3 Let M(t)=100t+50 denote the savings account balance, in dollars, t months since it was opened. In dollars, how much is in her account after 2 years?

Answers

Answer 1

Let M(t)=100t+50 denote the savings account balance, in dollars, t months since it was opened. After 2 years, the savings account will have a balance of $2450.

The function M(t)=100t+50 denotes the savings account balance in dollars, t months since it was opened. So, after 2 years (which is 24 months), the balance of the account will be M(24) = 100 * 24 + 50 = 2450.

The function M(t) is a linear function, which means that the balance of the account increases by $100 each month. So, after 24 months, the balance of the account will be $100 * 24 = $2400.

In addition, the function M(t) also includes a $50 starting balance. So, the total balance of the account after 24 months will be $2400 + $50 = $2450.

Visit here to learn more about savings account:

brainly.com/question/30101466

#SPJ11


Related Questions

Write a slope-intercept equation for a line with the given characteristics. m=− 3/4, passes through (−3,−4)

Answers

The slope-intercept equation for the line with a slope of[tex]\(-3/4\)[/tex] and passing through the point [tex]\((-3, -4)\)[/tex]is:

[tex]\(y = -\frac{3}{4}x - \frac{25}{4}\)[/tex]

The slope-intercept form of a linear equation is given by y = mx + b, where \(m\) represents the slope and \(b\) represents the y-intercept.

In this case, the slope m is given as[tex]\(-3/4\),[/tex] and the line passes through the point [tex]\((-3, -4)\)[/tex].

To find the y-intercept [tex](\(b\)),[/tex] we can substitute the coordinates of the given point into the equation and solve for b.

So, we have:

[tex]\(-4 = \frac{-3}{4} \cdot (-3) + b\)[/tex]

Simplifying the equation:

[tex]\(-4 = \frac{9}{4} + b\)[/tex]

To isolate \(b\), we can subtract [tex]\(\frac{9}{4}\)[/tex]from both sides:

[tex]\(-4 - \frac{9}{4} = b\)[/tex]

Combining the terms:

[tex]\(-\frac{16}{4} - \frac{9}{4} = b\)[/tex]

Simplifying further:

[tex]\(-\frac{25}{4} = b\)[/tex]

Now we have the value of b, which is [tex]\(-\frac{25}{4}\)[/tex].

Learn more about slope-intercept here :-

https://brainly.com/question/30216543

#SPJ11

What is the measure of angle4? mangle4 = 40° mangle4 = 48° mangle4 = 132° mangle4 = 140°

Answers

The measure of angle 4 is 48 degree.

We have,

measure of <1= 48 degree

Now, from the given figure

<1 and <4 are Vertical Angles.

Vertical angles are a pair of opposite angles formed by the intersection of two lines. When two lines intersect, they form four angles at the point of intersection.

Vertical angles are always congruent, which means they have equal measures.

Then, using the property

<1 = <4 = 48 degree

Learn more about Vertical angles here:

https://brainly.com/question/24566704

#SPJ4

Give the normal vector n1, for the plane 4x + 16y - 12z = 1.
Find n1 = Give the normal vector n₂ for the plane -6x + 12y + 14z = 0.
Find n2= Find n1.n2 = ___________
Determine whether the planes are parallel, perpendicular, or neither.
parallel
perpendicular
neither
If neither, find the angle between them. (Use degrees and round to one decimal place. If the planes are parallel or perpendicular, enter PARALLEL or PERPENDICULAR, respectively.

Answers

The planes are neither parallel nor perpendicular, and the angle between them is approximately 88.1 degrees.

4. Determine whether the planes are parallel, perpendicular, or neither.

If the two normal vectors are orthogonal, then the planes are perpendicular.

If the two normal vectors are scalar multiples of each other, then the planes are parallel.

Since the two normal vectors are not scalar multiples of each other and their dot product is not equal to zero, the planes are neither parallel nor perpendicular.

To find the angle between the planes, use the formula for the angle between two nonparallel vectors.

cos θ = (n1 . n2) / ||n1|| ||n2||

= 0.4 / √(3² + 6² + 2²) √(6² + 3² + (-2)²)

≈ 0.0109θ

≈ 88.1°.

Therefore, the planes are neither parallel nor perpendicular, and the angle between them is approximately 88.1 degrees.

Know more about perpendicular here:

https://brainly.com/question/1202004

#SPJ11

Assuming the population has an approximate normal distribution, if a sample size n = 30 has a sample mean = 41 with a sample standard deviation s = 10, find the margin of error at a 98% confidence level.
("Margin of error" is the same as "EBM - Error Bound for a population Mean" in your text and notesheet.) Round the answer to two decimal places.

Answers

The margin of error at a 98% confidence level is approximately 4.26.To find the margin of error (EBM - Error Bound for a Population Mean) at a 98% confidence level.

We need to use the formula:

Margin of Error = Z * (s / sqrt(n))

where Z is the z-score corresponding to the desired confidence level, s is the sample standard deviation, and n is the sample size.

For a 98% confidence level, the corresponding z-score is 2.33 (obtained from the standard normal distribution table).

Plugging in the values into the formula:

Margin of Error = 2.33 * (10 / sqrt(30))

Calculating the square root and performing the division:

Margin of Error ≈ 2.33 * (10 / 5.477)

Margin of Error ≈ 4.26

Therefore, the margin of error at a 98% confidence level is approximately 4.26.

Learn more about margin of error here:

https://brainly.com/question/29100795


#SPJ11

John and Cade want to ride their bikes from their neighborhood to school which is 14.4 kilometers away. It takes John 40 minutes to arrive at school. Cade arrives 15 minutes after John. How much faster (in meter (s)/(second)) is John's average speed for the entire trip?

Answers

John's average speed for the entire trip is 6 m/s and John is 1.633 m/s faster than Cade.

Given, John and Cade want to ride their bikes from their neighborhood to school which is 14.4 kilometers away. It takes John 40 minutes to arrive at school. Cade arrives 15 minutes after John. The total distance covered by John and Cade is 14.4 km.

For John, time taken to reach school = 40 minutes

Distance covered by John = 14.4 km

Speed of John = Distance covered / Time taken

                         = 14.4 / (40/60) km/hr

                         = 21.6 km/hr

Time taken by Cade = 40 + 15

                                  = 55 minutes

Speed of Cade = 14.4 / (55/60) km/hr

                         = 15.72 km/hr

The ratio of the speeds of John and Cade is 21.6/15.72 = 1.37

John's average speed for entire trip = Total distance covered by             John / Time taken

                                                             = 14.4 km / (40/60) hr = 21.6 km/hr

Time taken by Cade to travel the same distance = (40 + 15) / 60 hr

                                                                                 = 55/60 hr

John's speed is 21.6 km/hr, then his speed in m/s= 21.6 x 5 / 18

                                                                                  = 6 m/s

Cade's speed is 15.72 km/hr, then his speed in m/s= 15.72 x 5 / 18

                                                                                    = 4.367 m/s

Difference in speed = John's speed - Cade's speed

                                 = 6 - 4.367= 1.633 m/s

Therefore, John's average speed for the entire trip is 6 m/s and John is 1.633 m/s faster than Cade.

To know more about average speed refer here:

https://brainly.com/question/24739297

#SPJ11

A placement test for state university freshmen has a normal distribution with a mean of 900 and a standard deviation of 20. The bottom 3% of students must take a summer session. What is the minimum score you would need to stay out of this group?

Answers

The minimum score a student would need to stay out of the group that must take a summer session is 862.4.

We need to find the minimum score that a student needs to avoid being in the bottom 3%.

To do this, we can use the z-score formula:

z = (x - μ) / σ

where x is the score we want to find, μ is the mean, and σ is the standard deviation.

If we can find the z-score that corresponds to the bottom 3% of the distribution, we can then use it to find the corresponding score.

Using a standard normal table or calculator, we can find that the z-score that corresponds to the bottom 3% of the distribution is approximately -1.88. This means that the bottom 3% of students have scores that are more than 1.88 standard deviations below the mean.

Now we can plug in the values we know and solve for x:

-1.88 = (x - 900) / 20

Multiplying both sides by 20, we get:

-1.88 * 20 = x - 900

Simplifying, we get:

x = 862.4

Therefore, the minimum score a student would need to stay out of the group that must take a summer session is 862.4.

Learn more about minimum score from

https://brainly.com/question/11014015

#SPJ11

Maryam, Ximena, and 25 of students are running for Song Leader. Out of 154 students polled 40% said they support Maryam. 32% said they support Ximena.
Working with a 95% confidence interval, determine the confidence interval for each of the 2 major candidate:
A. Maryam: (35%, 45%) Ximena: (27%, 37%)
B. Maryam: (32%, 48%) Ximena: (24%, 40%)
C. Maryam: (24%, 48% ) Ximena: (32%, 32%)

Answers

The correct value of confidence interval is:B. Maryam: (32%, 48%)Ximena: (24%, 40%)

To determine the confidence interval for each of the two major candidates (Maryam and Ximena) with a 95% confidence level, we need to calculate the margin of error for each proportion and then construct the confidence intervals.

For Maryam:

Sample Proportion = 40% = 0.40

Sample Size = 154

To calculate the margin of error for Maryam, we use the formula:

Margin of Error = Critical Value * Standard Error

The critical value for a 95% confidence level is approximately 1.96 (obtained from a standard normal distribution table).

Standard Error for Maryam = sqrt((Sample Proportion * (1 - Sample Proportion)) / Sample Size)

Standard Error for Maryam = sqrt((0.40 * (1 - 0.40)) / 154) ≈ 0.0368 (rounded to four decimal places)

Margin of Error for Maryam = 1.96 * 0.0368 ≈ 0.0722 (rounded to four decimal places)

Confidence Interval for Maryam = Sample Proportion ± Margin of Error

Confidence Interval for Maryam = 0.40 ± 0.0722

Confidence Interval for Maryam ≈ (0.3278, 0.4722) (rounded to four decimal places)

For Ximena:

Sample Proportion = 32% = 0.32

Sample Size = 154

Standard Error for Ximena = sqrt((Sample Proportion * (1 - Sample Proportion)) / Sample Size)

Standard Error for Ximena = sqrt((0.32 * (1 - 0.32)) / 154) ≈ 0.0343 (rounded to four decimal places)

Margin of Error for Ximena = 1.96 * 0.0343 ≈ 0.0673 (rounded to four decimal places)

Confidence Interval for Ximena = Sample Proportion ± Margin of Error

Confidence Interval for Ximena = 0.32 ± 0.0673

Confidence Interval for Ximena ≈ (0.2527, 0.3873) (rounded to four decimal places)

Therefore, the correct answer is for this statistics :B. Maryam: (32%, 48%)Ximena: (24%, 40%)

Learn more about statistics here:

https://brainly.com/question/15525560

#SPJ8

Determine limx→[infinity]​f(x) and limx→−[infinity]​f(x) for the following function. Then give the horizontal asymptotes of f, if any. f(x)=36x+66x​ Evaluate limx→[infinity]​f(x). Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. limx→[infinity]​36x+66x​=( Simplify your answer. ) B. The limit does not exist and is neither [infinity] nor −[infinity]. Evaluate limx→−[infinity]​f(x). Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. limx→−[infinity]​36x+66x​= (Simplify your answer.) B. The limit does not exist and is neither [infinity] nor −[infinity]. Give the horizontal asymptotes of f, if any. Select the correct choice below and, if necessary, fill in the answer box(es) to complete your choice. A. The function has one horizontal asymptote, (Type an equation.) B. The function has two horizontal asymptotes. The top asymptote is and the bottom asymptote is (Type equations.) C. The function has no horizontal asymptotes.

Answers

The limit limx→[infinity]​f(x) = 36, limx→−[infinity]​f(x) = 36. The function has one horizontal asymptote, y = 36. Option (a) is correct.

Given function is f(x) = 36x + 66x⁻¹We need to evaluate limx→∞​f(x) and limx→-∞​f(x) and find horizontal asymptotes, if any.Evaluate limx→∞​f(x):limx→∞​f(x) = limx→∞​(36x + 66x⁻¹)= limx→∞​(36x/x + 66/x⁻¹)We get  ∞/∞ form and hence we apply L'Hospital's rulelimx→∞​f(x) = limx→∞​(36 - 66/x²) = 36

The limit exists and is finite. Hence the correct choice is A) limx→∞​36x+66x​=36.Evaluate limx→−∞​f(x):limx→-∞​f(x) = limx→-∞​(36x + 66x⁻¹)= limx→-∞​(36x/x + 66/x⁻¹)

We get -∞/∞ form and hence we apply L'Hospital's rulelimx→-∞​f(x) = limx→-∞​(36 + 66/x²) = 36

The limit exists and is finite. Hence the correct choice is A) limx→−∞​36x+66x​=36.  Hence the horizontal asymptote is y = 36. Hence the correct choice is A) The function has one horizontal asymptote, y = 36.

The limit limx→[infinity]​f(x) = 36, limx→−[infinity]​f(x) = 36. The function has one horizontal asymptote, y = 36.

To know more about function visit :

https://brainly.com/question/30594198

#SPJ11

Which equation represents the vertical asymptote of the graph?

Answers

The equation that represents the vertical asymptote of the function in this problem is given as follows:

x = 12.

What is the vertical asymptote of a function?

The vertical asymptotes are the values of x which are outside the domain, which in a fraction are the zeroes of the denominator.

The function of this problem is not defined at x = 12, as it goes to infinity to the left and to the right of x = 12, hence the vertical asymptote of the function in this problem is given as follows:

x = 12.

More can be learned about vertical asymptotes at https://brainly.com/question/4138300

#SPJ1

Suppose that a random sample of 17 adults has a mean score of 77 on a standardized personality test, with a standard deviation of 4. (A higher score indicates a more personable participant.) If we assume that scores on this test are normally distributed, find a 90% confidence interval for the mean score of all takers of this test. Give the lower limit and upper limit of the 90% confidence interval. Carry your intermediate computations to at least three decimal places. Round your answers to one decimal place.

Answers

A 17-adult sample with a mean score of 77 on a standardized personality test has a 90% confidence interval of (74.7, 79.3). The sample size is 17, and the population standard deviation is 4. The formula calculates the value of[tex]z_{(1-\frac{\alpha}{2})}[/tex] at 90% confidence interval, which is 1.645. The lower limit is 74.7, and the upper limit is 79.3.

Given data: A random sample of 17 adults has a mean score of 77 on a standardized personality test, with a standard deviation of 4. (A higher score indicates a more personable participant.)We can calculate the 90% confidence interval for the mean score of all takers of this test by using the formula;

[tex]$$\overline{x}-z_{(1-\frac{\alpha}{2})}\frac{\sigma}{\sqrt{n}}<\mu<\overline{x}+z_{(1-\frac{\alpha}{2})}\frac{\sigma}{\sqrt{n}}$$[/tex]

Where [tex]$\overline{x}$[/tex] is the sample mean,

σ is the population standard deviation,

n is the sample size, α is the significance level, and

z is the z-value that corresponds to the level of significance.

To find the values of[tex]$z_{(1-\frac{\alpha}{2})}$[/tex], we can use a standard normal distribution table or use the calculator.

The value of [tex]$z_{(1-\frac{\alpha}{2})}$[/tex] at 90% confidence interval is 1.645. The sample size is 17. The population standard deviation is 4. The sample mean is 77.

Now, putting all the given values in the formula,

[tex]$$\begin{aligned}\overline{x}-z_{(1-\frac{\alpha}{2})}\frac{\sigma}{\sqrt{n}}&<\mu<\overline{x}+z_{(1-\frac{\alpha}{2})}\frac{\sigma}{\sqrt{n}}\\77-1.645\frac{4}{\sqrt{17}}&<\mu<77+1.645\frac{4}{\sqrt{17}}\\74.7&<\mu<79.3\end{aligned}$$[/tex]

Therefore, the 90% confidence interval for the mean score of all takers of this test is (74.7, 79.3). So, the lower limit of the 90% confidence interval is 74.7, and the upper limit of the 90% confidence interval is 79.3.

To know more about confidence interval Visit:

https://brainly.com/question/32546207

#SPJ11

Prove or disprove each of the following statements.
(i) For all integers a, b and c, if a | b and a | c then for all integers m and n, a | mb + nc.
(ii) For all integers x, if 3 | 2x then 3 | x.
(iii) For all integers x, there exists an integer y so that 3 | x + y and 3 | x − y.

Answers

(i) The statement is true. If a divides both b and c, then a also divides any linear combination of b and c with integer coefficients.

(ii) The statement is false. There exist integers for which 3 divides 2x but does not divide x.

(iii) The statement is true. For any integer x, choosing y = x satisfies the divisibility conditions.

(i) Statement: For all integers a, b, and c, if a divides b and a divides c, then for all integers m and n, a divides (mb + nc).

To prove this statement, we can use the property of divisibility. If a divides b, it means there exists an integer k such that b = ak. Similarly, if a divides c, there exists an integer l such that c = al.

Now, let's consider the expression mb + nc. We can write it as mb + nc = mak + nal, where m and n are integers. Rearranging, we have mb + nc = a(mk + nl).

Since mk + nl is also an integer, let's say it is represented by the integer p. Therefore, mb + nc = ap.

This shows that a divides (mb + nc), as it can be expressed as a multiplied by an integer p. Hence, the statement is true.

(ii) Statement: For all integers x, if 3 divides 2x, then 3 divides x.

To disprove this statement, we need to provide a counterexample where the statement is false.

Let's consider x = 4. If we substitute x = 4 into the statement, we get: if 3 divides 2(4), then 3 divides 4.

2(4) = 8, and 3 does not divide 8 evenly. Therefore, the statement is false because there exists an integer (x = 4) for which 3 divides 2x, but 3 does not divide x.

(iii) Statement: For all integers x, there exists an integer y such that 3 divides (x + y) and 3 divides (x - y).

To prove this statement, we can provide a general construction for y that satisfies the divisibility conditions.

Let's consider y = x. If we substitute y = x into the statement, we have: 3 divides (x + x) and 3 divides (x - x).

(x + x) = 2x and (x - x) = 0. It is clear that 3 divides 2x (as it is an even number), and 3 divides 0.

Therefore, by choosing y = x, we can always find an integer y that satisfies the divisibility conditions for any given integer x. Hence, the statement is true.

To learn more about property of divisibility visit : https://brainly.com/question/9462805

#SPJ11

Find the equations of the tangents to the curve y=sinx−cosx which are parallel to the line x+y−1=0 where 0

Answers

The equations of the tangents to the curve y = sin(x) - cos(x) parallel to x + y - 1 = 0 are y = -x - 1 + 7π/4 and y = -x + 1 + 3π/4.

To find the equations of the tangents to the curve y = sin(x) - cos(x) that are parallel to the line x + y - 1 = 0, we first need to find the slope of the line. The given line has a slope of -1. Since the tangents to the curve are parallel to this line, their slopes must also be -1.

To find the points on the curve where the tangents have a slope of -1, we need to solve the equation dy/dx = -1. Taking the derivative of y = sin(x) - cos(x), we get dy/dx = cos(x) + sin(x). Setting this equal to -1, we have cos(x) + sin(x) = -1.

Solving the equation cos(x) + sin(x) = -1 gives us two solutions: x = 7π/4 and x = 3π/4. Substituting these values into the original equation, we find the corresponding y-values.

Thus, the equations of the tangents to the curve that are parallel to the line x + y - 1 = 0 are:

1. Tangent at (7π/4, -√2) with slope -1: y = -x - 1 + 7π/4

2. Tangent at (3π/4, √2) with slope -1: y = -x + 1 + 3π/4

To learn more about derivative  click here

brainly.com/question/25324584

#SPJ11

Give three examples of Bernoulli rv's (other than those in the text). (Select all that apply.) X=1 if a randomly selected lightbulb needs to be replaced and X=0 otherwise. X - the number of food items purchased by a randomly selected shopper at a department store and X=0 if there are none. X= the number of lightbulbs that needs to be replaced in a randomly selected building and X=0 if there are none. X= the number of days in a year where the high temperature exceeds 100 degrees and X=0 if there are none. X=1 if a randomly selected shopper purchases a food item at a department store and X=0 otherwise. X=1 if a randomly selected day has a high temperature of over 100 degrees and X=0 otherwise.

Answers

A Bernoulli distribution represents the probability distribution of a random variable with only two possible outcomes.

Three examples of Bernoulli rv's are as follows:

X = 1 if a randomly selected lightbulb needs to be replaced and X = 0 otherwise X = 1 if a randomly selected shopper purchases a food item at a department store and X = 0 otherwise X = 1 if a randomly selected day has a high temperature of over 100 degrees and X = 0 otherwise. These are the Bernoulli random variables. A Bernoulli trial is a random experiment that has two outcomes: success and failure. These trials are used to create Bernoulli random variables (r.v. ) that follow a Bernoulli distribution.

In Bernoulli's distribution, p denotes the probability of success, and q = 1 - p denotes the probability of failure. It's a type of discrete probability distribution that describes the probability of a single Bernoulli trial. the above three Bernoulli rv's that are different from those given in the text.

A Bernoulli distribution represents the probability distribution of a random variable with only two possible outcomes.

To know more about probability visit:

brainly.com/question/31828911

#SPJ11

Use the method of cylindrical shells to find the volume of the solid obtained by rotating the region bounded by the curves y=x2, y=0, x=1, and x=2 about the line x=4.

Answers

Volume of the solid obtained by rotating the region is 67π/6 .

Given,

Curves:

y=x², y=0, x=1, and x=2 .

The arc of the parabola runs from (1,1) to (2,4) with vertical lines from those points to the x-axis. Rotated around x=4 gives a solid with a missing circular center.

The height of the rectangle is determined by the function, which is x² . The base of the rectangle is the circumference of the circular object that it was wrapped around.

Circumference = 2πr

At first, the distance is from x=1 to x=4, so r=3.

It will diminish until x=2, when r=2.

For any given value of x from 1 to 2, the radius will be 4-x

The circumference at any given value of x,

= 2 * π * (4-x)

The area of the rectangular region is base x height,

= [tex]\int _1^22\pi \left(4-x\right)x^2dx[/tex]

= [tex]2\pi \cdot \int _1^2\left(4-x\right)x^2dx[/tex]

= [tex]2\pi \left(\int _1^24x^2dx-\int _1^2x^3dx\right)[/tex]

= [tex]2\pi \left(\frac{28}{3}-\frac{15}{4}\right)[/tex]

Therefore volume of the solid is,

= 67π/6

Know more about volume of solids,

https://brainly.com/question/23705404

#SPJ4

Let f(n)=10log 10

(100n) and g(n)=log 2

n. Which holds: f(n)=O(g(n))
g(n)=O(f(n))
f(n)=O(g(n)) and g(n)=O(f(n))

Answers

After comparing the growth rates of f(n) and g(n) and observing the logarithmic function, we can say that f(n) = O(g(n)).

To determine which holds among the given options, let's compare the growth rates of f(n) and g(n).

First, let's analyze f(n):

f(n) = 10log10(100n)

     = 10log10(10^2 * n)

     = 10 * 2log10(n)

     = 20log10(n)

Now, let's analyze g(n):

g(n) = log2(n)

Comparing the growth rates, we observe that g(n) is a logarithmic function, while f(n) is a  with a coefficient of 20. Logarithmic functions grow at a slower rate compared to functions with larger coefficients.

Therefore, we can conclude that f(n) = O(g(n)), which means that option (a) holds: f(n) = O(g(n)).

To know more about logarithmic function, visit:

https://brainly.com/question/30339782#

#SPJ11

Solve the equation.
2x+3-2x = -+²x+5
42
If necessary:
Combine Terms
Apply properties:
Add
Multiply
Subtract
Divide

Answers

The solution to the equation is -1.5 or -3/2.

How to solve equations?

We have the equation:

x² + 3-2x= 1+ x² +5

Combine Terms and subtract x² from both sides:

x² - x² + 3 -2x = 1 + 5 + x² - x²

3 -2x = 1 + 5

Add:

3 -2x = 6

Combine Terms and subtract 3 from both sides:

-2x + 3 -3 = 6 - 3

-2x = 3

Dividing by -2 we get:

x = 3/(-2)

x = -3/2

x = -1.5

Learn more about equations on:

brainly.com/question/19297665

#SPJ1

A teacher assigned homework and told the students that on each day after the first, they must complete twice the number of problems that they had done so far. Find a formula for the number of problems done on day k, where k≥2.

Answers

The formula for the number of problems done on day k, where k >= 2, is:

Let P(k) denote the number of problems done on day k, where k >= 1. We want to find a formula for P(k) in terms of k.

From the problem statement, we know that P(1) is some fixed number (not given), and for k >= 2, we have:

P(k) = 2 * P(k-1)

In other words, the number of problems done on day k is twice the number done on the previous day. Using the same rule recursively, we can write:

P(k) = 2 * P(k-1)

= 2 * 2 * P(k-2)

= 2^2 * P(k-2)

= 2^3 * P(k-3)

...

= 2^(k-1) * P(1)

Since we don't know P(1), we can just leave it as P(1). Therefore, the formula for the number of problems done on day k, where k >= 2, is:

P(k) = 2^(k-1) * P(1)

This formula tells us that the number of problems done on day k is equal to the first day's number of problems multiplied by 2 raised to the power of k-1.

learn more about formula here

https://brainly.com/question/20748250

#SPJ11

3. Without solving them, say whether the equations below have a positive solution, a negative solution, a zero solution, or no solution. Give a reason for your answer. Example: 2 x+4=5 . We are a

Answers

Here are some equations and their corresponding solutions:

x^2 - 9 = 0: This equation has two solutions, x = 3 and x = -3, both of which are real. So it has both a positive and a negative solution.

x^2 + 4 = 0: This equation has no real solutions, because the square of a real number is always non-negative. So it has no positive, negative, or zero solution.

5x - 2 = 0: This equation has one solution, x = 0.4, which is positive. So it has a positive solution.

-2x + 6 = 0: This equation has one solution, x = 3, which is positive. So it has a positive solution.

x - 7 = 0: This equation has one solution, x = 7, which is positive. So it has a positive solution.

The reasons for these solutions can be found by analyzing the properties of the equations. For example, the first equation is a quadratic equation that can be factored as (x-3)(x+3) = 0, which means that the solutions are x = 3 and x = -3. The second equation is also a quadratic equation, but it has no real solutions because the discriminant (b^2 - 4ac) is negative. The remaining equations are linear equations, and they all have one solution that is positive.

Learn more about "equations" : https://brainly.com/question/29174899

#SPJ11

2.3 Consider the equation
1- x² = ɛe¯x.
(a) Sketch the functions in this equation and then use this to explain why there are two solutions and describe where they are located for small values of ε.
(b) Find a two-term asymptotic expansion, for small ε, of each solution.
(c) Find a three-term asymptotic expansion, for small ε, of each solution.

Answers

(a) The equation 1 - x² = ɛe¯x represents a transcendental equation that combines a polynomial function (1 - x²) with an exponential function (ɛe¯x). To sketch the functions, we can start by analyzing each term separately. The polynomial function 1 - x² represents a downward-opening parabola with its vertex at (0, 1) and intersects the x-axis at x = -1 and x = 1. On the other hand, the exponential function ɛe¯x represents a decreasing exponential curve that approaches the x-axis as x increases.

For small values of ε, the exponential term ɛe¯x becomes very small, causing the curve to hug the x-axis closely. As a result, the intersection points between the polynomial and exponential functions occur close to the x-intercepts of the polynomial (x = -1 and x = 1). Since the exponential function is decreasing, there will be two solutions to the equation, one near each x-intercept of the polynomial.

(b) To find a two-term asymptotic expansion for small ε, we assume that ε is a small parameter. We can expand the exponential function using its Maclaurin series:

ɛe¯x = ɛ(1 - x + x²/2 - x³/6 + ...)

Substituting this expansion into the equation 1 - x² = ɛe¯x, we get:

1 - x² = ɛ - ɛx + ɛx²/2 - ɛx³/6 + ...

Ignoring terms of higher order than ε, we obtain a quadratic equation:

x² - εx + (1 - ε/2) = 0.

Solving this quadratic equation gives us the two-term asymptotic expansion for each solution.

(c) To find a three-term asymptotic expansion for small ε, we include one more term from the exponential expansion:

ɛe¯x = ɛ(1 - x + x²/2 - x³/6 + ...)

Substituting this expansion into the equation 1 - x² = ɛe¯x, we get:

1 - x² = ɛ - ɛx + ɛx²/2 - ɛx³/6 + ...

Ignoring terms of higher order than ε, we obtain a cubic equation:

x² - εx + (1 - ε/2) - ɛx³/6 + ...

Solving this cubic equation gives us the three-term asymptotic expansion for each solution.

Learn more about quadratic equation click here: brainly.com/question/30098550

#SPJ11

If matrix A has det(A)=−2, and B is the matrix foed when two elementary row operations are perfoed on A, what is det(B) ? det(B)=−2 det(B)=4 det(B)=−4 More infoation is needed to find the deteinant. det(B)=2

Answers

The determinant of the matrix B is (a) det(A) = -2

How to calculate the determinant of the matrix B

from the question, we have the following parameters that can be used in our computation:

det(A) = -2

We understand that

B is the matrix formed when two elementary row operations are performed on A

By definition;

The determinant of a matrix is unaffected by elementary row operations.

using the above as a guide, we have the following:

det(B) = det(A) = -2.

Hence, the determinant of the matrix B is -2

Read more about matrix at

https://brainly.com/question/11989522

#SPJ1

There are 4 red, 5 green, 5 white, and 6 blue marbles in a bag. If you select 2 marbles, what is the probability that you will select a blue and a white marble? Give the solution in percent to the nearest hundredth.

Answers

The probability of selecting a blue and a white marble is approximately 15.79%.

The total number of marbles in the bag is:

4 + 5 + 5 + 6 = 20

To calculate the probability of selecting a blue marble followed by a white marble, we can use the formula:

Probability = (Number of ways to select a blue marble) x (Number of ways to select a white marble) / (Total number of ways to select 2 marbles)

The number of ways to select a blue marble is 6, and the number of ways to select a white marble is 5. The total number of ways to select 2 marbles from 20 is:

20 choose 2 = (20!)/(2!(20-2)!) = 190

Substituting these values into the formula, we get:

Probability = (6 x 5) / 190 = 0.15789473684

Rounding this to the nearest hundredth gives us a probability of 15.79%.

Therefore, the probability of selecting a blue and a white marble is approximately 15.79%.

Learn more about  probability  from

https://brainly.com/question/30390037

#SPJ11

1. Which of the following are differential cquations? Circle all that apply. (a) m dtdx =p (c) y ′ =4x 2 +x+1 (b) f(x,y)=x 2e 3xy (d) dt 2d 2 z​ =x+21 2. Determine the order of the DE:dy/dx+2=−9x.

Answers

The order of the given differential equation dy/dx + 2 = -9x is 1.

The differential equations among the given options are:

(a) m dtdx = p

(c) y' = 4x^2 + x + 1

(d) dt^2 d^2z/dx^2 = x + 2

Therefore, options (a), (c), and (d) are differential equations.

Now, let's determine the order of the differential equation dy/dx + 2 = -9x.

The order of a differential equation is determined by the highest order derivative present in the equation. In this case, the highest order derivative is dy/dx, which is a first-order derivative.

Learn more about differential equation here

https://brainly.com/question/32645495

#SPJ11

Complete the following mathematical operations, rounding to the
proper number of sig figs:
a) 12500. g / 0.201 mL
b) (9.38 - 3.16) / (3.71 + 16.2)
c) (0.000738 + 1.05874) x (1.258)
d) 12500. g + 0.210

Answers

Answer: proper number of sig figs. are :

              a) 6.22 x 10⁷ g/Lb

              b) 0.312

              c) 1.33270

              d)  12500.210

a) Given: 12500. g and 0.201 mL

Let's convert the units of mL to L.= 0.000201 L (since 1 mL = 0.001 L)

Therefore,12500. g / 0.201 mL = 12500 g/0.000201 L = 6.2189055 × 10⁷ g/L

Now, since there are three significant figures in the number 0.201, there should also be three significant figures in our answer.

So the answer should be: 6.22 x 10⁷ g/Lb

b) Given: (9.38 - 3.16) / (3.71 + 16.2)

Therefore, (9.38 - 3.16) / (3.71 + 16.2) = 6.22 / 19.91

Now, since there are three significant figures in the number 9.38, there should also be three significant figures in our answer.

So, the answer should be: 0.312

c) Given: (0.000738 + 1.05874) x (1.258)

Therefore, (0.000738 + 1.05874) x (1.258) = 1.33269532

Now, since there are six significant figures in the numbers 0.000738, 1.05874, and 1.258, the answer should also have six significant figures.

So, the answer should be: 1.33270

d) Given: 12500. g + 0.210

Therefore, 12500. g + 0.210 = 12500.210

Now, since there are five significant figures in the number 12500, and three in 0.210, the answer should have three significant figures.So, the answer should be: 1.25 x 10⁴ g

To learn more about sig figs calculation here:

https://brainly.com/question/14465010

#SPJ11

{(-1,-6),(5,-8),(-2,8),(3,-2),(-4,-2),(-5,-5)} Determine the values in the domain and range of the relation. Enter repeated values only once.

Answers

Domain: {-1, 5, -2, 3, -4, -5}, Range: {-6, -8, 8, -2, -5}. These sets represent the distinct values that appear as inputs and outputs in the given relation.

To determine the values in the domain and range of the given relation, we can examine the set of ordered pairs provided.

The given set of ordered pairs is: {(-1, -6), (5, -8), (-2, 8), (3, -2), (-4, -2), (-5, -5)}

(a) Domain: The domain refers to the set of all possible input values (x-values) in the relation. We can determine the domain by collecting all unique x-values from the given ordered pairs.

From the set of ordered pairs, we have the following x-values: -1, 5, -2, 3, -4, -5

Therefore, the domain of the relation is {-1, 5, -2, 3, -4, -5}.

(b) Range: The range represents the set of all possible output values (y-values) in the relation. Similarly, we need to collect all unique y-values from the given ordered pairs.

From the set of ordered pairs, we have the following y-values: -6, -8, 8, -2, -5

Therefore, the range of the relation is {-6, -8, 8, -2, -5}

It's worth noting that the order in which the elements are listed in the sets does not matter, as sets are typically unordered.

It's important to understand that the domain and range of a relation can vary depending on the specific set of ordered pairs provided. In this case, the given set uniquely determines the domain and range of the relation.

Learn more about set at: brainly.com/question/30705181

#SPJ11

Find the value of y if the line through the two given points is to have the indicated slope. (-2,y) and (-8,6),m=-2

Answers

Let us consider the equation of the slope-intercept form. It is as follows.[tex]y = mx + b[/tex]

[tex]2 = (y - 6)/(-2 - (-8))⟹ -2 = (y - 6)/6⟹ -2 × 6 = y - 6⟹ -12 + 6 = y⟹ y = -6[/tex]

Where, y = y-coordinate, m = slope, x = x-coordinate and b = y-intercept. To find the value of y, we will use the slope formula.

Which is as follows: [tex]m = (y₂ - y₁)/(x₂ - x₁[/tex]) Where, m = slope, (x₁, y₁) and (x₂, y₂) are the given two points. We will substitute the given values in the above formula.

[tex]2 = (y - 6)/(-2 - (-8))⟹ -2 = (y - 6)/6⟹ -2 × 6 = y - 6⟹ -12 + 6 = y⟹ y = -6[/tex]

Thus, the value of y is -6 when the line through the two given points is to have the indicated slope.

To know more about substitute visit:

https://brainly.com/question/29383142

#SPJ11

the dimensions of a box are x units, x+1 units, and 2x units. Write an expression that represents the volume of the box, in cubic units. Simplify the expression completely. Write an expression that represents the total surface area of the box, in square units. Simplify the expression completely.
Expert Answer

Answers

Simplifying the expression completely: 6x² + 10x + 2= 2(3x² + 5x + 1) Volume of the box: The volume of the box is equal to its length multiplied by its width multiplied by its height. Therefore, we can use the given dimensions of the box to determine the volume in cubic units: V = l × w × h

Given that the dimensions of the box are x units, x + 1 units, and 2x units, respectively. The length, width, and height of the box are x units, x + 1 units, and 2x units, respectively.

Therefore: V = l × w × h

= x(x + 1)(2x)

= 2x²(x + 1)

= 2x³ + 2x²

The expression that represents the volume of the box, in cubic units, is 2x³ + 2x².

Simplifying the expression completely:2x³ + 2x²= 2x²(x + 1)

Total Surface Area of the Box: To find the total surface area of the box, we need to determine the area of all six faces of the box and add them together. The area of each face of the box is given by: A = lw where l is the length and w is the width of the face.

The box has six faces, so we can use the given dimensions of the box to determine the total surface area, in square units: A = 2lw + 2lh + 2wh

Given that the dimensions of the box are x units, x + 1 units, and 2x units, respectively. The length, width, and height of the box are x units, x + 1 units, and 2x units, respectively.

Therefore: A = 2lw + 2lh + 2wh

= 2(x)(x + 1) + 2(x)(2x) + 2(x + 1)(2x)

= 2x² + 2x + 4x² + 4x + 4x + 2

= 6x² + 10x + 2

The expression that represents the total surface area of the box, in square units, is 6x² + 10x + 2.

Simplifying the expression completely: 6x² + 10x + 2= 2(3x² + 5x + 1)

To know more about Volume visit :

https://brainly.com/question/28058531

#SPJ11

using the curve fitting technique, determine the cubic fit for the following data. use the matlab commands polyfit, polyval and plot (submit the plot with the data below and the fitting curve).

Answers

The MATLAB commands polyfit, polyval and plot data is used .

To determine the cubic fit for the given data using MATLAB commands, we can use the polyfit and polyval functions. Here's the code to accomplish that:

x = [10 20 30 40 50 60 70 80 90 100];

y = [10.5 20.8 30.4 40.6 60.7 70.8 80.9 90.5 100.9 110.9];

% Perform cubic curve fitting

coefficients = polyfit( x, y, 3 );

fitted_curve = polyval( coefficients, x );

% Plotting the data and the fitting curve

plot( x, y, 'o', x, fitted_curve, '-' )

title( 'Fitting Curve' )

xlabel( 'X-axis' )

ylabel( 'Y-axis' )

legend( 'Data', 'Fitted Curve' )

To know more about  MATLAB commands click here :

https://brainly.com/question/31964830

#SPJ4

The complete question is :

Using the curve fitting technique, determine the cubic fit for the following data. Use the MATLAB commands polyfit, polyval and plot (submit the plot with the data below and the fitting curve). Include plot title "Fitting Curve," and axis labels: "X-axis" and "Y-axis."

x = 10 20 30 40 50 60 70 80 90 100

y = 10.5 20.8 30.4 40.6  60.7 70.8 80.9 90.5 100.9 110.9

A random sample of 200 marathon runners were surveyed in March 2018 and asked about how often they did a full practice schedule in the week before a scheduled marathon. In this survey, 75%(95%Cl70−77%) stated that they did not run a full practice schedule in the week before their competition. A year later, in March 2019, the same sample group were surveyed and 61%(95%Cl57−64%) stated that they did not run a full practice schedule in the week before their competition. These results suggest: Select one: a. There was no statistically significant change in the completion of full practice schedules between March 2018 and March 2019. b. We cannot say whether participation in full practice schedules has changed. c. The participation in full practice schedules demonstrated a statistically significant decrease between March 2018 and March 2019. d. We cannot say whether the completion of full practice schedules changed because the sample is of only 200 marathon runners.

Answers

Option D, "We cannot say whether the completion of full practice schedules changed because the sample is of only 200 marathon runners," is incorrect.

The participation in full practice schedules demonstrated a statistically significant decrease between March 2018 and March 2019. A random sample of 200 marathon runners was surveyed in March 2018 and March 2019 to determine how often they did a full practice schedule in the week before their scheduled marathon.

In the March 2018 survey, 75%(95%Cl70−77%) of the sample did not complete a full practice schedule in the week before their scheduled marathon.

A year later, in March 2019, the same sample group was surveyed, and 61%(95%Cl57−64%) stated that they did not run a full practice schedule in the week before their competition.

The results suggest that participation in full practice schedules has decreased significantly between March 2018 and March 2019.

The reason why we know that there was a statistically significant decrease is that the confidence interval for the 2019 survey did not overlap with the confidence interval for the 2018 survey.

Because the confidence intervals do not overlap, we can conclude that there was a significant change in the completion of full practice schedules between March 2018 and March 2019.

Therefore, option C, "The participation in full practice schedules demonstrated a statistically significant decrease between March 2018 and March 2019," is the correct answer.

The sample size of 200 marathon runners is adequate to draw a conclusion since the sample was drawn at random. Therefore, option D, "We cannot say whether the completion of full practice schedules changed because the sample is of only 200 marathon runners," is incorrect.

To know more about confidence intervals visit:

brainly.com/question/32546207

#SPJ11

Find the domain of f+g,ff, and f/g. When f(x)=x+2 and g(x)=x−1​.

Answers

The domain of f + g is (-∞, ∞).

The domain of ff is (-∞, ∞).

The domain of f/g is (-∞, 1) ∪ (1, ∞).

To find the domain of the given functions, we need to consider any restrictions that may occur. In this case, we have the functions f(x) = x + 2 and g(x) = x - 1. Let's determine the domains of the following composite functions:

f + g:

The function (f + g)(x) represents the sum of f(x) and g(x), which is (x + 2) + (x - 1). Since addition is defined for all real numbers, there are no restrictions on the domain. Therefore, the domain of f + g is (-∞, ∞), which includes all real numbers.

ff:

The function ff(x) represents the composition of f(x) with itself, which is f(f(x)). Substituting f(x) = x + 2 into f(f(x)), we get f(f(x)) = f(x + 2) = (x + 2) + 2 = x + 4. As there are no restrictions on addition and subtraction, the domain of ff is also (-∞, ∞), encompassing all real numbers.

f/g:

The function f/g(x) represents the division of f(x) by g(x), which is (x + 2)/(x - 1). However, we need to be cautious about any potential division by zero. If the denominator (x - 1) equals zero, the division is undefined. Solving x - 1 = 0, we find x = 1. Thus, x = 1 is the only value that causes a division by zero.

Therefore, the domain of f/g is all real numbers except x = 1. In interval notation, the domain can be expressed as (-∞, 1) ∪ (1, ∞).

for such more question on domain

https://brainly.com/question/16444481

#SPJ8

1) There are approximately 2.54 centimeters in 1 inch. What is the distance, in inches, of 14 centimeters? Use a proportion to solve and round your answer to the nearest tenth of an inch?

Jon just received a job offer that will pay him 12% more than what he makes at his current job. If the salary at the new job is $68,000, what is his current salary? Round to the nearest cent?

Determine which property is illustrated by the following examples: Commutative, Associative, Distributive, Identity

a) 0 + a = a

b) −2(x-7)= -2x+14

c) 2/5(15x) = (2/5 (times 15)x

d) -5+7+7+(-5)

2) Simplify 3[2 – 4(5x + 2)]

3) Evaluate 2 x xy − 5 for x = –3 and y = –2

Answers

1) The given information is, 1 inch = 2.54 centimeters. Distance in centimeters = 14 Ceto find: The distance in inches Solution: We can use the proportion method to solve this problem

.1 inch/2.54 cm

= x inch/14 cm.

Now we cross multiply to get's

inch = (1 inch × 14 cm)/2.54 cmx inch = 5.51 inch

Therefore, the distance in inches is 5.51 inches (rounded to the nearest tenth of an inch).2) Given: The s

First, we solve the expression inside the brackets.

2 - 4(5x + 2

)= 2 - 20x - 8

= -20x - 6

Then, we can substitute this value in the original expression.

3[-20x - 6]

= -60x - 18

Therefore, the simplified expression is -60x - 18.5) Evaluating the given expression:

2 x xy − 5

for

x = –3 a

nd

y = –2

.Substituting x = –3 and y = –2 in the given expression, we get:

2 x xy − 5= 2 x (-3) (-2) - 5= 12

Therefore, the value of the given expression is 12.

To know more about solve visit:

https://brainly.com/question/24083632

#SPJ11

Other Questions
The interest rate in South Africa is 8 percent. The interest rate in the United States is 5 percent. The South African forward rate should exhibit a premium of about 3 percent. True or Flase? A $7,000 debt is to be amortized in 15 equal monthly payments of $504.87 at 1.00% interest per month on the unpaid balance. What is the interest due of the third month? A.$6565B.$65.65C.$6126D.$61.26 What is the solution to x 5 + 2 < 20? 7 < x < 15 13 < x < 23 x < 7 or x > 15 x < 13 or x > 23 Marianna's Boat Motor Manufacturing is located in Woodstock, Ontario. It is a non-unionized workplace that manufactures and distributes motors for personal watercraft to retail locations and marinas across Canada. Marianna's employs approximately 200 non-unionized employees. You have been provided the following facts.Employee #1: Mark has worked for Marina's Boat Manufacturing for ten years. His performance appraisals, conducted yearly, were consistently "good" to "excellent". Nearly a year has passed since his last performance review. His manager contacted you to seek assistance with some concerns regarding Mark's performance. Mark's supervisor indicated that there were increasing performance issues. Mark is often on his phone, during busy shifts, at work. Although the employer recognizes some phone use may be necessary the manager believes that the phone use is interfering with production goals. He has not met the individual productivity goals in the last six calculation periods (calculated weekly). The supervisor also told you that Mark's colleagues came forward complaining that Mark smells of cannabis smoke occasionally after lunch.Employee #2 and #3: Mandy and Darci both work in the assembly plant. Recently, an internal investigation, that followed best practice for investigations, found Mandy and Darci had engaged in misconduct. The investigator found that the pair had stolen materials from the workplace. The materials included lumber, that were on site to create crates to transport the engines. There was also missing metal from the scrap pile. The manager has asked for guidance as to whether termination is possible.Employee #4: Mohammad has worked for the organization for 4 months. His manager approached you regarding performance issues. Mohammad consistently fails to use the proper procedures for packaging the engines. The manager is frustrated and would like to terminate Mohammad for cause.In not less than 700 words, explain the the legal issues in all of this cases and how you would advise them as an HR personnelTreat each case differently. you are evaluating a performance improvement project. you should consider the project a success if you find that: Let f(x)=(x6)(x^2-5)Find all the values of x for which f (x)=0. Present your answer as a comma-separated list: A construction company employs three sales engineers. Engineers 1,2 , and 3 estimate the costs of 30%,20%, and 50%, respectively, of all jobs bid by the company. For i=1,2,3, define E lto be the event that a job is estimated by engineer i. The following probabilities describe the rates at which the engineers make serious errors in estimating costs: P( error E 1)=01, P( crror E 2)=.03. and P(error(E 3)=,02 a. If a particular bid results in a serious error in estimating job cost, what is the probability that the error was made by engineer 1 ? b. If a particular bid results in a serious error in estimating job cost, what is the probability that the error was made by engineer 2 ? c. If a particular bid results in a serious error in estimating job cost, what is the probability that the error was made by engineer 3 ? d. Based on the probabilities, parts a-c, which engineer is most likely responsible for making the serious crror? What is quantity standard? What is a price standard? Explainat-least one advantage of standard costs. Explain at-least oneproblem with standard costs. the final remnant of the evolution of a low mass star that has ejected a planetary nebula is a: A. white dwarf starB. protostar.C. supernova.D. blue supergiant ssess the following statements whether are true or false? Justify your answer making reference to the objectives of the policy maker and please answer the question in 5 linesa. Economic policy should aim to limit firm-level volatility (4 marks)b. Economic policy should aim to limit macro-level volatility (4 marks) A bacteria culture contains 200 cells initially and grows at a rate proportional to its size. After half an hour the population has increased to 360 cells. (Show that you understand the solution process; you may leave your answer in terms of In(7), for example. A calculator is not required.) (a) Find the number of bacteria after t hours.(b) When will the population reach 10,000? The C quadrature rule for the interval [1, 1] uses the points at which T-1(t) = 1 as its nodes (here T-1 is the Chebyshev polynomial of degree n 1). The C3 rule is just Simpson's rule because T2(t) = 2t2 -1.(a) (i) Find the nodes and weights for the Cs quadrature rule.(ii) Determine the first nonzero coefficient S; for the C5 rule.(iii) If the C5 rule and the five-point Newton-Cotes rule are applied on the same number of subintervals, what approximate relationship do you expect the two errors to satisfy?(iv) Suppose that the C's rule has been applied on N subintervals, and that all of the function evaluations have been stored. How many new function evaluations are required to apply the C rule on the same set of subintervals? Justify your answer. Booher Book Stores has a beta of 1.2. The yield on a 3-month T-bill is 3.5% and the yield on a 10-year T-bond is 7%. The market risk premium is 6%, and the return on an average stock in the market last year was 14%. What is the estimated cost of common equity using the CAPM? Round your answer to two decimal places. Suppose A={b,c,d} and B={a,b}. Find: (i) PP(A)P(B) makes the program to convert the values of cells containing double values to their equivalent normalized scientific notation with 3 digits of precision after the decimal point. Write the equation of the line which passes through the points (5,6) and (5,4), in standard form, All coefficients and constants must be integers. Problem with a clarinet Modern contrabass clarinets are pitched in BB b, sounding two octaves lower than the common B b soprano clarinet and one octave lower than the B b bass clarinet. The lowest pitch (B0) of the contrabass clarinet has frequency 30.8677Hz. How many harmonics appear below 100Hz? you are the ceo of a car manufacturing company, and realize that you may have to lay off 10,000 employees unless you take some other form of action. your chief financial officer comes up with two solutions: the first saves 6,000 jobs, and the second causes the company to lose 4,000 jobs. the first option sounds ideal at first; however, both options give the same outcome of cutting 4,000 jobs and saving 6,000 jobs. this example represents the concept of: Assignment 1 - Hello World! This first assignment is simpla. I only want you to witte a vory besile program in pure assembly. Setting up your program Start by entering the following command: \$ moke help your program: $ make run - The basic structure of an assembly program, including: - A data soction for your program - The following string inside your program's date evection: Helle, my name is Cibsen Montpamery Gibson, wheh your name replecing Cibser's name. - A teat section for your program - A elobal satart label as the entry point of your proeram - The use of a systom cell to print the string above - The use of a system call to properly ext the program, with an weth code of 0 If you're lucky, you'll see you've earned some or all points in the program compilation and execution category. If you're unlucky, there are only errors. Carefully read every line of Gradescope's autograder output and look for clues regarding what went wrong, or what you havo to do next. You might see messages complaining that your program didn't compile. Even better, you may instead see messages that indicate you have more to do. Getting More Points You'll probably see a complaint that you haven't created your README.md fillo yot. Go ahead and complote your READMEmd file now, then commit+push the changes with git. Getting Even More Points Remember that although the output messages from Gradescope are cluttered and messy, they can contain valuable information for improving your grade. Further, the art of programming in general often involves staring at huge disgusting blobs of data and debugging output until it makes sense. It's something we all must practice. Earning the rest of your points will be fairly straightforward, but use Gradescope's output if you get stuck or confused. The basic premise here is you'll want to do the following: 1. Write some code, doing commits and pushes with git along the way 2. Check your grade via Gradescope 3. Go back to step 1 if you don't yet have a perfect score. Otherwise, you're done. Conclusion At this point, you might have eamed a perfoct score. If not, don't despairt Talk with other students in our discussion forums, talk with other students in our Dlscord chat room, and email the professor If you're still stuck at the end of the day. If enough students have the same Issue, and it doesn't seem to be covered by lecture or our textbook, I may create another tutorial video to help! butlet detught beild 9a stazusuie) x pa-conands, the copse elesest butlet detught beild 9a stazusuie) x pa-conands, the copse elesest For an interest rate of 12% per month, determine the nominal andeffective rates (i) per quarter, and (ii) per year.