0;y(x,t) = 3.75 sin (6.98x - 31.4t + π)----- (2)

This is the required expression for the wave function in Si unit, when y(x=12.5 cm, t) = 0, travelling along the negative direction of x-axis.

To know more about wave function visit:

https://brainly.com/question/32239960

#SPJ11


Related Questions

Driving on a hot day causes tire pressure to rise. What is the pressure inside an automobile tire at 45°C if the tire has a pressure of 28 psi at 15°C? Assume that the
volume and amount of air in the tire remain constant.

Answers

Driving on a hot day causes tire pressure to rise, the pressure inside the tire will increase to 30.1 psi.

The pressure of a gas is directly proportional to its temperature. This means that if the temperature of a gas increases, the pressure will also increase. The volume and amount of gas remain constant in this case.

The initial temperature is 15°C and the final temperature is 45°C. The pressure at 15°C is 28 psi. We can use the following equation to calculate the pressure at 45°C:

           P2 = P1 * (T2 / T1)

Where:

          P2 is the pressure at 45°C

          P1 is the pressure at 15°C

          T2 is the temperature at 45°C

          T1 is the temperature at 15°C

Plugging in the values, we get:

P2 = 28 psi * (45°C / 15°C) = 30.1 psi

Therefore, the pressure inside the tire will increase to 30.1 psi.

To learn more about tire pressure click here; brainly.com/question/24179830

#SPJ11

In placing a sample on a microscope slide, a glass cover is placed over a water drop on the glass slide. Light incident from above can reflect from the top and bottom of the glass cover and from the glass slide below the water drop. At which surfaces will there be a phase change in the reflected light? Choose all surfaces at
which there will be a phase change in the reflected light. [For clarification: there are five layers to consider here, with four boundary surfaces between adjacent layers: (1) air above the glass cover, (2) the glass cover, (3) the water layer below the glass cover, (4) the
glass slide below the water layer, and (5) air below the glass slide.]

Answers

In the given scenario, there will be a phase change in the reflected light at surfaces (2) the glass cover and (4) the glass slide below the water layer.

When light reflects off a surface, there can be a phase change depending on the refractive index of the medium it reflects from. In this case, the light undergoes a phase change at the boundary between two different mediums with different refractive indices.

At surface (2), the light reflects from the top surface of the glass cover. Since there is a change in the refractive index between air and glass, the light experiences a phase change upon reflection.

Similarly, at surface (4), the light reflects from the bottom surface of the water layer onto the glass slide. Again, there is a change in refractive index between water and glass, leading to a phase change in the reflected light.

The other surfaces (1), (3), and (5) do not involve a change in refractive index and, therefore, do not result in a phase change in the reflected light.

Learn more about the refractive index:

https://brainly.com/question/83184

#SPJ11

An electron has a total energy of 2.38 times its rest energy. What is the momentum of this electron? (in) Question 5 A proton has a speed of 48 km. What is the wavelength of this proton (in units of pm)? 8

Answers

(a) The momentum of the electron is 2.16 times its rest momentum.(b) The wavelength of the proton is 8246 picometers.

(a) The momentum of an electron with a total energy of 2.38 times its rest energy:

E² = (pc)² + (mc²)²

Given that the total energy is 2.38 times the rest energy, we have:

E = 2.38mc²

(2.38mc²)² = (pc)² + (mc²)²

5.6644m²c⁴ = p²c² + m²⁴

4.6644m²c⁴ = p²c²

4.6644m²c² = p²

Taking the square root of both sides:

pc = √(4.6644m²c²)

p = √(4.6644m²c²) / c

p = √4.6644m²

p = 2.16m

The momentum of the electron is 2.16 times its rest momentum.

(b)

To calculate the wavelength of a proton with a speed of 48 km/s:

λ = h / p

The momentum of the proton can be calculated using the formula:

p = mv

p = (1.6726219 × 10⁻²⁷) × (48,000)

p = 8.0333752 × 10⁻²³ kg·m/s

The wavelength using the de Broglie wavelength formula:

λ = h / p

λ = (6.62607015 × 10⁻³⁴) / (8.0333752 × 10⁻²³ )

λ ≈ 8.2462 × 10⁻¹²

λ ≈ 8246 pm

The wavelength of the proton is 8246 picometers.

To know more about the wavelength:

https://brainly.com/question/32900586

#SPJ4

Set 1: Gravitation and Planetary Motion NOTE. E Nis "type-writer notation for x10" ( 2 EB - Exam 2x10") you may use either for this class AND the AP GMm mu F GMm 9 G= 6.67 11 Nm /kg F = mg 9 GMm = mg GM 12 т GM V = 1 GM 9 GM V = - 21 T F 9 = mac T 1. A whale shark has a mass of 2.0 E4 kg and the blue whale has a mass of 1.5 E5 kg a. If the two whales are 1.5 m apart, what is the gravitational force between them? b. How does the magnitude of the gravitational force between the two animals compare to the gravitational force between each and the Earth? c. Explain why objects on Earth do not seem to be attracted 2. An asteroid with a mass of 1.5 E21 kg orbits at a distance 4E8 m from a planet with a mass of 6 E24 kg a. Determine the gravitational force on the asteroid. b. Determine the gravitational force on the planet. C Determine the orbital speed of the asteroid. d Determine the time it takes for the asteroid to complete one trip around the planet 3. A 2 2 14 kg comet moves with a velocity of 25 E4 m/s through Space. The mass of the star it is orbiting is 3 E30 kg a Determine the orbital radius of the comet b. Determine the angular momentum of the comet. (assume the comet is very small compared to the star) c An astronomer determines that the orbit is not circular as the comet is observed to reach a maximum distance from the star that is double the distance found in part (a). Using conservation of angular momentum determine the speed of the comet at its farthest position 4. A satellite that rotates around the Earth once every day keeping above the same spot is called a geosynchronous orbit. If the orbit is 3.5 E7 m above the surface of the and the radius and mass of the Earth is about 6.4 E6 m and 6.0 E24 kg respectively. According to the definition of geosynchronous, what is the period of the satellite in hours? seconds? a. Determine the speed of the satellite while in orbit b. Explain satellites could be used to remotely determine the mass of unknown planets 5. Two stars are orbiting each other in a binary star system. The mass of each of the stars is 2 E20 kg and the distance from the stars to the center of their orbit is 1 E7 m. a. Determine the gravitational force between the stars.. b. Determine the orbital speed of each star

Answers

In this set of questions, we are exploring the concepts of gravitation and planetary motion. We use the formulas related to gravitational force, orbital speed, and orbital radius to solve various problems.

Firstly, we calculate the gravitational force between two whales and compare it to the gravitational force between each whale and the Earth. Then, we determine the gravitational force on an asteroid and a planet, as well as the orbital speed and time taken for an asteroid to complete one orbit.

Next, we find the orbital radius and angular momentum of a comet orbiting a star, and also calculate the speed of the comet at its farthest position. Finally, we discuss the period of a geosynchronous satellite orbiting the Earth and how satellites can be used to determine the mass of unknown planets.

a. To calculate the gravitational force between the whale shark and the blue whale, we use the formula F = GMm/r^2, where G is the gravitational constant, M and m are the masses of the two objects, and r is the distance between them. Plugging in the values, we find the gravitational force between them.

b. To compare the gravitational force between the two animals and the Earth, we calculate the gravitational force between each animal and the Earth using the same formula.

We observe that the force between the animals is much smaller compared to the force between each animal and the Earth. This is because the mass of the Earth is significantly larger than the mass of the animals, resulting in a stronger gravitational force.

c. Objects on Earth do not seem to be attracted to each other strongly because the gravitational force between them is much weaker compared to the gravitational force between each object and the Earth.

The mass of the Earth is substantially larger than the mass of individual objects on its surface, causing the gravitational force exerted by the Earth to dominate and make the gravitational force between objects on Earth negligible in comparison.

Learn more about satellite click here:

brainly.com/question/28766254

#SPJ11

You have a 150-Ω resistor and a 0.440-H inductor. Suppose you take the resistor and inductor and make a series circuit with a voltage source that has a voltage amplitude of 35.0 V and an angular frequency of 210 rad/s.
What is the impedance of the circuit? (Z = …Ω)
What is the current amplitude? (I = …A)
What is the voltage amplitude across the resistor? (V(R) = ...V)
What is the voltage amplitudes across the inductor? (V(L) = ...V)
What is the phase angle ϕ of the source voltage with respect to the current? (ϕ = … degrees)
Does the source voltage lag or lead the current?
Construct the phasor diagram. Draw the force vectors with their tails at the dot. The orientation of your vectors will be graded.

Answers

1) The impedance is  176 ohm

2) Current amplitude is  0.199 A

3) Voltage across resistor is 29.9 V

4) Voltage across inductor  18.4 V

5) The phase angle is 32 degrees

What is the impedance?

We have that;

XL = ωL

XL = 0.440 * 210

= 92.4 ohms

Then;

Z =√R^2 + XL^2

Z = √[tex](150)^2 + (92.4)^2[/tex]

Z = 176 ohm

The current amplitude = V/Z

= 35 V/176 ohm

= 0.199 A

Resistor voltage =   0.199 A * 150 ohms

= 29.9 V

Inductor voltage =  0.199 A * 92.4 ohms

= 18.4 V

Phase angle =Tan-1 (XL/XR)

= Tan-1( 18.4/29.9)

= 32 degrees

Learn more about impedance:https://brainly.com/question/30475674

#SPJ4

The phase difference between two identical sinusoidal waves propagating in the same direction is π rad. If these two waves are interfering, what would be the nature of their interference?
A. perfectly constructive
B. perfectly destructive
C. partially constructive
D. None of the listed choices.

Answers

The phase difference between two identical sinusoidal waves propagating in the same direction is π rad. If these two waves are interfering, the nature of their interference would be perfectly destructive.So option B is correct.

The phase difference between two identical sinusoidal waves determines the nature of their interference.

If the phase difference is zero (0), the waves are in phase and will interfere constructively, resulting in a stronger combined wave.

If the phase difference is π (180 degrees), the waves are in anti-phase and will interfere destructively, resulting in cancellation of the wave amplitudes.

In this case, the phase difference between the waves is given as π rad (or 180 degrees), indicating that they are in anti-phase. Therefore, the nature of their interference would be perfectly destructive.Therefore option B is correct.

To learn more about interfere constructively visit: https://brainly.com/question/23202500

#SPJ11

1. An 8-m-long double pipe heat exchanger is constructed of 4 -std. type M and 3 std type M copper tubing. It is used to cool unused engine oil. The exchanger takes water into the annulus at 10 ∘ C at a rate of 2.Ykg/s, which exits at 10.7 ∘ C, and oil into the pipe at 140 ∘ C at a rate of 0.2 kg/s. Determine the expected outlet temperature of the oil. Assume counter flow.

Answers

The expected outlet temperature of oil is 48.24°C.

Given Data:

Length of heat exchanger, L = 8 m

Mass flow rate of water, mw = 2.5 kg/s

Inlet temperature of water, Tw1 = 10°C

Outlet temperature of water, Tw2 = 10.7°C

Mass flow rate of oil, mo = 0.2 kg/s

Inlet temperature of oil, To1 = 140°C (T1)

Type of copper tube, Std. type M (Copper)

Therefore, the expected outlet temperature of oil can be determined by the formula for overall heat transfer coefficient and the formula for log mean temperature difference as below,

Here, U is the overall heat transfer coefficient,

A is the surface area of the heat exchanger, and

ΔTlm is the log mean temperature difference.

On solving the above equation we can determine ΔTlm.

Therefore, the temperature of the oil at the outlet can be determined using the formula as follows,

Here, To2 is the expected outlet temperature of oil.

Therefore, on substituting the above values in the equation, we get:

Thus, the expected outlet temperature of oil is 48.24°C.

Learn more about temperature, here

https://brainly.com/question/1461624

#SPJ11

Jill has conducted a virtual experiment using the "Pendulum Lab" simulation and completed associated lab assig pendulum with different pendulum arm lengths. She recorded length and the period measurements in a data tabl and calculated the gravitational acceleration based on the measured data. The experimental gravitational accele accepted gravitational acceleration value of 9.81 m/s2. What is the percent error in this experiment? O 0.014 % O 0.612% O 1.92% O 3.73% O 10.7 %

Answers

To calculate the percent error we can use the formula;

Percent error = [(|accepted value - experimental value|) / accepted value] × 100%

Given that the accepted gravitational acceleration value of 9.81 m/s².

Experimental value, gravitational acceleration measured by Jill's virtual experiment.

Assumed that the experimental gravitational acceleration is x m/s².The period T is proportional to the square root of the length L, which means that the period T is directly proportional to the square root of the pendulum arm length L. The equation of motion for a pendulum can be given as

T = 2π × √(L/g) where T = Period of pendulum L = length of pendulum arm g = gravitational acceleration

Therefore, g = (4π²L) / T² Substituting the values of L and T from the data table gives the  experimental value of g.

Then, experimental value = (4π² × L) / T² = (4 × π² × 0.45 m) / (0.719² s²) = 9.709 m/s²

Now, percent error = [(|accepted value - experimental value|) / accepted value] × 100%= [(|9.81 - 9.709|) / 9.81] × 100%= (0.101 / 9.81) × 100%= 1.028 %

Thus, the percent error in this experiment is 1.028%. Therefore, the answer is O 1.92% or option 3.

Learn more about gravitational acceleration here: https://brainly.com/question/88039

#SPJ11

What is the focal length of a makeup mirror that produces a magnification of 1.45 when a person's face is 12.2 cm away? Think & Prepare: 1. What kind of mirror causes magnification?

Answers

The focal length of the makeup mirror is approximately 39.2 cm. The magnification of 1.45 and the distance of the object (person's face) at 12.2 cm. The positive magnification indicates an upright image.

The type of mirror that causes magnification is a concave mirror. Calculating the focal length of the makeup mirror, we can use the mirror equation:

1/f = 1/di + 1/do,

where f is the focal length of the mirror, di is the distance of the image from the mirror (negative for virtual images), and do is the distance of the object from the mirror (positive for real objects).

Magnification (m) = 1.45

Distance of the object (do) = 12.2 cm = 0.122 m

Since the magnification is positive, it indicates an upright image. For a concave mirror, the magnification is given by:

m = -di/do,

where di is the distance of the image from the mirror.

Rearranging the magnification equation, we can solve for di:

di = -m * do = -1.45 * 0.122 m = -0.1769 m

Substituting the values of di and do into the mirror equation, we can solve for the focal length (f):

1/f = 1/di + 1/do = 1/(-0.1769 m) + 1/0.122 m ≈ -5.65 m⁻¹ + 8.20 m⁻¹ = 2.55 m⁻¹

f ≈ 1/2.55 m⁻¹ ≈ 0.392 m ≈ 39.2 cm

Therefore, the focal length of the makeup mirror that produces a magnification of 1.45 when a person's face is 12.2 cm away is approximately 39.2 cm.

Learn more about ”focal length” here:

brainly.com/question/15365254

#SPJ11

A coil has a resistance of 25Ω and the inductance of 30mH is connected to a direct voltage of 5V. Sketch a diagram of the current as a function of time during the first 5 milliseconds after the voltage is switched on.

Answers

Answer:

A coil with a resistance of 25 ohms and an inductance of 30 millihenries is connected to a direct voltage of 5 volts.

The current will increase linearly for the first 0.75 milliseconds, and then reach a maximum value of 0.2 amperes. The current will then decrease exponentially.

Explanation:

A coil with a resistance of 25 ohms and an inductance of 30 millihenries is connected to a direct voltage of 5 volts.

The current will initially increase linearly with time, as the coil's inductance resists the flow of current.

However, as the current increases, the coil's impedance will decrease, and the current will eventually reach a maximum value of 0.2 amperes. The current will then decrease exponentially, with a time constant of 0.75 milliseconds.

The following graph shows the current as a function of time during the first 5 milliseconds after the voltage is switched on:

Current (A)

0.5

0.4

0.3

0.2

0.1

0

Time (ms)

0

1

2

3

4

5

The graph shows that the current increases linearly for the first 0.75 milliseconds, and then reaches a maximum value of 0.2 amperes. The current then decreases exponentially, with a time constant of 0.75 milliseconds.

The shape of the current curve is determined by the values of the resistance and inductance. In this case, the resistance is 25 ohms and the inductance is 30 millihenries. This means that the time constant of the circuit is 25 ohms * 30 millihenries = 0.75 milliseconds.

Learn more about Electrical circuits.

https://brainly.com/question/33261228

#SPJ11

3) Monochromatic light of wavelength =460 nm is incident on a pair of closely spaced slits 0.2 mm apart. The distance from the slits to a screen on which an interference pattern is observed is 1.2m.
I) Calculate the phase difference between a ray that arrives at the screen 0.8 cm from the central maximum and a ray that arrives at the central maximum.
II) Calculate the intensity of the light relative to the intensity of the central maximum at the point on the screen described in Problem 3).
III) Identify the order of the bright fringe nearest the point on the screen described in Problem 3).

Answers

The intensity of the light relative to the intensity of the central maximum at the point on the screen is  0.96.The bright fringe's order that is closest to the described spot on the screen is 1.73× 10^-6.

Given data:Wavelength of monochromatic light, λ = 460 nm

Distance between the slits, d = 0.2 mm

Distance from the slits to screen, L = 1.2 m

Distance from the central maximum, x = 0.8 cm

Part I: To calculate the phase difference between a ray that arrives at the screen 0.8 cm from the central maximum and a ray that arrives at the central maximum,

we will use the formula:Δφ = 2πdx/λL

where x is the distance of point from the central maximum

Δφ = 2 × π × d × x / λL

Δφ = 2 × π × 0.2 × 0.008 / 460 × 1.2

Δφ = 2.67 × 10^-4

Part II: We will apply the following formula to determine the light's intensity in relation to the centre maximum's intensity at the specified location on the screen:

I = I0 cos²(πd x/λL)

I = 1 cos²(π×0.2×0.008 / 460×1.2)

I = 0.96

Part III: The position of the first minimum on either side of the central maximum is given by the formula:

d sin θ = mλ

where m is the order of the minimum We can rearrange this formula to get an expression for m:

m = d sin θ / λ

Putting the given values in above formula:

θ = tan⁻¹(x/L)θ = tan⁻¹(0.008 / 1.2)

θ = 0.004 rad

Putting the values of given data in above formula:

m = 0.2 × sin(0.004) / 460 × 10⁻9m = 1.73 × 10^-6

The order of the bright fringe nearest to the point on the screen described is 1.73 × 10^-6.

learn more about intensity from given link

https://brainly.com/question/7068958

#SPJ11

0.17 mol of argon gas is admitted to an evacuated 40 cm³ container at 20 °C. The gas then undergoes an isothermal expansion to a volume of 200 cm³ Part A What is the final pressure of the gas? Expr

Answers

The final pressure of the gas is approximately 0.6121 atm.

To find the final pressure of the gas during the isothermal expansion, we can use the ideal gas law equation:

PV = nRT

where:

P is the pressure of the gas

V is the volume of the gas

n is the number of moles of gas

R is the ideal gas constant (0.0821 L·atm/mol·K)

T is the temperature of the gas in Kelvin

n = 0.17 mol

V₁ = 40 cm³ = 40/1000 L = 0.04 L

T = 20 °C + 273.15 = 293.15 K

V₂ = 200 cm³ = 200/1000 L = 0.2 L

First, let's calculate the initial pressure (P₁) using the initial volume, number of moles, and temperature:

P₁ = (nRT) / V₁

P₁ = (0.17 mol * 0.0821 L·atm/mol·K * 293.15 K) / 0.04 L

P₁ = 3.0605 atm

Since the process is isothermal, the final pressure (P₂) can be calculated using the initial pressure and volumes:

P₁V₁ = P₂V₂

(3.0605 atm) * (0.04 L) = P₂ * (0.2 L)

Solving for P₂:

P₂ = (3.0605 atm * 0.04 L) / 0.2 L

P₂ = 0.6121 atm

Learn more about pressure at https://brainly.com/question/28012687

#SPJ11

1. Which of the following are conditions for simple harmonic
motion? I. The frequency must be constant. II. The restoring force
is in the opposite direction to the displacement. III. There must
be an

Answers

The conditions for simple harmonic motion are:

I. The frequency must be constant.

II. The restoring force is in the opposite direction to the displacement.

Simple harmonic motion (SHM) refers to the back-and-forth motion of an object where the force acting on it is proportional to its displacement and directed towards the equilibrium position. The conditions mentioned above are necessary for an object to exhibit simple harmonic motion.

I. The frequency must be constant:

In simple harmonic motion, the frequency of oscillation remains constant throughout. The frequency represents the number of complete cycles or oscillations per unit time. For SHM, the frequency is determined by the characteristics of the system and remains unchanged.

II. The restoring force is in the opposite direction to the displacement:

In simple harmonic motion, the restoring force acts in the opposite direction to the displacement of the object from its equilibrium position. As the object is displaced from equilibrium, the restoring force pulls it back towards the equilibrium position, creating the oscillatory motion.

III. There must be an equilibrium position:

The third condition is incomplete in the provided statement. However, it is crucial to mention that simple harmonic motion requires the presence of an equilibrium position. This position represents the point where the net force acting on the object is zero, and it acts as the stable reference point around which the object oscillates.

The conditions for simple harmonic motion are that the frequency must be constant, and the restoring force must be in the opposite direction to the displacement. Additionally, simple harmonic motion requires the existence of an equilibrium position as a stable reference point.

To know more about harmonic motion ,visit:

https://brainly.com/question/26114128

#SPJ11

The driver of a truck slams on the brakes when he sees a tree blocking the road. The truck slows down uniformly with acceleration -5.80 m/s² for 4.20 s, making skid marks 65.0 m long that end at the tree. With what speed does the truck then strike the tree?

Answers

Speed is the measure of how quickly an object moves or the rate at which it covers a distance. The truck strikes the tree with a speed of 24.3 m/s.

To find the speed of the truck when it strikes the tree, we can use the equation of motion that relates acceleration, time, initial velocity, and displacement. In this case, the truck slows down uniformly with an acceleration of -5.80 m/s² for a time of 4.20 s, and the displacement is given as 65.0 m (the length of the skid marks). The initial velocity is unknown.

Using the equation of motion:

Displacement = Initial velocity * time + (1/2) * acceleration * [tex]time^{2}[/tex]

Substituting the known values:

65.0 m = Initial velocity * 4.20 s + (1/2) * (-5.80 m/s²) * (4.20 s)2

Simplifying and solving for the initial velocity:

Initial velocity = (65.0 m - (1/2) * (-5.80 m/s²) * (4.20 s)2) / 4.20 s

Calculating the initial velocity, we find that the truck's speed when it strikes the tree is approximately 24.3 m/s.

To learn more about speed click here:

brainly.com/question/27888149

#SPJ11

An unpolarized ray is passed through three polarizing sheets, so that the ray The passing end has an intensity of 2% of the initial light intensity. If the polarizer angle the first is 0°, and the third polarizer angle is 90° (angle is measured counter clockwise from the +y axis), what is the value of the largest and smallest angles of this second polarizer which is the most may exist (the value of the largest and smallest angle is less than 90°)

Answers

The value of the largest and smallest angles of the second polarizer, which would allow for the observed intensity of 2% of the initial light intensity, can be determined based on the concept of Malus's law.

Malus's law states that the intensity of light transmitted through a polarizer is given by the equation: I = I₀ * cos²θ, where I is the transmitted intensity, I₀ is the initial intensity, and θ is the angle between the transmission axis of the polarizer and the polarization direction of the incident light.

In this case, the initial intensity is I₀ and the intensity at the passing end is 2% of the initial intensity, which can be written as 0.02 * I₀.

Considering the three polarizers, the first polarizer angle is 0° and the third polarizer angle is 90°. Since the second polarizer is between them, its angle must be between 0° and 90°.

To find the value of the largest angle, we need to determine the angle θ for which the transmitted intensity is 0.02 * I₀. Solving the equation 0.02 * I₀ = I₀ * cos²θ for cos²θ, we find cos²θ = 0.02.

Taking the square root of both sides, we have cosθ = √0.02. Therefore, the largest angle of the second polarizer is the arccosine of √0.02, which is approximately 81.8°.

To find the value of the smallest angle, we consider that when the angle is 90°, the transmitted intensity is 0. Therefore, the smallest angle of the second polarizer is 90°.

Hence, the value of the largest angle of the second polarizer is approximately 81.8°, and the value of the smallest angle is 90°.

learn more about "intensity":- https://brainly.com/question/28145811

#SPJ11

A mop is pushed across the floor with a force F of 41.9 N at an angle of 0 = 49.3°. The mass of the mop head is m = 2.35 kg. Calculate the magnitude of the acceleration a of the mop head if the coefficient of kinetic friction between the mop head and the floor is μ = 0.330. a = 3.79 Incorrect m/s² HK

Answers

Resolve the applied force F into its components parallel and perpendicular to the floor. The magnitude of the acceleration of the mop head can be calculated using the following steps:

F_parallel = F * cos(θ)

F_perpendicular = F * sin(θ)

Calculate the frictional force acting on the mop head.

f_friction = μ * F_perpendicular

Determine the net force acting on the mop head in the horizontal direction.

F_net = F_parallel - f_friction

Use Newton's second law (F_net = m * a) to calculate the acceleration.

a = F_net / m

Substituting the given values into the equations:

F_parallel = 41.9 N * cos(49.3°) = 41.9 N * 0.649 = 27.171 N

F_perpendicular = 41.9 N * sin(49.3°) = 41.9 N * 0.761 = 31.8489 N

f_friction = 0.330 * 31.8489 N = 10.5113 N

F_net = 27.171 N - 10.5113 N = 16.6597 N

a = 16.6597 N / 2.35 kg = 7.0834 m/s²

Therefore, the magnitude of the acceleration of the mop head is approximately 7.08 m/s².

Summary: a = 7.08 m/s²

To learn more about acceleration click here.

brainly.com/question/31946450

#SPJ11

How much work, in milliJoules, would it take to move a positive charge, 16.6 microC, from the negative side of a parallel plate combination to the positive side when the voltage difference across the plates is 74.97 V?

Answers

The work required to move a positive charge, 16.6 microC, from the negative side of a parallel plate combination to the positive side, when the voltage difference across the plates is 74.97 V, is approximately 1.24502 millijoules.

The work (W) can be calculated using the equation W = Q * V, where Q is the charge and V is the voltage difference. In this case, the charge is 16.6 microC (16.6 × 10^(-6) C) and the voltage difference is 74.97 V. Plugging in these values, we have:

W = (16.6 × 10^(-6) C) * (74.97 V)

Calculating this, we find:

W ≈ 1.24502 × 10^(-3) J

To convert this to millijoules, we multiply by 1000:

W ≈ 1.24502 mJ

Therefore, it would take approximately 1.24502 millijoules of work to move the positive charge, 16.6 microC, from the negative side of the parallel plate combination to the positive side when the voltage difference across the plates is 74.97 V.

To learn more about work, click here: https://brainly.com/question/18094932

#SPJ11

One long wire lies along an x axis and carries a current of 53 A in the positive × direction. A second long wire is perpendicular to the xy plane, passes through the point (0, 4.2 m, 0), and carries a current of 52 A in the positive z direction. What is the magnitude of the
resulting magnetic field at the point (0, 1.4 m, 0)?

Answers

The magnitude of the resulting magnetic field at the point (0, 1.4 m, 0) is approximately 8.87 × 10⁻⁶ T.

The magnetic field is a vector quantity and it has both magnitude and direction. The magnetic field is produced due to the moving electric charges, and it can be represented by magnetic field lines. The strength of the magnetic field is represented by the density of magnetic field lines, and the direction of the magnetic field is represented by the orientation of the magnetic field lines. The formula for the magnetic field produced by a current-carrying conductor is given byB = (μ₀/4π) (I₁ L₁) / r₁ ²B = (μ₀/4π) (I₂ L₂) / r₂

whereB is the magnetic field,μ₀ is the permeability of free space, I₁ and I₂ are the currents in the two conductors, L₁ and L₂ are the lengths of the conductors, r₁ and r₂ are the distances between the point where the magnetic field is to be found and the two conductors respectively.Given data:Current in first wire I₁ = 53 A

Current in second wire I₂ = 52 A

Distance from the first wire r₁ = 1.4 m

Distance from the second wire r₂ = 4.2 m

Formula used to find the magnetic field

B = (μ₀/4π) (I₁ L₁) / r₁ ²B = (μ₀/4π) (I₂ L₂) / r₂For the first wire: The wire lies along the x-axis and carries a current of 53 A in the positive × direction. Therefore, I₁ = 53 A, L₁ = ∞ (the wire is infinite), and r₁ = 1.4 m.

So, the magnetic field due to the first wire is,B₁ = (μ₀/4π) (I₁ L₁) / r₁ ²= (4π×10⁻⁷ × 53) / (4π × 1.4²)= (53 × 10⁻⁷) / (1.96)≈ 2.70 × 10⁻⁵ T (approximately)

For the second wire: The wire is perpendicular to the xy plane, passes through the point (0, 4.2 m, 0), and carries a current of 52 A in the positive z direction.

Therefore, I₂ = 52 A, L₂ = ∞, and r₂ = 4.2 m.

So, the magnetic field due to the second wire is,B₂ = (μ₀/4π) (I₂ L₂) / r₂= (4π×10⁻⁷ × 52) / (4π × 4.2)= (52 × 10⁻⁷) / (4.2)≈ 1.24 × 10⁻⁵ T (approximately)

The magnitude of the resulting magnetic field at the point (0, 1.4 m, 0) is the vector sum of B₁ and B₂ at that point and can be calculated as,

B = √(B₁² + B₂²)= √[(2.70 × 10⁻⁵)² + (1.24 × 10⁻⁵)²]= √(7.8735 × 10⁻¹¹)≈ 8.87 × 10⁻⁶ T (approximately)

To know more about magnitude:

https://brainly.com/question/28714281


#SPJ11

By performing a Lorentz transformation on the field of a stationary magnetic monopole, find the magnetic and electric fields of a moving monopole. Describe the electric field lines qualitatively.

Answers

In this question, we are given a magnetic monopole, which is a hypothetical particle that carries a magnetic charge of either north or south. The magnetic field lines around a monopole would be similar to that of an electric dipole but the field would be of magnetic in nature rather than electric.

We are asked to find the magnetic and electric fields of a moving monopole after performing a Lorentz transformation on the field of a stationary magnetic monopole. Lorentz transformation on the field of a stationary magnetic monopole We can begin by finding the electric field lines qualitatively.

The electric field lines emanate from a positive charge and terminate on a negative charge. As a monopole only has a single charge, only one electric field line would emanate from the monopole and would extend to infinity.To find the magnetic field of a moving monopole, we can begin by calculating the magnetic field of a stationary magnetic monopole.

The magnetic field of a monopole is given by the expression:[tex]$$ \vec{B} = \frac{q_m}{r^2} \hat{r} $$[/tex]where B is the magnetic field vector, q_m is the magnetic charge, r is the distance from the monopole, and  is the unit vector pointing in the direction of r.

To know more about magnetic visit:

https://brainly.com/question/3617233

#SPJ11

A particle is incident upon a square barrier of height \( U \) and width \( L \) and has \( E=U \). What is the probability of transmission? You must show all work.

Answers

The probability of transmission is zero.

Given that a particle is incident upon a square barrier of height U and width L and has E=U.

We need to find the probability of transmission.

Let us assume that the energy of the incident particle is E.

When the particle hits the barrier, it experiences reflection and transmission.

The Schrödinger wave function is given by;ψ = Ae^ikx + Be^-ikx

Where, A and B are the amplitude of the waves.

The coefficient of transmission is given by;T = [4k1k2]/[(k1+k2)^2]

Where k1 = [2m(E-U)]^1/2/hk2

               = [2mE]^1/2/h

Since the particle has E = U.

Therefore, k1 = 0 Probability of transmission is given by the formula; T = (transmission current/incident current)

Here, the incident current is given by; Incident = hv/λ

Where v is the velocity of the particle.

λ is the de Broglie wavelength of the particleλ = h/p

                                                                            = h/mv

Therefore, Incident = hv/h/mv

                                 = mv/λ

We know that m = 150, E = U = 150, and L = 1

The de Broglie wavelength of the particle is given by; λ = h/p

                                                                                             = h/[2m(E-U)]^1/2

The coefficient of transmission is given by;T = [4k1k2]/[(k1+k2)^2]

Where k1 = [2m(E-U)]^1/2/hk2

               = [2mE]^1/2/h

Since the particle has E = U.

Therefore, k1 = 0k2

                      = [2mE]^1/2/h

                      = [2 × 150 × 1.6 × 10^-19]^1/2 /h

                      = 1.667 × 10^10 m^-1

Now, the coefficient of transmission,T = [4k1k2]/[(k1+k2)^2]

                                                              = [4 × 0 × 1.667 × 10^10]/[(0+1.667 × 10^10)^2]

                                                               = 0

Probability of transmission is given by the formula; T = (transmission current/incident current)

Here, incident current is given by; Incident = mv/λ

                                                                       = 150v/[6.626 × 10^-34 / (2 × 150 × 1.6 × 10^-19)]

Iincident = 3.323 × 10^18

The probability of transmission is given by; T = (transmission current/incident current)

                                                                           = 0/3.323 × 10^18

                                                                           = 0

Hence, the probability of transmission is zero.

Learn more about transmission from the given link;

https://brainly.in/question/54329779

#SPJ11

urgent please help
An object is being acted upon by three forces and as a result moves with a constant velocity. One force is 60.0 N along the +x-axis, and the second is 75.0 N along the +y-axis. What is the standard an

Answers

To determine the standard angle, we need to find the angle between the resultant vector (the vector sum of the three forces) and the positive x-axis.

Since the object is moving with a constant velocity, the resultant force acting on it must be zero.

Let's break down the given forces:

Force 1: 60.0 N along the +x-axis

Force 2: 75.0 N along the +y-axis

Since these two forces are perpendicular to each other (one along the x-axis and the other along the y-axis), we can use the Pythagorean theorem to find the magnitude of the resultant force.

Magnitude of the resultant force (FR) = sqrt(F1^2 + F2^2)

FR = sqrt((60.0 N)^2 + (75.0 N)^2)

FR = sqrt(3600 N^2 + 5625 N^2)

FR = sqrt(9225 N^2)

FR = 95.97 N (rounded to two decimal places)

Now, we can find the angle θ between the resultant force and the positive x-axis using trigonometry.

θ = arctan(F2 / F1)

θ = arctan(75.0 N / 60.0 N)

θ ≈ arctan(1.25)

Using a calculator, we find θ ≈ 51.34 degrees (rounded to two decimal places).

Therefore, the standard angle between the resultant vector and the positive x-axis is approximately 51.34 degrees.

Learn more about vector here: brainly.com/question/24256726

#SPJ11

If the net charge on the oil drop is negative, what should be
the direction of the electric field that helps it remain
stationary?

Answers

Millikan's experiment established the fundamental charge of the electron to be 1.592 x 10-19 coulombs, which is now defined as the elementary charge.

The direction of the electric field that helps an oil drop remain stationary when the net charge on it is negative is upwards. This occurs due to the interaction between the electric field and the negative charges on the oil droplet.

Millikan oil-drop experiment, which is a measurement of the elementary electric charge by American physicist Robert A. Millikan in 1909, was the first direct and reliable measurement of the electric charge of a single electron.

The following are some points to keep in mind during the Millikan Oil Drop Experiment:

Oil droplets are produced using an atomizer by spraying oil droplets into a container.

When oil droplets reach the top, they are visible through a microscope.

A uniform electric field is generated between two parallel metal plates using a battery.

The positively charged upper plate attracts negative oil droplets while the negatively charged lower plate attracts positive oil droplets. 

The oil droplet falls slowly due to air resistance through the electric field.

As a result of Coulomb's force, the oil droplet stops falling and remains stationary. The upward electric force balances the downward gravitational force. From this, the amount of electrical charge on the droplet can be calculated.

Millikan's experiment established the fundamental charge of the electron to be 1.592 x 10-19 coulombs, which is now defined as the elementary charge.

To know more about fundamental charge of the electron, visit:

https://brainly.com/question/32913598

#SPJ11

When an oil drop has a negative net charge, the electric field that helps it stay stationary is in the upward direction.

Thus, The interaction between the electric field and the oil droplet's negative charges causes this to happen.

The first direct and accurate measurement of the electric charge of a single electron was made in 1909 by American physicist Robert A. Millikan using his oil-drop experiment to detect the elementary electric charge.

When conducting the Millikan Oil Drop Experiment, bear the following in mind. Using an atomizer, oil droplets are sprayed into a container to create oil droplets. Oil droplets are visible under a microscope once they have risen to the top. Between two people, a consistent electric field is created.

Thus, When an oil drop has a negative net charge, the electric field that helps it stay stationary is in the upward direction.

Learn more about Electric field, refer to the link:

https://brainly.com/question/11482745

#SPJ4

Gary is interested in the effect of lighting on focus so he tests participants ability to focus on a complex task under three different lighting conditions: bright lighting (M = 10), low lighting (M = 5), neon lighting (M = 4). His results were significant, F(2, 90) = 5.6, p < .05. What can Gary conclude? O a. Bright lights make it easier to focus than low lights or neon lights. O b. Type of lighting has no effect on focus. O c. Bright lights make it more difficult to focus than low lights or neon lights. O d. Type of lighting has some effect on focus.

Answers

Based on the given information, Gary conducted an experiment to test the effect of lighting on participants' ability to focus. He compared three different lighting conditions: bright lighting, low lighting, and neon lighting. The results showed a significant effect, with an F-value of 5.6 and p-value less than 0.05. Now we need to determine what Gary can conclude from these results.

The F-value and p-value are indicators of statistical significance in an analysis of variance (ANOVA) test. In this case, the F(2, 90) value suggests that there is a significant difference in participants' ability to focus across the three lighting conditions.

Since the p-value is less than 0.05, Gary can reject the null hypothesis, which states that there is no difference in focus ability between the different lighting conditions. Therefore, he can conclude that the type of lighting does have some effect on focus.

However, the specific nature of the effect cannot be determined solely based on the information provided. The mean values indicate that participants performed best under bright lighting (M = 10), followed by low lighting (M = 5), and neon lighting (M = 4). This suggests that bright lights may make it easier to focus compared to low lights or neon lights, but further analysis or post-hoc tests would be required to provide a more definitive conclusion.

To learn more about Null hypothesis - brainly.com/question/32456224

#SPJ11

"A 4-cm high object is in front of a thin lens. The lens forms a
virtual image 12 cm high. If the object’s distance from the lens is
6 cm, the image’s distance from the lens is:

Answers

If the object’s distance from the lens is 6 cm, the image's distance from the lens is 18 cm in front of the lens.

To find the image's distance from the lens, we can use the lens formula, which states:

1/f = 1/v - 1/u

where:

f is the focal length of the lens,

v is the image distance from the lens,

u is the object distance from the lens.

Height of the object (h₁) = 4 cm (positive, as it is above the principal axis)

Height of the virtual image (h₂) = 12 cm (positive, as it is above the principal axis)

Object distance (u) = 6 cm (positive, as the object is in front of the lens)

Since the image formed is virtual, the height of the image will be positive.

We can use the magnification formula to relate the object and image heights:

magnification (m) = h₂/h₁

= -v/u

Rearranging the magnification formula, we have:

v = -(h₂/h₁) * u

Substituting the given values, we get:

v = -(12/4) * 6

v = -3 * 6

v = -18 cm

The negative sign indicates that the image is formed on the same side of the lens as the object.

Learn more about distance -

brainly.com/question/26550516

#SPJ11

A 5.78μC and a −3.58μC charge are placed 200 Part A cm apart. Where can a third charge be placed so that it experiences no net force? [Hint Assume that the negative charge is 20.0 cm to the right of the positive charge]

Answers

A 5.78μC and a −3.58μC charge are placed 200 Part A cm apart.

A third charge should be placed at the midpoint between Q₁ and Q₂, which is 100 cm (half the distance between Q₁ and Q₂) to the right of Q₁.

[Hint Assume that the negative charge is 20.0 cm to the right of the positive charge]

To find the position where a third charge can be placed so that it experiences no net force, we need to consider the electrostatic forces between the charges.

The situation using Coulomb's Law, which states that the force between two point charges is proportional to the product of their charges and inversely proportional to the square of the distance between them.

Charge 1 (Q₁) = 5.78 μC

Charge 2 (Q₂) = -3.58 μC

Distance between the charges (d) = 200 cm

The direction of the force will depend on the sign of the charge and the distance between them. Positive charges repel each other, while opposite charges attract.

Since we have a positive charge (Q₁) and a negative charge (Q₂), the net force on the third charge (Q₃) should be zero when it is placed at a specific position.

The negative charge (Q₂) is 20.0 cm to the right of the positive charge (Q₁). Therefore, the net force on Q₃ will be zero if it is placed at the midpoint between Q₁ and Q₂.

Let's calculate the position of the third charge (Q₃):

Distance between Q₁ and Q₃ = 20.0 cm (half the distance between Q₁ and Q₂)

Distance between Q₂ and Q₃ = 180.0 cm (remaining distance)

Using the proportionality of the forces, we can set up the equation:

|F₁|/|F₂| = |Q₁|/|Q₂|

Where |F₁| is the magnitude of the force between Q₁ and Q₃, and |F₂| is the magnitude of the force between Q₂ and Q₃.

Applying Coulomb's Law:

|F₁|/|F₂| = (|Q₁| * |Q₃|) / (|Q₂| * |Q₃|)

|F|/|F₂| = |Q₁| / |Q₂|

Since we want the net force on Q₃ to be zero, |F| = F₂|. Therefore, we can write:

|Q₁| / |Q₂| =  (|Q₁| * |Q₃|) / (|Q₂| * |Q₃|)

|Q₁| * |Q₂| = |Q₁| * |Q₃|

|Q₂| = |Q₃|

Given that Q₂ = -3.58 μC, Q₃ should also be -3.58 μC.

Therefore, to place the third charge (Q₃) so that it experiences no net force, it should be placed at the midpoint between Q₁ and Q₂, which is 100 cm (half the distance between Q₁ and Q₂) to the right of Q₁.

To know more about charge here

https://brainly.com/question/13871705

#SPJ4

The distance between the two charges, 5.78μC and -3.58μC, is 200 cm.

Now, let us solve for the position where the third charge can be placed so that it experiences no net force.

Solution:First, we can find the distance between the third charge and the first charge using the Pythagorean theorem.Distance between 5.78μC and the third charge = √[(200 cm)² + (x cm)²]Distance between -3.58μC and the third charge = √[(20 cm + x)²]Next, we can use Coulomb's law to find the magnitude of the force that each of the two charges exerts on the third charge. The total force acting on the third charge is zero when the magnitudes of these two forces are equal and opposite. Therefore, we have:F₁ = k |q₁q₃|/r₁²F₂ = k |q₂q₃|/r₂²We know that k = 9 x 10⁹ Nm²/C². We can substitute the given values to find the magnitudes of F₁ and F₂.F₁ = (9 x 10⁹)(5.78 x 10⁻⁶)(q₃)/r₁²F₂ = (9 x 10⁹)(3.58 x 10⁻⁶)(q₃)/r₂²Setting these two equal to each other:F₁ = F₂(9 x 10⁹)(5.78 x 10⁻⁶)(q₃)/r₁² = (9 x 10⁹)(3.58 x 10⁻⁶)(q₃)/r₂²r₂²/r₁² = (5.78/3.58)² (220 + x)²/ x² = (33/20)² (220 + x)²/ x² 4 (220 + x)² = 9 x² 4 x² - 4 (220 + x)² = 0 x² - (220 + x)² = 0 x = ±220 cm.

Therefore, the third charge can be placed either 220 cm to the right of the negative charge or 220 cm to the left of the positive charge so that it experiences no net force.

Learn more about charges

https://brainly.com/question/28721069

#SPJ11

Four resistors R 1 ​ =78Ω,R 2 ​ =35Ω,R 3 ​ =60Ω and R 4 ​ =42Ω are connected with a battery of voltage 6 V. How much is the total current in the circuit? Express your answer in amperes (A).

Answers

The total current in the circuit is 0.028 (A).

To find the total current in the circuit, we can use Ohm's Law and the concept of total resistance in a series circuit. In a series circuit, the total resistance (R_total) is the sum of the individual resistances.

Given resistors:

R1 = 78 Ω

R2 = 35 Ω

R3 = 60 Ω

R4 = 42 Ω

Total resistance (R_total) in the circuit:

R_total = R1 + R2 + R3 + R4

R_total = 78 Ω + 35 Ω + 60 Ω + 42 Ω

R_total = 215 Ω

We know that the total current (I_total) in the circuit is given by Ohm's Law:

I_total = V / R_total

where V is the voltage provided by the battery (6 V) and R_total is the total resistance.

Substituting the given values:

I_total = 6 V / 215 Ω

I_total ≈ 0.028 A

Therefore, the total current in the circuit is approximately 0.028 amperes (A).

To know more about ohm's law refer here: https://brainly.com/question/1247379#

#SPJ11

5Pb has a half-life of about t½ = 1.76x107 years and decays into 205Tl. There is no evidence for primordial 205Tl. (In other words, ALL of the 205Tl in the sample came from the decay of 205Pb) Estimate the age of a meteoroid with a ratio of 205Pb /205Tl = 1/65535. (Answer in scientific notation, in years, using 3 sig. figs.)

Answers

The estimated age of the meteoroid is approximately 2.13 x 10^9 years.

The ratio of 205Pb to 205Tl can be used to determine the number of half-lives that have occurred since the meteoroid formed. Since all 205Tl in the sample is from the decay of 205Pb, the ratio provides a direct measure of the number of 5Pb decay events.

The ratio of 205Pb to 205Tl is 1/65535, which means there is 1 unit of 205Pb for every 65535 units of 205Tl. Knowing that the half-life of 5Pb is approximately 1.76x10^7 years, we can calculate the age of the meteoroid.

To do this, we need to determine how many half-lives have occurred. By taking the logarithm of the ratio and multiplying it by -0.693 (the decay constant), we can find the number of half-lives. In this case, log (1/65535) * -0.693 gives us a value of approximately 4.03.

Finally, we multiply the number of half-lives by the half-life of 5Pb to find the age of the meteoroid: 4.03 * 1.76x10^7 years = 7.08x10^7 years. Rounding to three significant figures, the estimated age is approximately 2.13x10^9 years.

To learn more about half-life

Click here brainly.com/question/31666695

#SPJ11

A meter stick balances horizontally on a knife-edge at the 50.0 cm mark. With two 6.04 g coins stacked over the 21.6 cm mark, the g stick is found to balance at the 31.9 cm mark. What is the mass of the meter stick? Number i Units

Answers

12.08 g * 21.6 cm = M * 31.9 cm

M = (12.08 g * 21.6 cm) / 31.9 cm

M ≈ 8.20 g

The mass of the meter stick is approximately 8.20 grams.

Let's denote the mass of the meter stick as M (in grams).

To determine the mass of the meter stick, we can use the principle of torque balance. The torque exerted by an object is given by the product of its mass, distance from the fulcrum, and the acceleration due to gravity.

Considering the equilibrium condition, the torques exerted by the coins and the meter stick must balance each other:

Torque of the coins = Torque of the meter stick

The torque exerted by the coins is calculated as the product of the mass of the coins (2 * 6.04 g) and the distance from the fulcrum (21.6 cm). The torque exerted by the meter stick is calculated as the product of the mass of the meter stick (M) and the distance from the fulcrum (31.9 cm).

(2 * 6.04 g) * (21.6 cm) = M * (31.9 cm)

Simplifying the equation:

12.08 g * 21.6 cm = M * 31.9 cm

M = (12.08 g * 21.6 cm) / 31.9 cm

M ≈ 8.20 g

Therefore, the mass of the meter stick is approximately 8.20 grams.

Learn more about torque:

https://brainly.com/question/17512177

#SPJ11

Which of the following statements is true for a reversible process like the Carnot cycle? A. The total change in entropy is zero. B. The total change in entropy is positive. C.The total change in entropy is negative. D. The total heat flow is zero

Answers

Therefore, option A is the correct answer. The total change in entropy is zero in a reversible process like the Carnot cycle.

The following statement is true for a reversible process like the Carnot cycle is that the total change in entropy is zero. Reversible processes are processes that can occur in the opposite direction without leaving any effect on the surroundings.

In reversible processes, the systems pass through a series of intermediate states in the forward direction that is the exact mirror image of the reverse direction.

Reversible processes are efficient and can be used to study the behavior of a thermodynamic system.The Carnot cycle is a reversible cycle that involves four processes; isothermal expansion, adiabatic expansion, isothermal compression, and adiabatic compression.

The efficiency of the Carnot cycle depends on the temperature difference between the hot and cold reservoirs. In an ideal reversible Carnot cycle, there are no losses due to friction, conduction, radiation, and other inefficiencies, and hence the efficiency is 100 percent.

In a reversible process like the Carnot cycle, the total change in entropy is zero because the entropy change of the system is compensated by the opposite entropy change of the surroundings, resulting in no net change in the total entropy of the system and the surroundings.

Therefore, option A is the correct answer. The total change in entropy is zero in a reversible process like the Carnot cycle.

To know more about process visit;

brainly.com/question/14832369

#SPJ11

The cornea of the eye has a radius of curvature of approximately 0.58 cm, and the aqueous humor behind it has an index of refraction of 1.35. The thickness of the comes itself is small enough that we shall neglect it. The depth of a typical human eye is around 25.0 mm .
A. distant mountain on the retina, which is at the back of the eye opposite the cornea? Express your answer in millimeters.
B. if the cornea focused the mountain correctly on the rotina as described in part A. would also focus the text from a computer screen on the rotina if that screen were 250 cm in front of the eye? C. Given that the cornea has a radius of curvature of about 5.00 mm, where does it actually focus the mountain?

Answers

A. The distant mountain on the retina, which is at the back of the eye opposite the cornea is 3.54 mm.

A human eye is around 25.0 mm in depth.

Given that the radius of curvature of the cornea of the eye is 0.58 cm, the distance from the cornea to the retina is around 2 cm, and the index of refraction of the aqueous humor behind the cornea is 1.35. Using the thin lens formula, we can calculate the position of the image.

1/f = (n - 1) [1/r1 - 1/r2] The distance from the cornea to the retina is negative because the image is formed behind the cornea.

Rearranging the thin lens formula to solve for the image position:

1/25.0 cm = (1.35 - 1)[1/0.58 cm] - 1/di

The image position, di = -3.54 mm

Thus, the distant mountain on the retina, which is at the back of the eye opposite the cornea, is 3.54 mm.

B. The distance between the computer screen and the eye is 250 cm, which is far greater than the focal length of the eye (approximately 1.7 cm). When an object is at a distance greater than the focal length of a lens, the lens forms a real and inverted image on the opposite side of the lens. Therefore, if the cornea focused the mountain correctly on the retina as described in part A, it would not be able to focus the text from a computer screen on the retina.

C. The cornea of the eye has a radius of curvature of about 5.00 mm. The lens formula is used to determine the image location. When an object is placed an infinite distance away, it is at the focal point, which is 17 mm behind the cornea.Using the lens formula:

1/f = (n - 1) [1/r1 - 1/r2]1/f = (1.35 - 1)[1/5.00 mm - 1/-17 mm]1/f = 0.87/0.0001 m-9.1 m

Thus, the cornea of the eye focuses the mountain approximately 9.1 m away from the eye.

Learn more about lenses here: https://brainly.com/question/9757866

#SPJ11

Other Questions
What is this quote referring to?"Teachers respond to linguistical and cultural differences byscaffolding instruction in culturally responsive classrooms."(Vacca, Vacca, & Mraz, 2017) Which of the following would be least appropriate to make use ofan estate freeze:i) A young business owner who is looking to plan for the successionof his companyii) A business owner in their 30s Solve the following equations. Give your answer to 3 decimal places when applicable. (i) 12+3e^x+2 =15 (ii) 4ln2x=10 When preparing to assist a client with personal hygiene, whatfactors should the nurse take into consideration? Discuss how oralcare impacts a clients overall health and well-being. Problem 5-47 Amortizing Loans And Inflation (LO3) Suppose You Take Out A $106,000,20-Year Mortgage Loan To Buy A Condo. The Interest Rate On The Loan Is 6%. To Keep Things Simple, We Will Assume You Make Payments On The Loan Annually At The End Of Each Year. A. What Is Your Annual Payment On The Loan? B. Construct A Mortgage Amortization. C. What Fraction Of When implementing discretionary fiscal policy the mostdifficult thing to do is to get the magnitude, or dollar size, ofthe policy change just right. Why is this so? Which one of the following statements is NOT true? Select one: A. The risk that the lender may not receive payments as promised is called default risk. B. Investors must pay a premium (a higher price) to purchase a security that exposes them to default risk. C. Australian government securities are assumed not have any default risk and are adopted as the best proxy measure for the risk-free rate. D. The greater the risk of an investment, the greater the return that investors require. If the present value PV=$1000 and the future cash flow in a threeyear CF= $2197. Find the interest rate? Math puzzle. Let me know if u want points, i will make new question Analyze the roots of bullying behavior in children. What arepossible causes? How does the behavior start? What circumstancescan contribute to bullying? What are the basic elements of understanding andconceptualizing human-computer interaction? How would a leadership succession plan best serve an individualas well as an organization? Is it important to publicly announcethe succession plan? Why or why not? ISLAMIC BANKING AND FINANCE:Direction: Answer the following in detail.1. Analyse the different capacities of Mudarib as Trustee, Partner ,Liable, Employee.2. Partner A & Partner B entered into Mudarabah contract of 2 years. Partner A invested BD6000/- as part of capital investment. Profit and loss ratio will be 70:30. Answer the following: Appraise valid explanation on the below questions.A. Who is the Mudarib ? Rab ul Mal?why?(5marks)B. Is this transaction Sharia Compliant? State the rulings? (3marks)C. Can partner A terminate the contract on his own? Why? ( 2marks)D. Profit of BD 15000/-accumulated during the year after deducting admin expenses of BD1000/- how much will be PLS between the two? Show the Computation.(5marks) Collision Between Ball and Stick Points:20 On a frictionless table, a 0.70 kg glob of clay strikes a uniform 1.70 kg bar perpendicularly at a point 0.28 m from the center of the bar and sticks to it. If the bar is 1.22 m long and the clay is moving at 7.00 m/s before striking the bar, what is the final speed of the center of mass? b m M 2.04 m/s You are correct. Your receipt no. is 161-3490 L Previous Tries At what angular speed does the bar/clay system rotate about its center of mass after the impact? 5.55 rad/s Submit Answer Incorrect. Tries 4/40 Previous Tries Where did the Zuni tribes live?A. lodges next to bodies of waterB. houses built into cliffsC. tepees next to trails A salesperson in a recurring revenue firm is paid the equivalent of 2.5 months' sales revenue for each new customer added. The fee charged to the customer for the service is $120 per month, and providing the service costs the company $50 per month per customer. It costs $25 to initially hook up each new customer. What would be the effect on this month's expenses if the salesperson added fifty-five new customers this month? Andrea, a 15-year-old, is most likely to learn social skills in a ______ and develop her sense of identity in a ______. Which is the primary factor that determines in which location a stage of production is likely to take place?Group of answer choicesA)the location with the lowest per unit costs (for that stage)B)an abundance of natural resourcesC)the availability of low-wage workersD)low levels of productivity, which indicate the potential for rapid growth When pneumothorax occurs results in: a. intrapulmonary pressure increasing and intrapleural pressure decreasing b. equilibrium between intrapleural and intrapulmonary pressure. c. intrapulmonary pressure decreases and intrapleural pressure increases 3. Suppose the critical distance for reaction of iodine with CCl4 is 2 x 10-40 m and that the diffusion coefficient of iodine atoms in CCl4 is 3 x 10m-/s at 25 C. What is the maximum rate constant for the recombination of iodine atoms under these conditions and how does this compare with the experimental value of 8.2 x 109 1/(Ms)?