3. a (b) Find the area of the region bounded by the curves y = √x, x=4-y² and the x-axis. Let R be the region bounded by the curve y=-x² - 4x-3 and the line y = x +1. Find the volume of the solid generated by rotating the region R about the line x = 1.

Answers

Answer 1

The area of the region bounded by the curves y = √x, x = 4 - y², and the x-axis is 1/6 square units.

To find the area of the region bounded by the curves y = √x, x = 4 - y², and the x-axis, we can set up the integral as follows:

A = ∫[a,b] (f(x) - g(x)) dx

where f(x) is the upper curve and g(x) is the lower curve.

In this case, the upper curve is y = √x and the lower curve is x = 4 - y².

To find the limits of integration, we set the two curves equal to each other:

√x = 4 - y²

Solving for y, we get:

y = ±√(4 - x)

To find the limits of integration, we need to determine the x-values at which the curves intersect.

Setting √x = 4 - y², we have:

x = (4 - y²)²

Substituting y = ±√(4 - x), we get:

x = (4 - (√(4 - x))²)²

Expanding and simplifying, we have:

x = (4 - (4 - x))²

x = x²

This gives us x = 0 and x = 1 as the x-values of intersection.

So, the limits of integration are a = 0 and b = 1.

Now, we can calculate the area using the integral:

A = ∫[0,1] (√x - (4 - y²)) dx

To simplify the integral, we need to express (4 - y²) in terms of x.

From the equation y = ±√(4 - x), we can solve for y²:

y² = 4 - x

Substituting this into the integral, we have:

A = ∫[0,1] (√x - (4 - 4 + x)) dx

A = ∫[0,1] (√x - x) dx

Integrating, we get:

A = [(2/3)x^(3/2) - (1/2)x²] evaluated from 0 to 1

A = (2/3 - 1/2) - (0 - 0)

A = 1/6

Therefore, the area of the region bounded by the curves y = √x, x = 4 - y², and the x-axis is 1/6 square units.

Learn more about axis here: brainly.com/question/11804252

#SPJ11


Related Questions

Coca-Cola comes in two low-calorie varietles: Diet Coke and Coke Zero. If a promoter has 9 cans of each, how many ways can she select 2 cans of each for a taste test at the local mall? There are Ways the promoter can select which cans to use for the taste test.

Answers

There are 1296 ways the promoter can select which cans to use for the taste test.



To solve this problem, we can use the concept of combinations.

First, let's determine the number of ways to select 2 cans of Diet Coke from the 9 available cans. We can use the combination formula, which is nCr = n! / (r! * (n-r)!), where n is the total number of items and r is the number of items to be selected. In this case, n = 9 and r = 2.

Using the combination formula, we have:
9C2 = 9! / (2! * (9-2)!) = 9! / (2! * 7!) = (9 * 8) / (2 * 1) = 36

Therefore, there are 36 ways to select 2 cans of Diet Coke from the 9 available cans.

Similarly, there are also 36 ways to select 2 cans of Coke Zero from the 9 available cans.

To find the total number of ways the promoter can select which cans to use for the taste test, we multiply the number of ways to select 2 cans of Diet Coke by the number of ways to select 2 cans of Coke Zero:

36 * 36 = 1296

Therefore, there are 1296 ways the promoter can select which cans to use for the taste test.

Learn more about combinations here:

https://brainly.com/question/4658834

#SPJ11

which of the following is an example of a conditioanl probability?

Answers

"the probability that a student plays video games given that the student is female." is an example of a conditional probability.The correct answer is option C.

A conditional probability is a probability that is based on certain conditions or events occurring. Out of the options provided, option C is an example of a conditional probability: "the probability that a student plays video games given that the student is female."

Conditional probability involves determining the likelihood of an event happening given that another event has already occurred. In this case, the event is a student playing video games, and the condition is that the student is female.

The probability of a female student playing video games may differ from the overall probability of any student playing video games because it is based on a specific subset of the population (female students).

To calculate this conditional probability, you would divide the number of female students who play video games by the total number of female students.

This allows you to focus solely on the subset of female students and determine the likelihood of them playing video games.

In summary, option C is an example of a conditional probability as it involves determining the probability of a specific event (playing video games) given that a condition (being a female student) is satisfied.

For more such questions probability,click on

https://brainly.com/question/251701

#SPJ8

Use power series to find two linearly independent solutions (about x= 0) for the DE: y ′′ −3x ^3 y ′ +5xy=0

Answers

Using power series we found that the solution of the two linearly independent solutions (about x= 0) for the DE: y ′′ −3x ^3 y ′ +5xy=0

a₀ = 1, a₁ = 0  and a₀ = 0, a₁ = 1.

To find two linearly independent solutions for the given differential equation using power series, we can assume that the solutions can be expressed as power series centered at x = 0. Let's assume the power series solutions as follows:

y(x) = ∑(n=0 to ∞) aₙxⁿ

Substituting this into the given differential equation, we can find a recurrence relation for the coefficients aₙ. Let's start by finding the first few terms:

y'(x) = ∑(n=0 to ∞) (n+1)aₙxⁿ

y''(x) = ∑(n=0 to ∞) (n+1)(n+2)aₙxⁿ

Now, substitute these expressions into the differential equation:

∑(n=0 to ∞) (n+1)(n+2)aₙxⁿ - 3x³∑(n=0 to ∞) (n+1)aₙxⁿ + 5x∑(n=0 to ∞) aₙxⁿ = 0

Rearranging the terms and grouping them by powers of x, we have:

∑(n=0 to ∞) [(n+1)(n+2)aₙ - 3(n+1)aₙ-3 + 5aₙ-1]xⁿ = 0

For this expression to be identically zero for all values of x, the coefficient of each power of x must be zero. Therefore, we get the recurrence relation:

aₙ+2 = (3n - 2)aₙ-1 / (n+2)(n+1)

This recurrence relation allows us to calculate the coefficients aₙ in terms of a₀ and a₁. We can start with arbitrary values for a₀ and a₁ and then use the recurrence relation to find the remaining coefficients.

Now, let's find the first two linearly independent solutions by choosing different initial values for a₀ and a₁.

Solution 1:

Let's assume a₀ = 1 and a₁ = 0. Using the recurrence relation, we can calculate the coefficients:

a₂ = (30 - 2)a₀ / (21) = -2/2 = -1

a₃ = (31 - 2)a₁ / (32) = 1/6

a₄ = (32 - 2)a₂ / (43) = -4/12 = -1/3

Continuing this process, we can find the values of the coefficients for Solution 1.

Solution 2:

Now, let's assume a₀ = 0 and a₁ = 1. Using the recurrence relation, we can calculate the coefficients:

a₂ = (30 - 2)a₀ / (21) = 0

a₃ = (31 - 2)a₁ / (32) = 1/3

a₄ = (32 - 2)a₂ / (43) = 0

Continuing this process, we can find the values of the coefficients for Solution 2.

These two solutions obtained using power series expansion will be linearly independent.

Learn more about linearly independent solutions

https://brainly.com/question/31849887

#SPJ11

Tuition for one year at a private university is $21,500. Harrington would like to attend this university and will save money each month for the next 4 years. His parents will give him $8,000 for his first year of tuition. Which plan shows the minimum amount of money Harrington must save in order to have enough money to pay for his first year of tuition?

Answers

The minimum amount of money Harrington must save each month to have enough money for his first year of tuition at a private university is $875.

To calculate this, we subtract the amount his parents will give him ($8,000) from the total tuition cost ($21,500). This gives us the remaining amount Harrington needs to save, which is $13,500. Since he plans to save money for the next 4 years, we divide the remaining amount by 48 (4 years x 12 months) to find the monthly savings goal. Therefore, Harrington needs to save at least $875 per month to cover his first-year tuition expenses.

Learn more about private university here

https://brainly.com/question/16491687

#SPJ11

Use 6-point bins (94 to 99, 88 to 93, etc.) to make a frequency table for the set of exam scores shown below
83​ 65 68​ 79​ 89 77 77 94 85 75​ 85​ 75​ 71​ 91 74 89​ 76​ 73 67 77 Complete the frequency table below.

Answers

The frequency table reveals that the majority of exam scores fall within the ranges of 76 to 81 and 70 to 75, each containing five scores.

How do the exam scores distribute across the 6-point bins?"

To create a frequency table using 6-point bins, we can group the exam scores into the following ranges:

94 to 9988 to 9382 to 8776 to 8170 to 7564 to 69

Now, let's count the number of scores falling into each bin:

94 to 99: 1 (1 score falls into this range)

88 to 93: 2 (89 and 91 fall into this range)

82 to 87: 2 (83 and 85 fall into this range)

76 to 81: 5 (79, 77, 77, 76, and 78 fall into this range)

70 to 75: 5 (75, 75, 71, 74, and 73 fall into this range)

64 to 69: 3 (65, 68, and 67 fall into this range)

The frequency table for the set of exam scores is as follows:

Score Range Frequency

94 to 99            1

88 to 93            2

82 to 87     2

76 to 81            5

70 to 75            5

64 to 69            3

Read more about frequency

brainly.com/question/254161

#SPJ4

Harriet Marcus is concerned about the financing of a home. She saw a small cottage that sells for $60,000. Assuming that she puts 25% down, what will be her monthly payment and the total cost of interest over the cost of the loan for each assumption? (Use the Table 15.1(a) and Table 15.1(b)). (Round intermediate calculations to 2 decimal places. Round your final answers to the nearest cent.) e. What is the savings in interest cost between 11% and 14.5%? (Round intermediate calculations to 2 decimal places. Round your answer to the nearest dollar amount.) f. If Harriet uses 30 years instead of 25 for both 11% and 14.5%, what is the difference in interest? (Use 360 days a year. Round intermediate calculations to 2 decimal places. Round your answer to the nearest dollar amount.)

Answers

To calculate Harriet Marcus' monthly payment and total cost of interest, we need to use the loan payment formula and the interest rate tables.

a) Monthly payment: Assuming Harriet puts 25% down on a $60,000 cottage, the loan amount is $45,000. Using Table 15.1(a) with a loan term of 25 years and an interest rate of 11%, the factor from the table is 0.008614. The monthly payment can be calculated using the loan payment formula:

[tex]\[ \text{Monthly payment} = \text{Loan amount} \times \text{Loan factor} \]\[ \text{Monthly payment} = \$45,000 \times 0.008614 \]\[ \text{Monthly payment} \approx \$387.63 \][/tex]

b) Total cost of interest: The total cost of interest over the cost of the loan can be calculated by subtracting the loan amount from the total payments made over the loan term. Using the monthly payment calculated in part (a) and the loan term of 25 years, the total payments can be calculated:

[tex]\[ \text{Total payments} = \text{Monthly payment} \times \text{Number of payments} \]\[ \text{Total payments} = \$387.63 \times (25 \times 12) \]\[ \text{Total payments} \approx \$116,289.00 \][/tex]

The total cost of interest can be found by subtracting the loan amount from the total payments:

[tex]\[ \text{Total cost of interest} = \text{Total payments} - \text{Loan amount} \]\[ \text{Total cost of interest} = \$116,289.00 - \$45,000 \]\[ \text{Total cost of interest} \approx \$71,289.00 \][/tex]

e) Savings in interest cost between 11% and 14.5%: To find the savings in interest cost, we need to calculate the total cost of interest for each interest rate and subtract them. Using the loan amount of $45,000 and a loan term of 25 years:

For 11% interest:

Total payments = Monthly payment × Number of payments = \$387.63 × (25 × 12) ≈ \$116,289.00

For 14.5% interest:

Total payments = Monthly payment × Number of payments = \$387.63 × (25 × 12) ≈ \$134,527.20

Savingsin interest cost = Total cost of interest at 11% - Total cost of interest at 14.5% =\$116,289.00 - \$134,527.20 ≈ -\$18,238.20

Therefore, the savings in interest cost between 11% and 14.5% is approximately -$18,238.20.

f) Difference in interest with a 30-year loan term: To calculate the difference in interest, we need to recalculate the total cost of interest for both interest rates using a loan term of 30 years instead of 25. Using the loan amount of $45,000 and 30 years as the loan term:

For 11% interest:

Total payments = Monthly payment × Number of payments =\$387.63 × (30 × 12) ≈ \$139,645.20

For 14.5% interest:

Total payments = Monthly payment × Number of payments =\$387.63 × (30 × 12) ≈ \$162,855.60

Difference in interest = Total cost of interest at 11% - Total cost of interest at 14.5% = \$139,645.20 - \$162,855.60 ≈

Learn more about Round intermediate calculations :

brainly.com/question/31687865

SPJ11SPJ11#

Discrete Math Consider the following statement.
For all real numbers x and y, [xy] = [x] · [y].
Show that the statement is false by finding values for x and y and their calculated values of [xy] and [x] · [y] such that [xy] and [x] [y] are not equal. .
Counterexample: (x, y, [xy], [×] · 1x1) = ([
Hence, [xy] and [x] [y] are not always equal.
Need Help?
Read It
Submit Answer

Answers

Counterexample: Let x = 2.5 and y = 1.5. Then [xy] = [3.75] = 3, while [x]·[y] = [2]·[1] = 2.

To show that the statement is false, we need to find specific values for x and y where [xy] and [x] · [y] are not equal.

Counterexample: Let x = 2.5 and y = 1.5.

To find [xy], we multiply x and y: [xy] = [2.5 * 1.5] = [3.75].

To find [x] · [y], we calculate the floor value of x and y separately and then multiply them: [x] · [y] = [2] · [1] = [2].

In this case, [xy] = [3.75] = 3, and [x] · [y] = [2] = 2.

Therefore, [xy] and [x] · [y] are not equal, as 3 is not equal to 2.

This counterexample disproves the statement for the specific values of x = 2.5 and y = 1.5, showing that for all real numbers x and y, [xy] is not always equal to [x] · [y].

The floor function [x] denotes the greatest integer less than or equal to x.

Learn more about Counterexample

brainly.com/question/88496

#SPJ11



4X +[ 3 -7 9] = [-3 11 5 -7]

Answers

The solution to the equation 4x + [3 -7 9] = [-3 11 5 -7] is x = [-3/2 9/2 -1 -7/4].

To solve the equation 4x + [3 -7 9] = [-3 11 5 -7], we need to isolate the variable x.

Given:

4x + [3 -7 9] = [-3 11 5 -7]

First, let's subtract [3 -7 9] from both sides of the equation:

4x + [3 -7 9] - [3 -7 9] = [-3 11 5 -7] - [3 -7 9]

This simplifies to:

4x = [-3 11 5 -7] - [3 -7 9]

Subtracting the corresponding elements, we have:

4x = [-3-3 11-(-7) 5-9 -7]

Simplifying further:

4x = [-6 18 -4 -7]

Now, divide both sides of the equation by 4 to solve for x:

4x/4 = [-6 18 -4 -7]/4

This gives us:

x = [-6/4 18/4 -4/4 -7/4]

Simplifying the fractions:

x = [-3/2 9/2 -1 -7/4]

To learn more about variable, refer here:

https://brainly.com/question/29583350

#SPJ11



Multiply. (5+2√5)(7+4 √5)

Answers

The solution as 75 + 34√5 while solving (5+2√5)(7+4 √5).

To get the product of the given two binomials, (5+2√5) and (7+4√5), use FOIL multiplication method. Here, F stands for First terms, O for Outer terms, I for Inner terms, and L for Last terms. Then simplify the expression. The solution is shown below:

First, multiply the first terms together which give: (5)(7) = 35.

Second, multiply the outer terms together which give: (5)(4 √5) = 20√5.

Third, multiply the inner terms together which give: (2√5)(7) = 14√5.

Finally, multiply the last terms together which give: (2√5)(4√5) = 40.

When all the products are added together, we get; 35 + 20√5 + 14√5 + 40 = 75 + 34√5

Therefore, (5+2√5)(7+4√5) = 75 + 34√5.

Thus, we got the solution as 75 + 34√5 while solving (5+2√5)(7+4 √5).

Know more about binomials here,

https://brainly.com/question/30339327

#SPJ11

n parts (a)-(c), convert the english sentences into propositional logic. in parts (d)-(f), convert the propositions into english. in part (f), let p(a) represent the proposition that a is prime. (a) there is one and only one real solution to the equation x2

Answers

(a) p: "There is one and only one real solution to the equation [tex]x^2[/tex]."

(b) p -> q: "If it is sunny, then I will go for a walk."

(c) r: "Either I will go shopping or I will stay at home."

(d) "If it is sunny, then I will go for a walk."

(e) "I will go shopping or I will stay at home."

(f) p(a): "A is a prime number."

(a) Let p be the proposition "There is one and only one real solution to the equation [tex]x^2[/tex]."

Propositional logic representation: p

(b) q: "If it is sunny, then I will go for a walk."

Propositional logic representation: p -> q

(c) r: "Either I will go shopping or I will stay at home."

Propositional logic representation: r

(d) "If it is sunny, then I will go for a walk."

English representation: If it is sunny, I will go for a walk.

(e) "I will go shopping or I will stay at home."

English representation: I will either go shopping or stay at home.

(f) p(a): "A is a prime number."

Propositional logic representation: p(a)

To know more about solution, refer here:

https://brainly.com/question/30133552

#SPJ4

helpppppp i need help with this

Answers

Answer:

B=54

C=54

Step-by-step explanation:

180-72=108

108/2=54

54*2=108

108+72=180



A metalworker wants to make an open box from a sheet of metal, by cutting equal squares from each corner as shown.


a. Write expressions for the length, width, and height of the open box.

Answers

The expressions for the length, width, and height of the open box are L- 2x, W- 2x, x respectively.The diagram shows that the metalworker cuts equal squares from each corner of the sheet of metal.

To find the expressions for the length, width, and height of the open box, we need to understand how the sheet of metal is being cut to form the box.

When the metalworker cuts equal squares from each corner of the sheet, the resulting shape will be an open box. Let's assume the length and width of the sheet of metal are denoted by L and W, respectively.

1. Length of the open box:


To find the length, we need to consider the remaining sides of the sheet after cutting the squares from each corner. Since squares are cut from each corner,

the length of the open box will be equal to the original length of the sheet minus twice the length of one side of the square that was cut.

Therefore, the expression for the length of the open box is:


Length = L - 2x, where x represents the length of one side of the square cut from each corner.

2. Width of the open box:


Similar to the length, the width of the open box can be calculated by subtracting twice the length of one side of the square cut from each corner from the original width of the sheet.

The expression for the width of the open box is:


Width = W - 2x, where x represents the length of one side of the square cut from each corner.

3. Height of the open box:


The height of the open box is determined by the length of the square cut from each corner. When the metalworker folds the remaining sides to form the box, the height will be equal to the length of one side of the square.

Therefore, the expression for the height of the open box is:


Height = x, where x represents the length of one side of the square cut from each corner.

In summary:


- Length of the open box = L - 2x


- Width of the open box = W - 2x


- Height of the open box = x

Remember, these expressions are based on the assumption that equal squares are cut from each corner of the sheet.

To know more about square refer here:

https://brainly.com/question/28776767

#SPJ11

1990s Internet Stock Boom According to an article, 11.9% of Internet stocks that entered the market in 1999 ended up trading below their initial offering prices. If you were an investor who purchased five Internet stocks at their initial offering prices, what was the probability that at least three of them would end up trading at or above their initial offering price? (Round your answer to four decimal places.)
P(X ≥ 3) =

Answers

The probability that at least three of them would end up trading at or above their initial offering price is P(X ≥ 3) = 0.9826

.The probability of an Internet stock ending up trading at or above its initial offering price is:1 - 0.119 = 0.881If you were an investor who purchased five Internet stocks at their initial offering prices, the probability that at least three of them would end up trading at or above their initial offering price is:

P(X ≥ 3) = 1 - P(X ≤ 2)

We can solve this problem by using the binomial distribution. Thus:

P(X ≥ 3) = 1 - [P(X = 0) + P(X = 1) + P(X = 2)]P(X = k) = nCk × p^k × q^(n-k)

where, n is the number of trials or Internet stocks, k is the number of successes, p is the probability of success (Internet stock trading at or above its initial offering price), q is the probability of failure (Internet stock trading below its initial offering price), and nCk is the number of combinations of n things taken k at a time.

We are given that we purchased five Internet stocks.

Thus, n = 5. Also, p = 0.881 and q = 0.119.

Thus:

P(X ≥ 3) = 1 - [P(X = 0) + P(X = 1) + P(X = 2)] = 1 - [(5C0 × 0.881^0 × 0.119^5) + (5C1 × 0.881^1 × 0.119^4) + (5C2 × 0.881^2 × 0.119^3)]≈ 0.9826

Therefore, P(X ≥ 3) = 0.9826 (rounded to four decimal places).

Hence, the correct answer is:P(X ≥ 3) = 0.9826

Learn more about the probability at

https://brainly.com/question/32639820

#SPJ11

Find the perimeter of the triangle whose vertices are the following specified points in the plane.

(1,−5), (4,2) and (−7,−5)

Answers

To find the perimeter of the triangle with vertices (1,-5), (4,2), and (-7,-5), we need to find the distance between each pair of points and add them up.

Using the distance formula, we find:

- The distance between (1,-5) and (4,2) is sqrt[(4-1)^2 + (2-(-5))^2] = sqrt[3^2 + 7^2] = sqrt[58].
- The distance between (4,2) and (-7,-5) is sqrt[(-7-4)^2 + (-5-2)^2] = sqrt[(-11)^2 + (-7)^2] = sqrt[170].
- The distance between (-7,-5) and (1,-5) is sqrt[(1-(-7))^2 + (-5-(-5))^2] = sqrt[8^2] = 8.

Adding these distances together, we get:

sqrt[58] + sqrt[170] + 8

This is the perimeter of the triangle. We can simplify it by leaving it in terms of radicals, or by using a calculator to get a decimal approximation.

A tank contains 120 gallons of water and 45 oz of salt. Water containing a salt concentration of 1/9(1+1​/5sint) oz/gal flows into the tank at a rate of 5gal/min, and the mixture in the tank flows out at the same rate. The long-time behavior of the solution is an oscillation about a certain constant level. What is this level? What is the amplitude of the oscillation? Round the values to two decimal places. Oscillation about a level = OZ. Amplitude of the oscillation = OZ.

Answers

A.The level at which the solution oscillates in the long term is approximately 7.29 oz/gal.

The amplitude of the oscillation is approximately 0.29 oz/gal.

B. To find the constant level and amplitude of the oscillation, we need to analyze the salt concentration in the tank.

Let's denote the salt concentration in the tank at time t as C(t) oz/gal.

Initially, we have 120 gallons of water and 45 oz of salt in the tank, so the initial salt concentration is given by C(0) = 45/120 = 0.375 oz/gal.

The water flowing into the tank at a rate of 5 gal/min has a varying salt concentration of 1/9(1 + 1/5sin(t)) oz/gal.

The mixture in the tank flows out at the same rate, ensuring a constant volume.

To determine the long-term behavior, we consider the balance between the inflow and outflow of salt.

Since the inflow and outflow rates are the same, the average concentration in the tank remains constant over time.

We integrate the varying salt concentration over a complete cycle to find the average concentration.

Using the given function, we integrate from 0 to 2π (one complete cycle):

(1/2π)∫[0 to 2π] (1/9)(1 + 1/5sin(t)) dt

Evaluating this integral yields an average concentration of approximately 0.625 oz/gal.

Therefore, the constant level about which the oscillation occurs (the average concentration) is approximately 0.625 oz/gal, which can be rounded to 14.03 oz/gal.

Since the amplitude of the oscillation is the maximum deviation from the constant level

It is given by the difference between the maximum and minimum values of the oscillating function.

However, since the problem does not provide specific information about the range of the oscillation,

We cannot determine the amplitude in this context.

Learn more about the amplitude of the oscillation:

brainly.com/question/32825354

#SPJ11

Find the value of f(2) if f (x) = 12x-3

Answers

Answer:

f(2) = 21

Step-by-step explanation:

Find the value of f(2) if f(x) = 12x-3

f(x) = 12x - 3                        f(2)

f(2) = 12(2) - 3

f(2) = 24 - 3

f(2) = 21



Decide whether the given statement is always, sometimes, or never true.

Rational expressions contain logarithms.

Answers

The statement "Rational expressions contain logarithms" is sometimes true.

A rational expression is an expression in the form of P(x)/Q(x), where P(x) and Q(x) are polynomials and Q(x) is not equal to zero. Logarithms, on the other hand, are mathematical functions that involve the exponent to which a given base must be raised to obtain a specific number.

While rational expressions and logarithms are distinct concepts in mathematics, there are situations where they can be connected. One such example is when evaluating the limit of a rational expression as x approaches a particular value. In certain cases, this evaluation may involve the use of logarithmic functions.

However, it's important to note that not all rational expressions contain logarithms. In fact, the majority of rational expressions do not involve logarithmic functions. Rational expressions can include a wide range of algebraic expressions, including polynomials, fractions, and radicals, without any involvement of logarithms.

To know more about logarithms, refer here:

https://brainly.com/question/30226560#

#SPJ11

PLEASE HURRY!! I AM BEING TIMED!!

Which phrase is usually associated with addition?
a. the difference of two numbers
b. triple a number
c. half of a number
d, the total of two numbers

Answers

Answer:

The phrase that is usually associated with addition is:

d. the total of two numbers

Step-by-step explanation:

Addition is the mathematical operation of combining two or more numbers to find their total or sum. When we add two numbers together, we are determining the total value or amount resulting from their combination. Therefore, "the total of two numbers" is the phrase commonly associated with addition.

Answer:

D. The total of two numbers

Step-by-step explanation:

The phrase "the difference of two numbers" is usually associated with subtraction.

The phrase "triple a number" is usually associated with multiplication.

The phrase "half of a number" is usually associated with division.

We are left with D, addition is essentially taking 2 or more numbers and adding them, the result is usually called "sum" or total.

________________________________________________________

If \( f(x)=-x^{2}-1 \), and \( g(x)=x+5 \), then \[ g(f(x))=[?] x^{2}+[] \]

Answers

The value of the expression g(f(x)) in terms of x^2 is -x^2+4. So, the answer is (-x^2+4)

Given functions are,

f(x) = -x^2 - 1 and

g(x) = x + 5.

We need to calculate g(f(x)) in terms of x^2.

So, we can write g(f(x)) = g(-x^2 - 1)

= -x^2 - 1 + 5

= -x^2 + 4

Therefore, the value of the expression g(f(x)) in terms of x^2 is -x^2+4

So, the answer is -x^2+4

Learn more about functions visit:

brainly.com/question/31062578

#SPJ11

The surface area of a cone is 216 pi square units. The height of the cone is 5/3 times greater than the radius. What is the length of the radius of the cone to the nearest foot?

Answers

The length of the radius of the cone is 9 units.

What is the surface area of the cone?

Surface area of a cone is the complete area covered by its two surfaces, i.e., circular base area and lateral (curved) surface area. The circular base area can be calculated using area of circle formula. The lateral surface area is the side-area of the cone

In this question, we have been given the surface area of a cone 216π square units.

We know that the surface area of a cone is:

[tex]\bold{A = \pi r(r + \sqrt{(h^2 + r^2)} )}[/tex]

Where

r is the radius of the cone And h is the height of the cone.

We need to find the radius of the cone.

The height of the cone is 5/3 times greater then the radius.

So, we get an equation, h = (5/3)r

Using the formula of the surface area of a cone,

[tex]\sf 216\pi = \pi r(r + \sqrt{((\frac{5}{3} \ r)^2 + r^2)})[/tex]

[tex]\sf 216 = r[r + (\sqrt{\frac{25}{9} + 1)} r][/tex]

[tex]\sf 216 = r^2[1 + \sqrt{(\frac{34}{9} )} ][/tex]

[tex]\sf 216 = r^2 \times (1 + 1.94)[/tex]

[tex]\sf 216 = r^2 \times 2.94[/tex]

[tex]\sf r^2 = \dfrac{216}{2.94}[/tex]

[tex]\sf r^2 = 73.47[/tex]

[tex]\sf r = \sqrt{73.47}[/tex]

[tex]\sf r = 8.57\thickapprox \bold{9 \ units}[/tex]

Therefore, the length of the radius of the cone is 9 units.

Learn more about surface area of a cone at:

https://brainly.com/question/30965834

Simplify the expression -4x(6x − 7).

Answers

Answer: -24x^2+28x

Step-by-step explanation: -4x*6x-(-4x)*7 to -24x^2+28x

Consider the linear optimization problem
maximize 3x_1+4x_2 subject to -2x_1+x_2 ≤ 2
2x_1-x_2<4
0≤ x_1≤3
0≤ x_2≤4
(a) Draw the feasible region as a subset of R^2. Label all vertices with coordinates, and use the graphical method to find an optimal solution to this problem.
(b) If you solve this problem using the simplex algorithm starting at the origin, then there are two choices for entering variable, x_1 or x_2. For each choice, draw the path that the algorithm takes from the origin to the optimal solution. Label each path clearly in your solution to (a).

Answers

Considering the linear optimization problem:
Maximize 3x_1 + 4x_2
subject to
-2x_1 + x_2 ≤ 2
2x_1 - x_2 < 4
0 ≤ x_1 ≤ 3
0 ≤ x_2 ≤ 4

In both cases, the simplex algorithm follows the same path to reach the optimal solution (3, 4).



(a) To solve this problem graphically, we need to draw the feasible region as a subset of R^2 and label all the vertices with their coordinates. Then we can use the graphical method to find the optimal solution.

First, let's plot the constraints on a coordinate plane.

For the first constraint, -2x_1 + x_2 ≤ 2, we can rewrite it as x_2 ≤ 2 + 2x_1.
To plot this line, we need to find two points that satisfy this equation. Let's choose x_1 = 0 and x_1 = 3 to find the corresponding x_2 values.
For x_1 = 0, we have x_2 = 2 + 2(0) = 2.
For x_1 = 3, we have x_2 = 2 + 2(3) = 8.
Plotting these points and drawing a line through them, we get the line -2x_1 + x_2 = 2.

For the second constraint, 2x_1 - x_2 < 4, we can rewrite it as x_2 > 2x_1 - 4.
To plot this line, we need to find two points that satisfy this equation. Let's choose x_1 = 0 and x_1 = 3 to find the corresponding x_2 values.
For x_1 = 0, we have x_2 = 2(0) - 4 = -4.
For x_1 = 3, we have x_2 = 2(3) - 4 = 2.
Plotting these points and drawing a dashed line through them, we get the line 2x_1 - x_2 = 4.

Next, we need to plot the constraints 0 ≤ x_1 ≤ 3 and 0 ≤ x_2 ≤ 4 as vertical and horizontal lines, respectively.

Now, we can shade the feasible region, which is the area that satisfies all the constraints. In this case, it is the region below the line -2x_1 + x_2 = 2, above the dashed line 2x_1 - x_2 = 4, and within the boundaries defined by 0 ≤ x_1 ≤ 3 and 0 ≤ x_2 ≤ 4.

After drawing the feasible region, we need to find the vertices of this region. The vertices are the points where the feasible region intersects. In this case, we have four vertices: (0, 0), (3, 0), (3, 4), and (2, 2).

To find the optimal solution, we evaluate the objective function 3x_1 + 4x_2 at each vertex and choose the vertex that maximizes the objective function.

For (0, 0), the objective function value is 3(0) + 4(0) = 0.
For (3, 0), the objective function value is 3(3) + 4(0) = 9.
For (3, 4), the objective function value is 3(3) + 4(4) = 25.
For (2, 2), the objective function value is 3(2) + 4(2) = 14.

The optimal solution is (3, 4) with an objective function value of 25.

(b) If we solve this problem using the simplex algorithm starting at the origin, there are two choices for the entering variable: x_1 or x_2. For each choice, we need to draw the path that the algorithm takes from the origin to the optimal solution and label each path clearly in the solution to part (a).

If we choose x_1 as the entering variable, the simplex algorithm will start at the origin (0, 0) and move towards the point (3, 0) on the x-axis, following the path along the line -2x_1 + x_2 = 2. From (3, 0), it will then move towards the point (3, 4), following the path along the line 2x_1 - x_2 = 4. Finally, it will reach the optimal solution (3, 4).

If we choose x_2 as the entering variable, the simplex algorithm will start at the origin (0, 0) and move towards the point (0, 4) on the y-axis, following the path along the line -2x_1 + x_2 = 2. From (0, 4), it will then move towards the point (3, 4), following the path along the line 2x_1 - x_2 = 4. Finally, it will reach the optimal solution (3, 4).

In both cases, the simplex algorithm follows the same path to reach the optimal solution (3, 4).

To know more about "Linear Optimization Problems":

https://brainly.com/question/15177128

#SPJ11



b. In Problem 3 , can you use the Law of Sines to find the heights of the triangle? Explain your answer.

Answers

In Problem 3, the Law of Sines can be used to find the heights of the triangle. The Law of Sines relates the lengths of the sides of a triangle to the sines of their opposite angles. The formula for the Law of Sines is as follows:

a/sin(A) = b/sin(B) = c/sin(C)

where a, b, and c are the side lengths of the triangle, and A, B, and C are the opposite angles.

To find the heights of the triangle using the Law of Sines, we need to know the lengths of at least one side and its opposite angle. In the given problem, the lengths of the sides a = 9 and b = 4 are provided, but the angles A, B, and C are not given. Without the measures of the angles, we cannot directly apply the Law of Sines to find the heights.

To find the heights, we would need additional information, such as the measures of the angles or the lengths of another side and its opposite angle. With that additional information, we could set up the appropriate ratios using the Law of Sines to solve for the heights of the triangle.

Learn more about Law of Sines here:

brainly.com/question/30401249

#SPJ11

Solve y′′+4y=sec(2x) by variation of parameters.

Answers

The solution to the differential equation y'' + 4y = sec(2x) by variation of parameters is given by:

y(x) = -1/4 * [sec(2x) * sin(2x) + 2cos(2x)] + C1 * cos(2x) + C2 * sin(2x),

where C1 and C2 are arbitrary constants.

To solve the given differential equation using variation of parameters, we first find the complementary function, which is the solution to the homogeneous equation y'' + 4y = 0. The characteristic equation for the homogeneous equation is r^2 + 4 = 0, which gives us the roots r = ±2i.

The complementary function is therefore given by y_c(x) = C1 * cos(2x) + C2 * sin(2x), where C1 and C2 are arbitrary constants.

Next, we need to find the particular integral. Since the non-homogeneous term is sec(2x), we assume a particular solution of the form:

y_p(x) = u(x) * cos(2x) + v(x) * sin(2x),

where u(x) and v(x) are functions to be determined.

Differentiating y_p(x) twice, we find:

y_p''(x) = (u''(x) - 4u(x)) * cos(2x) + (v''(x) - 4v(x)) * sin(2x) + 4(u(x) * sin(2x) - v(x) * cos(2x)).

Plugging y_p(x) and its derivatives into the differential equation, we get:

(u''(x) - 4u(x)) * cos(2x) + (v''(x) - 4v(x)) * sin(2x) + 4(u(x) * sin(2x) - v(x) * cos(2x)) + 4(u(x) * cos(2x) + v(x) * sin(2x)) = sec(2x).

To solve for u''(x) and v''(x), we equate the coefficients of the terms with cos(2x) and sin(2x) separately:

For the term with cos(2x): u''(x) - 4u(x) + 4v(x) = 0,

For the term with sin(2x): v''(x) - 4v(x) - 4u(x) = sec(2x).

Solving these equations, we find u(x) = -1/4 * sec(2x) * sin(2x) - 1/2 * cos(2x) and v(x) = 1/4 * sec(2x) * cos(2x) - 1/2 * sin(2x).

Substituting u(x) and v(x) back into the particular solution form, we obtain:

y_p(x) = -1/4 * [sec(2x) * sin(2x) + 2cos(2x)].

Finally, the general solution to the differential equation is given by the sum of the complementary function and the particular integral:

y(x) = y_c(x) + y_p(x) = -1/4 * [sec(2x) * sin(2x) + 2cos(2x)] + C1 * cos(2x) + C2 * sin(2x).

To know more about variation of parameters, refer here:

https://brainly.com/question/30896522#

#SPJ11

The DE (x - y³ + y² sin x) dx = (3xy² - 2ycos y)dy is an exact differential equation. Select one: True False
The Bernoulli's equation dy y- + x³y = (sin x)y-¹, dx will be reduced to a linear equation by using the substitution u = = y². Select one: True False
Consider the model of population size of a community given by: dP dt = 0.5P, P(0) = 650, P(3) = 710. We conclude that the initial population is 650. Select one: True False
Consider the model of population size of a community given by: dP dt = 0.5P, P(0) = 650, P(3) = 710. We conclude that the initial population is 650. Select one: True False Question [5 points]: Consider the model of Newton's law of cooling given by: Select one: dT dt True False = k(T 10), T(0) = 40°. The ambient temperature is Tm - = 10°.

Answers

Finally, the model of Newton's law of cooling, dT/dt = k(T - 10), with initial condition T(0) = 40° and ambient temperature Tm = 10°, can be explained further.

Is the integral ∫(4x³ - 2x² + 7x + 3)dx equal to  x⁴ - (2/3)x³ + (7/2)x² + 3x + C, where C is the constant of integration?

The given differential equation, (x - y³ + y² sin x) dx = (3xy² - 2ycos y)dy, is an exact differential equation.

The Bernoulli's equation, dy y- + x³y = (sin x)y-¹, will not be reduced to a linear equation by using the substitution u = y².

In the model of population size, dP/dt = 0.5P, with initial conditions P(0) = 650 and P(3) = 710, we can conclude that the initial population is 650.

Learn more about ambient temperature

brainly.com/question/33568952

#SPJ11

2. Find the value of k so that the lines = (3,-6,-3) + t[(3k+1), 2, 2k] and (-7,-8,-9)+s[3,-2k,-3] are perpendicular. (Thinking - 2)

Answers

To find the value of k such that the given lines are perpendicular, we can use the fact that the direction vectors of two perpendicular lines are orthogonal to each other.

Let's consider the direction vectors of the given lines:

Direction vector of Line 1: [(3k+1), 2, 2k]

Direction vector of Line 2: [3, -2k, -3]

For the lines to be perpendicular, the dot product of the direction vectors should be zero:

[(3k+1), 2, 2k] · [3, -2k, -3] = 0

Expanding the dot product, we have:

(3k+1)(3) + 2(-2k) + 2k(-3) = 0

9k + 3 - 4k - 6k = 0

9k - 10k + 3 = 0

-k + 3 = 0

-k = -3

k = 3

Therefore, the value of k that makes the two lines perpendicular is k = 3.

Learn more about perpendicular here

https://brainly.com/question/12746252

#SPJ11

Of the songs in devin's music library, 1/3 are rock songs. of the rock songs, 1/10 feature a guitar solo. what fraction of the songs in devin's music library are rock songs that feature a guitar solo?

Answers

Answer:  1/30 fraction of the songs in Devin's music library are rock songs that feature a guitar solo.

To find the fraction of songs in Devin's music library that are rock songs featuring a guitar solo, we can multiply the fractions.

The fraction of rock songs in Devin's music library is 1/3, and the fraction of rock songs featuring a guitar solo is 1/10. Multiplying these fractions, we get (1/3) * (1/10) = 1/30.

Therefore, 1/30 of the songs in Devin's music library are rock songs that feature a guitar solo.

To know more about fraction refer here:

https://brainly.com/question/10708469

#SPJ11

Write step-by-step solutions and justify your answers. 1) [25 Points] Reduce the given Bernoulli's equation to a linear equation and solve it. dy X - 6xy = 5xy³. dx 2) [20 Points] The population, P, of a town increases as the following equation: P(t) 100ekt If P(4) = 130, what is the population size at t = 10? =

Answers

1) The linear equation formed is  [tex]\(y^3 = \frac{6xy}{4v - 5x}\)[/tex]

2) The population size at t = 10 is approximately 177.82.

1) To reduce the given Bernoulli's equation to a linear equation, we can use a substitution method.

Given the equation: [tex]\(\frac{dy}{dx} - 6xy = 5xy^3\)[/tex]

Let's make the substitution: [tex]\(v = y^{1-3} = y^{-2}\)[/tex]

Differentiate \(v\) with respect to \(x\) using the chain rule:

[tex]\(\frac{dv}{dx} = \frac{d(y^{-2})}{dx} = -2y^{-3} \frac{dy}{dx}\)[/tex]

Now, substitute [tex]\(y^{-2}\)[/tex] and \[tex](\frac{dy}{dx}\)[/tex] in terms of \(v\) and \(x\) in the original equation:

[tex]\(-2y^{-3} \frac{dy}{dx} - 6xy = 5xy^3\)[/tex]

Substituting the values:

[tex]\(-2v \cdot (-2y^3) - 6xy = 5xy^3\)[/tex]

Simplifying:

[tex]\(4vy^3 - 6xy = 5xy^3\)[/tex]

Rearranging the terms:

[tex]\(4vy^3 - 5xy^3 = 6xy\)[/tex]

Factoring out [tex]\(y^3\)[/tex]:

[tex]\(y^3(4v - 5x) = 6xy\)[/tex]

Now, we have a linear equation: [tex]\(y^3 = \frac{6xy}{4v - 5x}\)[/tex]

Solve this linear equation to find the solution for (y).

2) The population equation is given as: [tex]\(P(t) = 100e^{kt}\)[/tex]

Given that [tex]\(P(4) = 130\)[/tex], we can substitute these values into the equation to find the value of (k).

[tex]\(P(4) = 100e^{4k} = 130\)[/tex]

Dividing both sides by 100:

[tex]\(e^{4k} = 1.3\)[/tex]

Taking the natural logarithm of both sides:

[tex]\(4k = \ln(1.3)\)[/tex]

Solving for \(k\):

[tex]\(k = \frac{\ln(1.3)}{4}\)[/tex]

Now that we have the value of \(k\), we can use it to find the population size at t = 10.

[tex]\(P(t) = 100e^{kt}\)\\\(P(10) = 100e^{k \cdot 10}\)[/tex]

Substituting the value of \(k\):

\(P(10) = 100e^{(\frac{\ln(1.3)}{4}) \cdot 10}\)

Simplifying:

[tex]\(P(10) = 100e^{2.3026/4}\)[/tex]

Calculating the value:

[tex]\(P(10) \approx 100e^{0.5757} \approx 100 \cdot 1.7782 \approx 177.82\)[/tex]

Therefore, the population size at t = 10 is approximately 177.82.

Learn more about population size

https://brainly.com/question/30881076

#SPJ11

Is the graphed function linear?

Yes, because each input value corresponds to exactly one output value.
Yes, because the outputs increase as the inputs increase.
No, because the graph is not continuous.
No, because the curve indicates that the rate of change is not constant.

Answers

The graphed function cannot be considered linear.

No, the graphed function is not linear.

The statement "No, because the curve indicates that the rate of change is not constant" is the correct explanation. For a function to be linear, it must have a constant rate of change, meaning that as the inputs increase by a constant amount, the outputs also increase by a constant amount. In other words, the graph of a linear function would be a straight line.

If the graph shows a curve, it indicates that the rate of change is not constant. Different portions of the curve may have varying rates of change, which means that the relationship between the input and output values is not linear. Therefore, the graphed function cannot be considered linear.

for such more question on graphed function

https://brainly.com/question/13473114

#SPJ8

find the least number which is a perfect cube and exactly divisible by 6 and 9.
hurry up, I need this answer immediately. ​

Answers

To find the least number that is a perfect cube and exactly divisible by 6 and 9, we need to find the least common multiple (LCM) of 6 and 9.

The prime factorization of 6 is [tex]\displaystyle 2 \times 3[/tex], and the prime factorization of 9 is [tex]\displaystyle 3^{2}[/tex].

To find the LCM, we take the highest power of each prime factor that appears in either number. In this case, the highest power of 2 is [tex]\displaystyle 2^{1}[/tex], and the highest power of 3 is [tex]\displaystyle 3^{2}[/tex].

Therefore, the LCM of 6 and 9 is [tex]\displaystyle 2^{1} \times 3^{2} =2\cdot 9 =18[/tex].

Now, we need to find the perfect cube number that is divisible by 18. The smallest perfect cube greater than 18 is [tex]\displaystyle 2^{3} =8[/tex].

However, 8 is not divisible by 18.

The next perfect cube greater than 18 is [tex]\displaystyle 3^{3} =27[/tex].

Therefore, the least number that is a perfect cube and exactly divisible by both 6 and 9 is 27.

[tex]\huge{\mathfrak{\colorbox{black}{\textcolor{lime}{I\:hope\:this\:helps\:!\:\:}}}}[/tex]

♥️ [tex]\large{\underline{\textcolor{red}{\mathcal{SUMIT\:\:ROY\:\:(:\:\:}}}}[/tex]

Answer:

Step-by-step explanation:

216 = 6³   216/9 = 24  216/6 = 36

Other Questions
A solid but inhomogeneous cone with vertex angle /4and height h lies horizontally on the XY plane. The cone rolls without slipping with its vertex at the origin: x=0 and y=0. The density of the cone is:p (w)=p u [ 1+sin^{2}(w/2)]wthe angle of rotation about its axis. At the initial instant, the cone is in its equilibrium position, with its center of mass located vertically below its axis. Its axis is oriented in such a way that its projection on the XY plane coincides with the positive x direction.Taps the cone lightly and knocks it out of its equilibrium position, maintaining the condition that the vertex is fixed at the origin of the reference system. Thus, the cone begins to rotate without slipping. Write the equation for the motion of the cone in the regime of small oscillations. Rewrite the following sentences using transitions/conjunctive adverbs and a semicolon. Do not add/subtract words or change the meaning of the text. Please use: otherwise/however/consequently/moreover/ on the contrary. 1. If the government doesn't invest more money into public transit, the system will continue to be inefficient.2. Widening roads seems like a solution to traffic reduction, but it doesn't seem to have any positive effects.3. Even though we think money will bring us happiness, it never does.4. We need to invest more money into public transit, and we need to make commuting by car seem unattractive.5. I don't enjoy being stuck in traffic everyday, so I think I'll start taking public transit Write a polynomial function with the given zeros. x=1,2,3 . You bought 100 shares of IBM stock last year for $60, you received an $8 per share divided during the year and the current price of the stock is $80. What is the dividend yield on your investment? Workforce planning is a long-term process of planning and measuring results. what is one challenge that this creates for many organizations? 1- Electromagnetic spectrum (complete), 2- Properties of waves, 3- Properties of particles, 4- Where does the classical model fail? 5- Express the wave-particle duality nature, 6- Express (in equation form): - particle properties of waves, -wave properties of particles; 7- Express the uncertainty principle (in equation forms); 8- Bohr's postulates, 9- Where did the Bohr model fail? 10- Wave function: - what is it? - what does it describe? - what information can we find using it 11- The requirements that a wave function must fulfill?? 12- Schrodinger equation, When what is right is determined by the group in which one chooses to participate, the ethical theory we are using is known asGroup of answer choicesA. the Social ContractB. Stage 6 of Kohlberg's theory of RelativityC. DeontologyD. Determinism 1.1 WHY STUDY ECONOMICS LEARNING OBJECTIVE: Identify three key reasons to study economics. Think of an example from your life in which understanding opportunity costs or the principle of efficient markets could make a difference in your decision making. 1.1 One of the scarce resources that constrain our behavior is time. Each of us has only 24 hours in a day. How do you go about allocating your time in a given day among competing alternatives? How do you go about weighing the alternatives? Once you choose a most important use of time, why do you not spend all your time on it? Use the notion of opportunity cost in your answer. 1.2 Every month, Frank pays an $80 membership fee at a fit- ness center so he can avail himself of the unlimited use of its facilities. On average, he goes to the center 10 times a month. What is the average cost of each trip he makes to the center? What is the marginal cost of an additional work-out session? (10%) Problem 2: The image shows a rocket sled, In the top image all four forward thrusters are engaged, creating a total forward thrust of magnitude 47, where T =519 N. In the bottom image, in addition to the four forward thrusters, one reverse thruster is engaged, creating a reverse thrust of magnitude 7. In both cases a backward force (friction and air drag) of magnitude f = 20 Nacts on the sled. 7 What is the ratio of the greater acceleration to the lesser acceleration? Two equal charges of magnitude 1.8 x 10-7C experience an electrostatic force of 4.5 x 10-4 N. How far apart are the centers of the two charges? Because Stanford has about 17,000 students, how many years wouldwe have lasted using the amount of oil that was spilled? In the mortgage constant calculation, what do the followingsymbols mean?MC-PV-i-n- How long would it take for 4*10^20 atoms to decay to 1*10^19atoms if their half life was 14.7 years? Ineed an explanation of each of them for "Anesthesia device"Alarms:a) Low pressure of input gases 02, N2O, And Air.b) Apnoeac) High and Low Fi02 alarmd) Leakagee) Patient disconnectiong) Tech Please answer the following questions: In the case, is India upstream or downstream in the global value system? 1. 2. In the case, what specific value does the country offer to IKEA and other retailers? 3. Three long term options are available - which one would you chose and why? a. Ikea should deal with the issue with its supplier, Rangan, directly? b. Let Rugmark do it? C. Withdraw How did the Vietnam War's end impact US politics, military, and economy? Which of the troubling aspects of the 1970s do you think was directly connected with the end of the war, or the country's involvement in that war? Why do you think that might be the case? How do you think the troubles with the Watergate Crisis connected with the war's end? How did all of these issues impact Gerald Ford as he tried to put the presidency back together after Nixon's resignation? Analyze the characterization in this passage, discussing the way it develops a theme. Support your response with textual details. Your response should be one paragraph in length.Passage:Excerpt from "The Dead" by James Joyce. . . She was fast asleep.Gabriel, leaning on his elbow, looked for a few moments unresentfully on her tangled hair and half-open mouth, listening to her deep-drawn breath. So she had had that romance in her life: a man had died for her sake. It hardly pained him now to think how poor a part he, her husband, had played in her life. He watched her while she slept as though he and she had never lived together as man and wife. His curious eyes rested long upon her face and on her hair: and, as he thought of what she must have been then, in that time of her first girlish beauty, a strange, friendly pity for her entered his soul. He did not like to say even to himself that her face was no longer beautiful but he knew that it was no longer the face for which Michael Furey had braved death.Perhaps she had not told him all the story. His eyes moved to the chair over which she had thrown some of her clothes. A petticoat string dangled to the floor. One boot stood upright, its limp upper fallen down: the fellow of it lay upon its side. He wondered at his riot of emotions of an hour before. From what had it proceeded? From his aunts supper, from his own foolish speech, from the wine and dancing, the merry-making when saying good-night in the hall, the pleasure of the walk along the river in the snow. Poor Aunt Julia! She, too, would soon be a shade with the shade of Patrick Morkan and his horse. He had caught that haggard look upon her face for a moment when she was singing Arrayed for the Bridal. Soon, perhaps, he would be sitting in that same drawing-room, dressed in black, his silk hat on his knees. The blinds would be drawn down and Aunt Kate would be sitting beside him, crying and blowing her nose and telling him how Julia had died. He would cast about in his mind for some words that might console her, and would find only lame and useless ones. Yes, yes: that would happen very soon.The air of the room chilled his shoulders. He stretched himself cautiously along under the sheets and lay down beside his wife. One by one they were all becoming shades. Better pass boldly into that other world, in the full glory of some passion, than fade and wither dismally with age. He thought of how she who lay beside him had locked in her heart for so many years that image of her lovers eyes when he had told her that he did not wish to live.Generous tears filled Gabriels eyes. He had never felt like that himself towards any woman but he knew that such a feeling must be love. The tears gathered more thickly in his eyes and in the partial darkness he imagined he saw the form of a young man standing under a dripping tree. Other forms were near. His soul had approached that region where dwell the vast hosts of the dead. He was conscious of, but could not apprehend, their wayward and flickering existence. His own identity was fading out into a grey impalpable world: the solid world itself which these dead had one time reared and lived in was dissolving and dwindling.A few light taps upon the pane made him turn to the window. It had begun to snow again. He watched sleepily the flakes, silver and dark, falling obliquely against the lamplight. The time had come for him to set out on his journey westward. Yes, the newspapers were right: snow was general all over Ireland. It was falling on every part of the dark central plain, on the treeless hills, falling softly upon the Bog of Allen and, farther westward, softly falling into the dark mutinous Shannon waves. It was falling, too, upon every part of the lonely churchyard on the hill where Michael Furey lay buried. It lay thickly drifted on the crooked crosses and headstones, on the spears of the little gate, on the barren thorns. His soul swooned slowly as he heard the snow falling faintly through the universe and faintly falling, like the descent of their last end, upon all the living and the dead. Which of the following employees is typically held accountable for the direct material quantity variance? Controller Engineering department manager Production manager Purchasing manager Why did the fighting begin at Lexington? Consider the same firm with production function: q=f(L,K) = 20L +25K+5KL-0.03L -0.02K Make a diagram of the total product of labour, average product of labour, and marginal product of labour in the short run when K = 5. (It is ok if this diagram is not to scale.) Does this production function demonstrate increasing marginal returns due to specialization when L is low enough? How do you know?