Answer:
$13,756.31
Step-by-step explanation:
The computation of the amount at the end of the five years is shown below:
Here we applied the FV formula
Given that
NPER = 5 × 52 = 260
RATE = 2.25% ÷ 52 = 0.043269%
PV = $0
PMT = $50
The formula is given below:
=-FV(RATE;NPER;PMT;PV;TYPE)
After applying the above formula, the future value is $13,756.31
Hellpppp!! Ik it’s so easy but I have a literal peanut brain
Answer:3 1/3
Step-by-step explanation:
It’s 3 1/3
Simplify (10^-2/
10^3)^-1
0 -100,000
1
10
1
1
10
100,000
DONE
Answer:
huh?
Step-by-step explanation:
Answer:
the answer is D. 100,000.
Step-by-step explanation:
I'm a very big brain specimen.
WILL GIVE BRAINLIST PLS HELP Find x. Round your answer to the nearest tenth.
Answer:
9. x=13.5
10. x=11.5
Step-by-step explanation:
The perimeter of a rectangle is 58. The length is 4 more than
4 times the width. Find the width and length.
Answer:
Step-by-step explanation:
Write 4.5 as a mixed number.
Answer:
9/2
Step-by-step explanation:
4.5 = 4 1/2 = 9/2
what is the present perfect of everybody
Answer:
Present Perfect Tense Examples
Has lived: She has lived here all her life.
Have written: They have written three letters already.
Have worked: I have worked here since I graduated school.
Has done: He has finished his homework.
Have been: We have been to Canada.
Has forgotten: She has forgotten her folder.
Step-by-step explanation:
Using your own words, explain direct and inverse proportionality. (Be sure to use complete sentences.)
Direct and Inverse proportionality was discussed with examples.
Direct proportionality: Direct proportionality means the change of a similar kind.
For example, as pressure increases, density also increases, which means both the parameters (pressure and density) are experiencing a similar kind of change i.e. increment in their magnitude.
What is the constant of proportionality?The constant of proportionality is the ratio that relates two given values.
For example, Density ∝ pressure
Density = k(Pressure)
Here k is the constant of proportionality
Inverse proportionality: Inverse proportionality means the change of the opposite kind.
For example, as the population increases, natural resources decrease, which means parameters(population and natural resources) are experiencing the opposite kind of change i.e one is increasing other is decreasing.
Thus, Direct and Inverse proportionality were discussed with examples.
To get more about proportionality visit:
https://brainly.com/question/24868934
a circle has its center at (-2, -3) and a radius of 3 units. Find the question of the circle using the Pythagorean Theorem
Answer:
a^2 plus b^2 = c^2
Step-by-step explanation:
That's the Pythagorean theorem apply.
Please help me ASAP Please
Answer:
31x=217 x=7
Step-by-step explanation:
begin with what you know. You know that you will have 31 days to complete the goal and that the goal is 217 miles. This gives you your y (217) and your m (31). Then set up into y=mx+b form. This gives 31x=217. Then to solve divide 217 by 31. This gives the needed the needed answer of 7 miles per day
Which graph represents the solution of x2 + (y – 2)2 < 36 and y2 > 8x?
Answer:
B. The second graph
Step-by-step explanation:
got the answer from edge
You spin a spinner that is equally divided into 5 parts, and then you spin it again. 1 part is pink, 2 parts are blue, and 2 parts are black. What is the probability of the spinner dropping on a blue section on the first spin and then a blue section of the second spin?
Answer:
There is a 16% chance of the spinner dropping on a blue section on the first spin and then a blue section of the second spin.
Step-by-step explanation:
Given that I spin a spinner that is equally divided into 5 parts, and then I spin it again, knowing that 1 part is pink, 2 parts are blue, and 2 parts are black, to determine what is the probability of the spinner dropping on a blue section on the first spin and then a blue section of the second spin the following calculation must be performed:
Blue parts: 2
Total Parts: 5
2/5 = 0.4 = 40%
0.40 x 0.40 = 0.16
Thus, there is a 16% chance of the spinner dropping on a blue section on the first spin and then a blue section of the second spin.
A single die is rolled. Find the odds in favor of rolling a number greater than 3.
Answer:
6:3
Step-by-step explanation:
Answer and Step-by-step explanation:
3 of the options are not to be chosen, and 3 are wanted.
That means that anything above 3 (so, 4, 5, or 6) are the numbers that are wanted, while the numbers 1, 2, and 3 are not wanted.
We have 6 total options.
The ration would be:
3:6, or 3 to 6. This reduces down to 1:2, or 1 to 2.
That means that there is a 50% chance of getting 4, 5, or 6.
#teamtrees #PAW (Plant And Water)
A carpenter is creating two new templates for his designs. One template will be in the shape of a right triangle, where the longer leg is 4 inches more than six times the shorter leg.
The second template will be in the shape of a rectangle, where the width is 5 inches more than the triangle’s shorter leg, and the length is 3 inches.
The carpenter needs the areas of the two templates to be the same. Write a system of equations to represent this situation, where y is the area, and x is the length of the shorter leg of the triangle. Which statement describes the number and viability of the system’s solutions?
A.
The system has two solutions, but only one is viable because the other results in negative side lengths.
B.
The system has two solutions, and both are viable because they result in positive side lengths.
C.
The system has only one solution, but it is not viable because it results in negative side lengths.
D.
The system has only one solution, and it is viable because it results in positive side lengths.
Answer:
this is correct on plato/edmentum
Step-by-step explanation:
For an equation to be viable, the result of the equation must be positive (i.e. greater than 1).
The 2 templates, the farmer created have two solutions, but only one of the solutions are viable.
For the first template, we have:
[tex]x \to[/tex] length of the shorter leg of the triangle
[tex]z \to[/tex] length of the longer leg of the triangle
From the question, we have:
[tex]z = 4 + 6x[/tex]
The area (y) of the first template is:
[tex]y = \frac{1}{2}xz[/tex] --- area of a triangle
So, we have:
[tex]y = \frac{1}{2}x(4 + 6x)[/tex]
Open bracket
[tex]y = 2x + 3x^2[/tex]
For the second template, we have:
[tex]Width = 5 + x[/tex]
[tex]Length = 3[/tex]
So, the area (y) of the second template is:
[tex]y = Length \times Width[/tex] --- area of a rectangle
This gives:
[tex]y = 3 \times (5 + x)[/tex]
[tex]y = 3(5 + x)[/tex]
[tex]y = 15 + 3x[/tex]
So, the expression for both areas are:
[tex]y = 2x + 3x^2[/tex] --- template 1
[tex]y = 15 + 3x[/tex] --- template 2
Both areas must be equal. This is represented as:
[tex]2x + 3x^2 = 15 + 3x[/tex]
Collect like terms
[tex]3x^2 +2x - 3x - 15 = 0[/tex]
[tex]3x^2 - x - 15 = 0[/tex]
Solve for x using quadratic formula, we have:
[tex]x = \frac{-b \± \sqrt{b^2 - 4ac}}{2a}[/tex]
Where:
[tex]a = 3; b =-1; c=-15[/tex]
So, we have:
[tex]x = \frac{-(-1) \± \sqrt{(-1)^2 - 4\times 3 \times -15}}{2 \times 3}[/tex]
[tex]x = \frac{1 \± \sqrt{181}}{6}[/tex]
[tex]x = \frac{1 \± 13.5}{6}[/tex]
Split
[tex]x = \frac{1 + 13.5}{6} \ or \ x = \frac{1 + 13.5}{6}[/tex]
[tex]x = \frac{-12.5}{6} \ or \ x = \frac{14.5}{6}[/tex]
[tex]x = -2.08 \ or \ x = 2.42[/tex]
We can see that x has 2 solutions, but only 1 of the solutions is viable because the other is negative.
Hence, option (a) is correct
Read more about viable and non-viable solutions at:
https://brainly.com/question/10558256
The roots of f(x) = 2x^2
+ 8x + 13 are
and
The vertex of the parabola is
at
Answer:
( 2 , − 5 )
Step-by-step explanation:
Write a system of linear equations for the graph below.
Answer:
[tex]\left \{ {{y=-2x+2} \atop {y=-\frac{1}{4}x-5 }} \right.[/tex]
Step-by-step explanation:
1. the equation for the first line (its poits are (0;2) and (4;-6)):
y= -2x+2;
2. the equation for the seconde line (its points are (0;-5) and (4;-6)):
y= -1/4 x -5;
3. the required system of linear equations is:
[tex]\left \{ {{y=-2x+2} \atop {y=-\frac{1}{4}x-5 }} \right.[/tex]
Cooper weights 20 pounds. When he is an adult dog, he will weigh about 315% of his current weight. Write 315% as a fraction and a decimal.
Answer:
3.15 and 3 3/20
Step-by-step explanation:
315 ÷ 100 = 3.15
3.15 = 3 3/20
Please mark me brainlest
Can I have help on this
Answer:
C. -6, -5, 2, 5
Step-by-step explanation:
A couple things to remember:
1. Negative numbers are always less than positive values.
2. If a number is negative, the greater the absolute value is, the less the number itself is. For example, -100 is less than -10, and -57 is less than -50.
Now, using these rules, we can put the numbers in order.
The numbers given are: 5, -5, -6, 2.
We know that 2 is less than 5, and that negative numbers are less than positive numbers. So, using this, we can order the numbers in two ways:
1. -5, -6, 2, 5
2. -6, -5, 2, 5
We also know that if a number is negative, the greater the absolute value is, the less the number itself is. Therefore, we know that -6 is less than -5. So, the correct order is -6, -5, 2, 5.
Hope this helps!
2. Jim has $57 in her bank account. He wants to buy a video game that costs $69. Should
Jim buy the video: Yes or No. Explain your reasoning using complete sentences.
Answer:
Well I would say John shouldn’t buy any vidoe games becuase first he can’t afford it and no one’s gonna borrow 12 dollars for a video gamer. Plus he can buy it when he has enough.
Write the equation in slope-intercept form. Y+5= -6(x+7)
y + 5 = -6x - 42
y = -6x -47
An animal feed to be mixed from soybean meal and oats must contain at least 168 lb of protein, 27 lb of fat, and 14 lb of mineral ash. each sack of soybeans costs $21 and contains 70 lb of protein, 9 lb of fat, and 7 lb of mineral ash. each sack of oats cost $7 and contains 21 lb of protein, 7lb of fat, and 1 lb of mineral ash. how many sacks of each should be used to satisfy the minimum requirements at minimum cos
Answer:
The animal farm should buy 1.775 bags of soybeans and 1.575 bags of oats
[tex]Cost = 51.275[/tex]
Step-by-step explanation:
The given parameters can be summarized as:
[tex]\begin{array}{cccc}{} & {x} & {y} & {Total} & {Protein} & {70} & {21} & {168} &{Fats}& {9} & {7} & {27} & {Minerals} & {7} & {1} & {14}& {Cost} & {21} & {7} & {} \ \end{array}[/tex]
Where: x = Soybeans and y = Oats.
So, the system of equations are:
[tex]70x + 21y = 168[/tex]
[tex]9x +7y = 27[/tex]
[tex]7x + y = 14[/tex]
[tex]Cost = 21x + 7y[/tex]
The best way to solve this, is using graph
Plot the following equations on a graph, and get the points of intersection:
[tex]70x + 21y = 168[/tex]
[tex]9x +7y = 27[/tex]
[tex]7x + y = 14[/tex]
From the attached graph, we have:
[tex](x_1,y_1) = (1.636,2.545)[/tex]
[tex](x_2,y_2) = (1.775,1.575)[/tex]
[tex](x_3,y_3) = (2.023,1.256)[/tex]
Substitute each of the values of x's and y's in the cost function to get the minimum cost:
[tex]Cost = 21x + 7y[/tex]
[tex](x_1,y_1) = (1.636,2.545)[/tex]
[tex]Cost = 21 * 1.636 + 7 * 2.545[/tex]
[tex]Cost = 52.171[/tex]
[tex](x_2,y_2) = (1.775,1.575)[/tex]
[tex]Cost = 21 * 1.775 + 7 * 1.575[/tex]
[tex]Cost = 48.3[/tex]
[tex](x_3,y_3) = (2.023,1.256)[/tex]
[tex]Cost = 21 * 2.023 + 7 * 1.256[/tex]
[tex]Cost = 51.275[/tex]
The values of x and y that gives the minimum cost is:
[tex](x_2,y_2) = (1.775,1.575)[/tex]
and the minimum cost is:
[tex]Cost = 48.3[/tex]
Hence, the animal farm should buy 1.775 bags of soybeans and 1.575 bags of oats
10. Rotate the figure shown 180° clockwise. Record the coordinates of the 3 points
image.
Answer:
[tex]J' = (6,7)[/tex]
[tex]K' = (6,2)[/tex]
[tex]L'=(3,7)[/tex]
Step-by-step explanation:
From the attachment, we have:
[tex]J = (-6,-7)[/tex]
[tex]K = (-6,-2)[/tex]
[tex]L = (-3,-7)[/tex]
Rotation: 180 degrees clockwise
Required
Find J', K' and L'
When a point (x, y)is rotated 180 degree clockwise, the resulting point is: (-x, -y)
So, we have:
[tex]J' = (6,7)[/tex]
[tex]K' = (6,2)[/tex]
[tex]L'=(3,7)[/tex]
Prove algebraically what type of function this is (even, odd, or neither). f(x) = −2x^4 − 12x^2
Show work Please
Answer:
Even
Step-by-step explanation:
[tex]f[/tex] is even because [tex]f(x)=f(-x)[/tex].
Given the coordinates (6, 3) and (-8, 1), the midpoint is:
0 (1, -2).
0 (-1,2).
O (-2, 4).
O (2,-4).
Solve the equation 4(c-3) = 8
What are the two ways to start solving this equation? Choose BOTH ways.
1. Use the distributive property to get 4c- 12 = 8
2. Use the distributive property to get 4c - 3 = 8
3. Add 3 to both sides to get 4c = 11
4. Divide both sides by 4 to get c - 3 = 2
5. Subtract 4 from both sides to get c - 3 = 4
Answer:
Use the distributive property to get 4c-12=8
Divide both sides by 4 to get c-3=2
Step-by-step explanation:
Convert the following repeating decimal to a fraction in simplest form.
.43
The diameter of a circle is 4 m. Find the circumference to the nearest tenth.
Answer :
[tex] \bf \large 10 \: m[/tex]
Step by step explanation :
Given that :The diameter of a circle is 4 m.to find :Find the circumference to the nearest tenth.formulas used :circumference = π × Diameterwhere,
π = 22/7Diameter = 4 mexplanation :⟼ c = πd
⟼ c = 22/7 × 4 m
⟼ c = 88/7 m
⟼ c = 12•57 m.
Round to the nearest tenth :⟼ c = 12•57 m
⟼ c = 10 m.
∴ circle circumference is 10 m.
- The sum of three numbers is 918. One of the numbers, x, is twice as much as the sum of the
other two numbers. What is the value of x?
Answer:
x = 612
Step-by-step explanation:
x = 2(y + z) Divide by 2 to isolate y + z
x/2 = y + z Set up the sum of three numbers
x + y + z = 918 Substitute x / 2 for y + z
x + x/2 = 918 Combine like terms
3/2 x = 918 Multiply both sides by 2/3
2/3 * 3x/2 = 2/3 * 918
x = 612
Consider the following problem: a box with an open top is to be constructed from a square piece of cardboard, 3 feet wide, by cutting out a square from each of the four corners and bending up the sides. Find the largest volume that such a box can have. (a) Draw several diagrams to illustrate the situation, some short boxes with large bases and some tall boxes with small bases. Find the volume of each configuration. Does it appear that there is a maximum volume
Answer:
) See annex
b) See annex
x = 0,5 ft
y = 2 ft and
V = 2 ft³
Step-by-step explanation: See annex
c) V = y*y*x
d-1) y = 3 - 2x
d-2) V = (3-2x)* ( 3-2x)* x ⇒ V = (3-2x)²*x
V(x) =( 9 + 4x² - 12x )*x ⇒ V(x) = 9x + 4x³ - 12x²
Taking derivatives
V¨(x) = 9 + 12x² - 24x
V¨(x) = 0 ⇒ 12x² -24x +9 = 0 ⇒ 4x² - 8x + 3 = 0
Solving for x (second degree equation)
x =[ -b ± √b²- 4ac ] / 2a
we get x₁ = 1,5 and x₂ = 0,5
We look at y = 3 - 2x and see that the value x₂ is the only valid root
then
x = 0,5 ft
y = 2 ft and
V = 0,5*2*2
V = 2 ft³
Factor 129 into a product of its primes.
(Need help what would the answer be ?)
the prime factors of 129 would be 1, 3, 43, and 129 !! i would look into factor trees if you need help understanding it’s the easiest for me :)) if this helped please mark brainliest ♡
The opposite sides of a parallelogram have measures (2x+10) cin and (x+15)
cm. What is the measure of the sides?
Answer:
The measure of the sides is 20 cm.
Step-by-step explanation:
Opposite side of a parallelogram:
Opposite sides of a parallelogram are congruent, that is, they have the same measure.
Measures (2x+10) cm and (x+15) cm:
This means that:
[tex]2x + 10 = x + 15[/tex]
[tex]2x - x = 15 - 10[/tex]
[tex]x = 5[/tex]
2x + 10 = 2*5 + 10 = 10 + 10 = 20
The measure of the sides is 20 cm.