Answer:
Hello your question is missing some parts attached below is the missing part of your question
answer: many primary sensory Neurons will converge and become a single Neuron and the single Neuron will send a single harmonized signal to the Brain.
Explanation:
The reason regardless of the location that will make you perceive the two points as a single point rather than as two distinct points is that many primary sensory Neurons will converge and become a single Neuron and the single Neuron will send a single harmonized signal to the Brain.
which of the following are not units used to measure energy?
a. joules
b. newtons
c. BTU
d. calories
Answer:
The BTU, or British thermal unit, is actually a measure of heat.
Chemical energy is the stored form of chemical bonds containing combinations of which elements? Select THREE (3) elements. *
Carbon
Nitrogen
Helium
Hydrogen
Oxygen
Gold
PLEASE ANSWER-Why are loose electrons needed for heat conduction?
Answer:
Why do metals conduct heat so well? The electrons in metal are delocalised electrons and are free moving electrons so when they gain energy (heat) they vibrate more quickly and can move around, this means that they can pass on the energy more quickly.
A student is transmitting sound waves through various materials. Through which metal in the table will the sound waves travel the fastest? Aluminum Copper Lead Brass (70% Cu, 30% Zn) 6,420 4,700 5,010 1,960 Speed of sound (m/s) O
A. Brass O
B. Aluminum
C. Copper O
D. Lead
Answer:
Aluminum
Explanation:
promise
give me brainlest plleaseee
Answer:aluminum
Explanation:
You want to build a snowman, so you accelerate a 2kg snowball across your yard at a rate of 0.5m/s2. Calculate the amount of force you applied to your friend.
Answer:
4
Units:
Newtons
A jumbo egg (80 grams) is dropped from a height of 15 meters onto a 1 inch of foam. Using kinematics, determine the velocity of the egg the instant before impact.
Answer:
the velocity of the egg the instant before impact is 17.15 m/s.
Explanation:
Given;
mass of the egg, m = 80 g = 0.08 kg
height through which the egg was dropped, h = 15 m
The velocity of the egg before impact will be maximum, and the final velocity is given by the following kinematic equation;
v² = u² + 2gh
where;
u is the initial velocity of the egg = 0
v is the final velocity of the egg before impact
v² = 0 + 2 x 9.8 x 15
v² = 294
v = √294
v = 17.15 m/s
Therefore, the velocity of the egg the instant before impact is 17.15 m/s.
Which statements correctly describe the formula or name of a compound? Select all that apply.
OA. The formula of nitrogen trifluoride is NF 3
B. The formula of ammonia is NH3.
C. The name of AlF, is trialuminum fluoride.
D. The formula of calcium chloride is CaCl2
E. The name of Li, Se is lithium selenate.
OF. The formula of dinitrogen monoxide is NO
2
Results
G. The formula of sulfur trioxide is 30.
Cho
Аа
H. The formula of magnesium hydroxide is Mg(OH)2
G.
Answer:
A, B, D, and H
Explanation:
Statements A, B, D and H are all correct except the following:
Statement C is incorrect. The name of [tex] AlF_3 [/tex] is aluminium fluoride NOT "trialuminium fluoride".
Statement E is incorrect. The name of [tex] Li_2Se [/tex] is lithium selenide NOT "lithium selenate".
Statement F is incorrect. Dinitrigen monoxide, also known as nitrous oxide has a formula of [tex] N_2O [/tex] NOT [tex] NO_2 [/tex].
Statement G is incorrect. Sulfur trioxide formula is [tex] SO_3 [/tex].
When catching a baseball, a catcher's glove moves by 11 cm along the line of motion of the ball. If the baseball exerts a force of 464 N on the glove, how much work is done by the ball
Answer:
51.04 joules
Explanation:
The movement by the gloves = 11cm
Force by the baseball = 464N
First of all we are going to convert cm to metres
11cm = 11/100 meters = 0.11m
The formula for workdone is given as:
W = f x d
W = workdone
F = force
D = distance
Workdone = 464 x 0.11
= 51.04 joules
The workdone by the ball is 51.04 joules
Thank you
For which medical procedure would Doppler ultrasound be most useful?
A.
Finding a lung tumor
B.
Fixing a pulled muscle
C.
Locating a broken bone in a finger
D.
Detecting a blockage in a heart artery
Doppler ultrasound would be most useful in detecting a blockage in a heart artery.
What are the clinical uses of Doppler ultrasound?By monitoring the rate of change in pitch, a Doppler ultrasound may calculate how quickly blood flows (frequency). A sonographer with training in ultrasound imaging applies pressure to your skin with a tiny, hand-held instrument (transducer) roughly the size of a bar of soap across the area of your body being scanned, moving from one place to another as required.
As an alternative to more invasive treatments like angiography, which involves injecting dye into the blood arteries to make them visible on X-ray images, this test may be performed.
Your doctor may use a Doppler ultrasound to assess for artery damage or to keep track of specific vein and artery therapies.
Learn more about Doppler technology here:
https://brainly.com/question/6109735
#SPJ2
A car accelerates uniformly from rest and reaches a speed of 9.9 m/s in 11.4 s. The diameter of a tire is 86.9 cm. Find the number of revolutions the tire makes during this motion, assuming no slipping. Answer in units of rev.
Answer:
Number of revolutions = 20.71 rev.
Explanation:
Given the following data;
Initial speed, u = 0m/s
Final speed, v = 9.9m/s
Time, t = 11.4secs
Diameter = 86.9cm to meters = 86.9/100 = 0.869m
To find the acceleration;
Acceleration, a = (v - u)/t
Acceleration, a = (9.9 - 0)/11.4
Acceleration, a = 9.9/11.4
Acceleration, a = 0.87m/s²
Now we would find the distance covered by the tire using the second equation of motion.
S = ut + ½at²
S = 0(11.4) + ½*0.87*11.4²
S = 0 + 0.435*129.96
S = 56.53m
The circumference of the tire is calculated using the formula;
Circumference = 3.142 * diameter
Circumference = 3.142 * 0.869
Circumference = 2.73m
Number of revolutions = distance/circumference
Number of revolutions = 56.53/2.73
Number of revolutions = 20.71 rev.
Therefore, the number of revolutions the tire makes during this motion is 20.71 revolutions.
A car was moving at 14 m/s After 30 s, its speed increased to 20 m/s. What was the acceleration during this time ( need help fast!!!)
Answer:let initial velocity u=14m/s
Final velocity v=20m/s
Time taken t=30
Acceleration =a
V=u +at
a= (20-14)/30
a=0.2m/s^2
Explanation:
Acceleration is the change in velocity with respect to time.
A 5kg box is sliding down a ramp with a rough surface as seen below. The height of the ramp is 20m and the distance the box travels down the ramp (from A to B) is 15m. At point A the velocity of the box is 8 m/s. If the velocity at point B is 3m/s, what was the impulse caused by friction? If the force of friction is 5N, how long did it take the box to slide the 15 m?
Answer:
the answer is b luv .
Explanation:
The volume of a solid object tends to increase as its temperature increases. Which quantities determine how large the change in volume is
Answer:
I. The change in temperature of the object.
II. The initial volume of the object.
Explanation:
Generally, the volume of a solid object tends to increase as its temperature increases and this phenomenon is known as thermal expansion.
Hence, the quantities which determine how large the change in volume of a solid object is includes;
I. The change in temperature of the object.
II. The initial volume of the object.
This ultimately implies that, when a solid object is heated, the atoms of the object vibrate rapidly about their fixed points and thus, causing an increase in the volume of the object.
In conclusion, this scientific phenomenon known as thermal expansion is valid and true for all the three (3) states of matter;
Solid. Liquid. Gas.A Discuss the possibility of fracture of two leg bones that have a length of about 70cm and an average area of
about 4cm
2 when a 80kg person jump from a height of 300cm.
Noting: The breaking stress of the bone ϬB =1.5×108 N/m2 , and
Young’s modulus for the bone is Y=1.5×1010 N/m2
Answer: The bones won't fracture.
Explanation: Stress, in Physics, is a quantity describing forces that can cause deformation. Strain is the measure of how muc an object can be stretched or deformed. The ratio between stress and strain is called Young's modulus or elastic modulus
Breaking Stress of Bone is the maximum stress a bone can take before a rupture occur.
To determine if a person will break his/her bones by jumping from a height, we determine the energy necessary for that jump and compare it with the energy necessary to break a bone.
The energy for breaking a bone is calculated as
[tex]E=\frac{Al_{0}\sigma_{B}^{2}}{2Y}[/tex]
A is the area in m²
l₀ is length in m
[tex]\sigma_{B}[/tex] is breaking stress in N/m²
Y is Young's modulus in N/m²
Calculating energy to break a bone:
[tex]E=\frac{4.10^{-4}.7.10^{-1}.(1.5.10^{8})^{2}}{2.(1.5.10^{10})}[/tex]
[tex]E=210[/tex] J
This is the energy necessary to break one leg bone, so as there are 2, energy will be 420 Joules.
Potential energy gained by jumping is calculated as
E = m.g.h
m is mass in kg
g is acceleration due to gravity in m/s²
h is height in m
Calculating
E = 80.(9.8)(0.3)
E = 235.2 J
Comparing the two energies, potential energy for jumping is less than maximum energy a bone can absorve without breaking, so the leg bones won't suffer a fracture.
If a car takes a banked curve at less than the ideal speed, friction is needed to keep it from sliding toward the inside of the curve (a real problem on icy mountain roads). (a) Calculate the ideal speed to take a 100 m radius curve banked at 15.0o. (b) What is the minimum coefficient of friction needed for a frightened dri
Answer:
a) The ideal speed = 16.21 m/s
b) Minimum co-efficient of friction = 0.216
Explanation:
From the given information:
The ideal speed can be determined by considering the centrifugal force component and the gravity component.
[tex]\dfrac{mv^2}{r}cos \theta = mg sin \theta[/tex]
[tex]v = \sqrt {gr \ tan \theta}[/tex]
[tex]= \sqrt{(9.8 \ m/s^2) (100) \ tan 15^0}[/tex]
= 16.21 m/s
(b)
Let assume that it requires 25 km/h to take the same curve.
Then, using the equilibrium conditions;
[tex]mg \ sin \theta = \dfrac{mv^2}{r} cos \theta + \mu ((\dfrac{mv^2}{r}) sin \theta + mg cos \theta)[/tex]
[tex]\mu = \dfrac{mg sin \theta - \dfrac{mv^2}{r} cos \theta }{((\dfrac{mv^2}{r}) sin \theta + mg cos \theta) }[/tex]
[tex]\mu = \dfrac{g sin \theta - \dfrac{ v^2}{r} cos \theta }{((\dfrac{v^2}{r}) sin \theta + g cos \theta) }[/tex]
[tex]\mu = \dfrac{(9.8 \ m/s^2 ) sin (15^0) - \dfrac{ \dfrac{(25 \times 10^3}{3600} \ m/s)^2 }{100 \ m } cos (15^0) }{((\dfrac{(\dfrac{25 \times 10^3}{3600} )^2}{100}) sin 15^0 + (9.8 \ m/s^2) cos 15^0 ) }[/tex]
[tex]\mathbf{\mu = 0.216}[/tex]
A hockey puck slides across the ice and eventually comes to a stop. Why did the puck stop?
Answer: the total energy of the puck, ice surface, and surrounding air decreases to zero
Explanation:
A hockey puck slides across the ice and eventually comes to a stop because of friction between surface of the puck and ice surface.
What is Friction ?Friction is a resistance to motion of the object. for example, when a body slides on horizontal surface in positive x direction, it has friction in negative x direction and that measure of friction is a frictional force. frictional force is directly proportional to the Normal(N). i.e. [tex]F_{fri}[/tex] ∝ N
[tex]F_{fri}[/tex] = μN where μ is called as coefficient of the friction. It is a dimensionless quantity.
When a body is kept on horizontal surface, its normal will be straight upward which is reaction of mg. i.e. N=mg.
Frictional force is equal to
[tex]F_{fri}[/tex] = μmg
When hockey puck slides across the ice, friction between surface of puck and surface of ice produces resistance to the motion of the puck, due to resistance puck slow down slowly and eventually come to a stop. Motion and frictional force are opposite to each other. we can calculated the exact value of frictional force when we know the coefficient of friction between puck and ice surface.
hence due to friction, puck come to a stop
To know more about frictional force, click :
https://brainly.com/question/30280752
#SPJ3
A 2.0 kg block of ice with a speed of 8.0 m/s makes an elastic collision with another block of ice that is at rest. The first block of ice proceeds in the same direction as it did initially, but with a speed of 2.0 m/s. What is the mass of the second block? (Hint: Use the conservation of kinetic energy to solve for the second unknown variable.)
Answer:
6kg
Explanation:
According to conservation of kinetic energy
m1u1+m2u2 = (m1+m2)v
m1 and m2 are the masses of the bodies
u1 and u2 are the initial velocities
v is the final velocity
Given
m1 =2kg
u1 = 8.0m/s
m2 = ?
u2 = 0m/s (second ice at rest)
v = 2.0m/s
Substitute into the formula
2(8)+m2(0) = (2+m2)(2)
16+0 = 4+2m2
16-4= 2m2
12 = 2m2
m2 =12/2
m2 = 6kg
Hence the mass of the second block is 6kg
4. Friction is required for :
(a) Fast movement
(0) Both of the above
(b) Stopping the objec
(d) None of the above
Answer:
b) stopping the object
Explanation:
Friction always slows a moving object down. ... Friction can be a useful force because it prevents our shoes slipping on the pavement when we walk and stops car tyres skidding on the road. When you walk, friction is caused between the tread on shoes and the ground. This friction acts to grip the ground and prevent sliding
A projectile is launched with an initial velocity of
200 meters per second at an angle of 30° above the
horizontal. What is the magnitude of the vertical
component of the projectile's initial velocity by?
(1) 200 m/s x cos 30°
(2) 200 m/s X sin 30°
(3) (200 m/s)/(cos 30 °)
(4) (200 m/s)/(sin 30 °)
The magnitude of the vertical component of the projectile's initial velocity is 200 m/s × sin 30°.
The diagrammatic representation of the velocity of the projectile can be seen in the attached image below.
From the diagram, let consider the ΔOAP where Vector OP makes an ∠θ = 30° to the horizontal x-axis.
where;
|OP| = magnitude of projectile velocity|OA| = magnitude of the horizontal component|OB|/|AP| = vertical component of the projectile∴
Using trigonometric approach for ΔOAP;
[tex]\mathbf{sin\theta = \dfrac{AP}{OP}}[/tex]
[tex]\mathbf{AP =OP\times sin \theta}}[/tex]
AP = 200 × sin 30°
Learn more about projectile here:
https://brainly.com/question/20689870?referrer=searchResults
A plane drops a package for delivery. The plane is flying horizontally at a speed of 120\,\dfrac{\text m}{\text s}120 s m 120, start fraction, start text, m, end text, divided by, start text, s, end text, end fraction, and the package travels 255\,\text m255m255, start text, m, end text horizontally during the drop. We can ignore air resistance.
Answer:
-22.1
Explanation:
1 / 4
Step 1. List horizontal (xxx) and vertical (yyy) variables
xxx-direction yyy-direction
t=\text?t=?t, equals, start text, question mark, end text t=\text?t=?t, equals, start text, question mark, end text
a_x=0a
x
=0a, start subscript, x, end subscript, equals, 0 a_y=-9.8\,\dfrac{\text m}{\text s^2}a
y
=−9.8
s
2
m
a, start subscript, y, end subscript, equals, minus, 9, point, 8, start fraction, start text, m, end text, divided by, start text, s, end text, squared, end fraction
\Delta x=255\,\text mΔx=255mdelta, x, equals, 255, start text, m, end text \Delta y=\text ?Δy=?delta, y, equals, start text, question mark, end text
v_x=v_{0x}v
x
=v
0x
v, start subscript, x, end subscript, equals, v, start subscript, 0, x, end subscript v_y=?v
y
=?v, start subscript, y, end subscript, equals, question mark
v_{0x}=120\,\dfrac{\text m}{\text s}v
0x
=120
s
m
v, start subscript, 0, x, end subscript, equals, 120, start fraction, start text, m, end text, divided by, start text, s, end text, end fraction v_{0y}=0v
0y
=0v, start subscript, 0, y, end subscript, equals, 0
Note that there is no horizontal acceleration, so v_x=v_{0x}v
x
=v
0x
v, start subscript, x, end subscript, equals, v, start subscript, 0, x, end subscript. The time is the same for the xxx and yyy directions.
Also, the package has no initial vertical velocity.
Our yyy-direction variable list has too many unknowns to solve for \Delta yΔydelta, y directly. Since both the yyy- and xxx-directions have the same time ttt and horizontal acceleration is zero, we can solve for ttt from the xxx-direction motion by using equation:
\Delta x=v_xtΔx=v
x
tdelta, x, equals, v, start subscript, x, end subscript, t
Once we know ttt, we can solve for \Delta yΔydelta, y using the kinematic equation that does not include the unknown variable v_yv
y
v, start subscript, y, end subscript:
\Delta y=v_{0y}t+\dfrac {1}{2}a_yt^2Δy=v
0y
t+
2
1
a
y
t
2
delta, y, equals, v, start subscript, 0, y, end subscript, t, plus, start fraction, 1, divided by, 2, end fraction, a, start subscript, y, end subscript, t, squared
Hint #22 / 4
Step 2. Find ttt from horizontal variables
\begin{aligned}\Delta x&=v_xt \\\\ t&=\dfrac{\Delta x}{v_{0x}} \\\\ t&=\dfrac{255\,\text m}{120\dfrac{\text m}{\text s}} \\\\ &=2.125\,\text s \end{aligned}
Δx
t
t
=v
x
t
=
v
0x
Δx
=
120
s
m
255m
=2.125s
Hint #33 / 4
Step 3. Find \Delta yΔydelta, y using ttt
Using ttt to solve for \Delta yΔydelta, y gives:
\begin{aligned}\Delta y&=v_{0y}t+\dfrac{1}{2}a_yt^2 \\\\ &=\cancel{ (0 )t}+\dfrac{1}{2}\left (-9.8\dfrac{\text m}{\text s^2}\right )\left(2.125\,\text s\right)^2 \\\\ &=-22.1\,\text m \end{aligned}
Δy
=v
0y
t+
2
1
a
y
t
2
=
(0)t
+
2
1
(−9.8
s
2
m
)(2.125s)
2
=−22.1m
Hint #44 / 4
The correct answer is -22.1\,\text m−22.1mminus, 22, point, 1, start text, m, end text.
A toy car, mass of 0.025 kg, is traveling on a horizontal track with a velocity of 5 m/s. If
the track then starts to climb upwards, how high up the track can the car reach?
Answer:
1.25 m
Explanation:
This is the vertical height not the distance along the slope.
[tex]K=U\\\frac{1}{2}mv^{2} = mgh\\h = \frac{v^{2}}{2g}=\frac{25}{20}=1.25 m[/tex]
The height the car can reach if the the track starts to climb upwards is 1.2742 meters up.
What is kinetic and potential energy?Kinetic energy is energy possessed by a body by virtue of its movement. Potential energy is the energy possessed by a body by virtue of its position or its relation with its surrounding systems.
P.E. = mass × g × height
K.E. = 0.5 × mass × (velocity)²
Given that the toy car has a mass of 0.025 kg and is traveling on a horizontal track with a velocity of 5 m/s. Now, the car starts to climb up vertically, therefore, the kinetic energy will be converted to potential energy.
Kinetic Energy = Potential Energy
0.5 × mass × (velocity)² = mass × g × height
Cancel mass from both the sides,
0.5 × (velocity)² = g × height
0.5 × (5 m/s)² = 9.81 m/sec² × height
height = 1.2742 meters
Hence, the car will travel 1.2742 meters up.
Learn more about Kinetic and Potential Energy here:
https://brainly.com/question/15764612
#SPJ5