3. A 4.1 x 10-15 C charge is able to pick up a bit of paper when it is initially 1.0 cm above the paper. Assume an induced charge on the paper of the same magnitude, find the weight of the paper in newtons. Remember to convert the distance to meters and show your work here.

Answers

Answer 1

Answer:

[tex]\mathbf{1.51\times10^{-15}N}[/tex]

Explanation:

The computation of the weight of the paper in newtons is shown below:

On the paper, the induced charge is of the same magnitude as on the initial charges and in sign opposite.

Therefore the paper charge is

[tex]q_{paper}=-4.1\times10^{-15}C[/tex]

Now the distance from the charge is

[tex]r=1cm=0.01m[/tex]

Now, to raise the paper, the weight of the paper acting downwards needs to be managed by the electrostatic force of attraction between both the paper and the charge, i.e.

[tex]mg=\frac{k_{e}q_{1}q_{2}}{r^{2}}[/tex]

[tex]\Rightarrow W=mg[/tex]

[tex]=\frac{9\times10^{9}\times(4.1\times10^{-15})^{2}}{0.01^{2}}[/tex]

[tex]=\mathbf{1.51\times10^{-15}N}[/tex]


Related Questions

The barricade at the end of a subway line has a large spring designed to compress 2.00 m when stopping a 1.10 ✕ 105 kg train moving at 0.350 m/s. (a) What is the force constant (in N/m) of the spring? N/m (b) What speed (in m/s) would the train be going if it only compressed the spring 0.600 m? m/s (c) What force (in N) does the spring exert when compressed 0.600 m? 2020 N (in the direction opposite to the train's motion)

Answers

Answer:

(a) k = 1684.38 N/m = 1.684 KN/m

(b) Vi = 0.105 m/s

(c) F = 1010.62 N = 1.01 KN

Explanation:

(a)

First, we find the deceleration of the car. For that purpose we use 3rd equation of motion:

2as = Vf² - Vi²

a = (Vf² - Vi²)/2s

where,

a = deceleration = ?

Vf = final velocity = 0 m/s (since, train finally stops)

Vi = Initial Velocity = 0.35 m/s

s = distance covered by train before stopping = 2 m

Therefore,

a = [(0 m/s)² - (0.35 m/s)²]/(2)(2 m)

a = 0.0306 m/s²

Now, we calculate the force applied on spring by train:

F = ma

F = (1.1 x 10⁵ kg)(0.0306 m/s²)

F = 3368.75 N

Now, for force constant, we use Hooke's Law:

F = kΔx

where,

k = Force Constant = ?

Δx = Compression = 2 m

Therefore.

3368.75 N = k(2 m)

k = (3368.75 N)/(2 m)

k = 1684.38 N/m = 1.684 KN/m

(c)

Applying Hooke's Law with:

Δx  = 0.6 m

F = (1684.38 N/m)(0.6 m)

F = 1010.62 N = 1.01 KN

(b)

Now, the acceleration required for this force is:

F = ma

1010.62 N = (1.1 kg)a

a = 1010.62 N/1.1 x 10⁵ kg

a = 0.0092 m/s²

Now, we find initial velocity of train by using 3rd equation of motion:

2as = Vf² - Vi²

a = (Vf² - Vi²)/2s

where,

a = deceleration = -0.0092 m/s² (negative sign due to deceleration)

Vf = final velocity = 0 m/s (since, train finally stops)

Vi = Initial Velocity = ?

s = distance covered by train before stopping = 0.6 m

Therefore,

-0.0092 m/s² = [(0 m/s)² - Vi²]/(2)(0.6 m)

Vi = √(0.0092 m/s²)(1.2 m)

Vi = 0.105 m/s

The power dissipated in each of two resistors is the same. The current across resistor A is triple that across resistor B. If the resistance of resistor B is R, what is the resistance of A?

Answers

Answer:

Explanation:

this is the answer to your question

One kind of baseball pitching machine works by rotating a light and stiff rigid rod about a horizontal axis until the ball is moving toward the target. Suppose a 144 g baseball is held 82 cm from the axis of rotation and released at the major league pitching speed of 87 mph.

Required:
a. What is the ball's centripetal acceleration just before it is released?
b. What is the magnitude of the net force that is acting on the ball just before it is released?

Answers

Answer:

a. ac = 1844.66 m/s²

b. Fc = 265.63 N

Explanation:

a.

The centripetal acceleration of the ball is given as follows:

ac = v²/r

where,

ac = centripetal acceleration = ?

v = speed of ball = (87 mph)(1 h/ 3600 s)(1609.34 m / 1 mile) = 38.9 m/s

r = radius of path = 82 cm = 0.82 m

Therefore,

ac = (38.9 m/s)²/0.82 m  

ac = 1844.66 m/s²

b.

The centripetal force is given as:

Fc = (m)(ac)

Fc = (0.144 kg)(1844.66 m/s²)

Fc = 265.63 N

What is the internal energy (to the nearest joule) of 10 moles of Oxygen at 100 K?
(Given, the universal gas constant = 8.315 J/(mol.k))

Answers

Answer:

U = 12,205.5 J

Explanation:

In order to calculate the internal energy of an ideal gas, you take into account the following formula:

[tex]U=\frac{3}{2}nRT[/tex]        (1)

U: internal energy

R: ideal gas constant = 8.135 J(mol.K)

n: number of moles = 10 mol

T: temperature of the gas = 100K

You replace the values of the parameters in the equation (1):

[tex]U=\frac{3}{2}(10mol)(8.135\frac{J}{mol.K})(100K)=12,205.5J[/tex]

The total internal energy of 10 mol of Oxygen at 100K is 12,205.5 J

A charged particle q moves at constant velocity through a crossed electric and magnetic fields (E and B, which are both constant in magnitude and direction). Write the magnitude of the electric force on the particle in terms of the variables given. Do the same for the magnetic force

Answers

Answer:

The magnitude of the electric force on the particle in terms of the variables given is, F = qE

The magnitude of the magnetic force on the particle in terms of the variables given is, F = q (v x B)

Explanation:

Given;

a charged particle, q

magnitude of electric field, E

magnitude of magnetic field, B

The magnitude of the electric force on the particle in terms of the variables given;

F = qE

The magnitude of the magnetic force on the particle in terms of the variables given;

F = q (v x B)

where;

v is the constant velocity of the charged particle

Answer:

The magnitude of the electric force acting on a charged particle moving through an electric field = |qE|

The magnitude of the magnetic force of a charged particle moving at a particular velocity through a magnetic field = |qv × B|

Explanation:

The electric force acting on a charged particle, q, moving through an electric field, E, is given as a product of the charge on the particle (a scalar quantity) and the electric field (a vector quantity).

Electric force = qE

The magnitude of the electric force = |qE|

That is, magnitude of the product of the charge and the electric field vector.

The magnetic force acting on a charged particle, q, moving with a velocity, v, through a magnetic field, B is a vector product of qv [a product of the charge of the particle (a scalar quantity) and the velocity of the particle (a vector quantity)] and B (a vector quantity).

It is given mathematically as (qv × B)

The magnitude of the magnetic force is the magnitude of the vector product obtained.

Magnitude of the magnetic force = |qv × B|

Hope this Helps!!!

A 2.5 m long diving board weighs 120 N. It has two supports, one at the end and another at a distance of 1.0 m from that end. A 100 N diver stands at the other end of the board. What is the magnitude and direction of the force exerted by the support at the end of the diving board

Answers

Answer:

46.67 N  Upwards (with a clockwise moment)

Explanation:

length of board = 2.5 m

weight of board = 120 N

the board has two supports,  say support A and support B

support A is at one end,

support B is at 100 m from the other end.

weight of diver = 100 N

diver stands on the other end of the board.

Magnitude of support A at the end of the board

To get the magnitude and force exerted by the support at the end of the board (support A, we take moment of the forces about support B

Moment of a force is the product of force and perpendicular distance of the force about a center.

The weight of the board acts at the center of the board (1.25 m from each end of the board). That is 2.5 m from the support B.

moment of board's weight about support B is  120 x 0.25 = 30 N-m

The moment due to the weight of the board acts anticlockwise.

Weight of the diver acts at the opposite side of the board, and it acts 1 m from support B.

Moment of diver about support B is 100 x 1 = 100 N-m

Th moment due to the diver acts clockwise.

The moment due to the reaction at support A acts at a distance 1.5 m from support B

If the reaction force on support A is Fa, then the reaction about support B is Fa x 1.5 = 1.5Fa.

The moment due to support A acts clockwise.

According to moment laws, the total clockwise movement must be equal to the total anticlockwise movement.

Total clockwise movements = 100 N-m + 1.5Fa

Total anticlockwise moment = 30 N-m

according to moment laws,

100 + 1.5Fa = 30

1.5 Fa = 30 - 100 = -70

Fa = -70/1.5 = -46.67 N

The magnitude of the force exerted at support A is equal but opposite to the reaction at support A and is equal to 46.67 N

While sitting in your car by the side of a country road, you see your friend, who happens to have an identical car with an identical horn, approaching you. You blow your horn, which has a frequency of 260 Hz; your friend begins to blow his horn as well, and you hear a beat frequency of 5.0 Hz. Part A How fast is your friend approaching you

Answers

Answer:

-6.49 m/s

Explanation:

This is doppler effect.

The equation is;

F_l = [(v + v_l)/(v + v_s)]F_s

Where;

F_l is frequency observed by the listener

v is speed of sound

v_l is speed of listener

v_s is speed of source of the sound

F_s is frequency of the source of the sound

In this question, the source of the sound is the moving vehicle.

Thus;

F_l = F_beat + F_s

We are given beat frequency (f_beat) as 5 Hz while source frequency (F_s) as 260 Hz.

So,

F_l = 5 + 260

F_l = 265 Hz

Since listener is sitting by car, thus; v_l = 0 m/s

Thus,from our doppler effect equation, let's make v_s the subject;

v_s = F_s[(v + v_l)/F_l] - v

Speed of sound has a value of v = 344 m/s

Thus;

v_s = 260[(344 + 0)/265] - 344

v_s = -6.49 m/s

This value is negative because the source is moving towards the listener

The cart travels the track again and now experiences a constant tangential acceleration from point A to point C. The speeds of the cart are 4.50 m/s at point A and 5.00 m/s at point C. The cart takes 4.00 s to go from point A to point C, and the cart takes 1.60 s to go from point B to point C. What is the cart's speed at point B

Answers

Answer:

Vi = 4.8 m/s

Explanation:

First we need to find the magnitude of constant tangential acceleration. For that purpose we use the following formula between points A and C:

a = (Vf - Vi)/t

where,

a = constant tangential acceleration from A to C = ?

Vf = Final Velocity at C = 5 m/s

Vi = Initial Velocity at A = 4.5 m/s

t = time taken to move from A to C = 4 s

Therefore,

a = (5 m/s - 4.5 m/s)/4 s

a = 0.125 m/s²

Now, applying the same equation between points B and C:

a = (Vf - Vi)/t

where,

a = constant tangential acceleration from A to B = 0.125 m/s²

Vf = Final Velocity at C = 5 m/s

Vi = Initial Velocity at B = ?

t = time taken to move from B to C = 1.6 s

Therefore,

0.125 m/s² = (5 m/s - Vi)/1.6 s

Vi = 5 m/s - (0.125 m/s²)(1.6 s)

Vi = 4.8 m/s

A satellite in the shape of a solid sphere of mass 1,900 kg and radius 4.6 m is spinning about an axis through its center of mass. It has a rotation rate of 8.0 rev/s. Two antennas deploy in the plane of rotation extending from the center of mass of the satellite. Each antenna can be approximated as a rod of mass 150.0 kg and length 6.6 m. What is the new rotation rate of the satellite (in rev/s)

Answers

Answer:

6.3 rev/s

Explanation:

The new rotation rate of the satellite can be found by conservation of the angular momentum (L):

[tex] L_{i} = L_{f} [/tex]

[tex] I_{i}*\omega_{i} = I_{f}*\omega_{f} [/tex]

The initial moment of inertia of the satellite (a solid sphere) is given by:

[tex] I_{i} = \frac{2}{5}m_{s}r^{2} [/tex]

Where [tex]m_{s}[/tex]: is the satellite mass and r: is the satellite's radium

[tex] I_{i} = \frac{2}{5}m_{s}r^{2} = \frac{2}{5}1900 kg*(4.6 m)^{2} = 1.61 \cdot 10^{4} kg*m^{2} [/tex]

Now, the final moment of inertia is given by the satellite and the antennas (rod):

[tex] I_{f} = I_{i} + 2*I_{a} = 1.61 \cdot 10^{4} kg*m^{2} + 2*\frac{1}{3}m_{a}l^{2} [/tex]

Where [tex]m_{a}[/tex]: is the antenna's mass and l: is the lenght of the antenna

[tex] I_{f} = 1.61 \cdot 10^{4} kg*m^{2} + 2*\frac{1}{3}150.0 kg*(6.6 m)^{2} = 2.05 \cdot 10^{4} kg*m^{2} [/tex]

So, the new rotation rate of the satellite is:

[tex] I_{i}*\omega_{i} = I_{f}*\omega_{f} [/tex]

[tex]\omega_{f} = \frac{I_{i}*\omega_{i}}{I_{f}} = \frac{1.61 \cdot 10^{4} kg*m^{2}*8.0 \frac{rev}{s}}{2.05 \cdot 10^{4} kg*m^{2}} = 6.3 rev/s[/tex]  

Therefore, the new rotation rate of the satellite is 6.3 rev/s.

I hope it helps you!  

Three masses are located in the x-y plane as follows: a mass of 6 kg is located at (0 m, 0 m), a mass of 4 kg is located at (3 m, 0 m), and a mass of 2 kg is located at (0 m, 3 m). Where is the center of mass of the system?
A. (1 m, 2 m)
B. (2 m, 1 m)
C. (1 m, 1 m)
D. (1 m, 0.5 m)
E. (0.5 m, 1 m)

Answers

Answer:

D. (1m, 0.5m)

Explanation:

The center of mass (or center of gravity) of a system of particles is the point where the weight acts when the individual particles are replaced by a single particle of equivalent mass. For the three masses, the coordinates of the center of mass C(x, y) is given by;

x = (m₁x₁ + m₂x₂ + m₃x₃) / M       ----------------(i)

y = (m₁y₁ + m₂y₂ + m₃y₃) / M       ----------------(ii)

Where;

M = sum of the masses

m₁ and x₁ = mass and position of first mass in the x direction.

m₂ and x₂ = mass and position of second mass in the x direction.

m₃ and x₃ = mass and position of third mass in the x direction.

y₁ , y₂ and y₃ = positions of the first, second and third masses respectively in the y direction.

From the question;

m₁ = 6kg

m₂ = 4kg

m₃ = 2kg

x₁ = 0m

x₂ = 3m

x₃ = 0m

y₁ = 0m

y₂ = 0m

y₃ = 3m

M = m₁ + m₂ + m₃ = 6 + 4 + 2 = 12kg

Substitute these values into equations (i) and (ii) as follows;

x = ((6x0) + (4x3) + (2x0)) / 12

x = 12 / 12

x = 1 m  

y = (6x0) + (4x0) + (2x3)) / 12

y = 6 / 12

y = 0.5m

Therefore, the center of mass of the system is at (1m, 0.5m)

A hawk is flying horizontally at 18.0 m/s in a straight line, 230 m above the ground. A mouse it has been carrying struggles free from its grasp. The hawk continues on its path at the same speed for 2.00 s before attempting to retrieve its prey. To accomplish the retrieval, it dives in a straight line at constant speed and recaptures the mouse 3.00 m above the ground. (a) Assuming no air resistance, find the diving speed (magnitude of the total velocity vector) of the hawk. (b) What angle did the hawk make with the horizontal during its descent? (c) For how long did the mouse "enjoy" free fall?

Answers

Answer:

a) vd = 47.88 m/s

b) θ = 80.9°

c) t = 6.8 s

Explanation:

In the situation of the problem, you can assume that the trajectory of the hawk and the trajectory of the mouse form a rectangle triangle.

One side of the triangle is the horizontal trajectory of the hawk after 2.00s of flight, the other side of the triangle is the distance traveled by the mouse when it is falling down. And the hypotenuse is the trajectory of the hawk when it is trying to recover the mouse.

(a) In order to calculate the diving speed of the hawk, you first calculate the hypotenuse of the triangle.

One side of the triangle is c1 = (18.0m/s)(2.0s) = 36m

The other side of the triangle is c2 = 230m - 3m = 227 m

Then, the hypotenuse is:

[tex]h=\sqrt{(36m)^2+(227m)^2}=229.83m[/tex]    (1)

Next, it is necessary to calculate the falling down time of the mouse, this can be done by using the following formula:

[tex]y=y_o+v_ot+\frac{1}{2}gt^2[/tex]    (2)

yo: initial height = 230m

vo: initial vertical speed of the mouse = 0m/s

g: gravitational acceleration = -9.8m/s^2

y: final height of the mouse = 3 m

You replace the values of the parameters in (2) and solve for t:

[tex]3=230-4.9t^2\\\\t=\sqrt{\frac{227}{4.9}}=6.8s[/tex]

The hawk traveled during 2.00 second in the horizontal trajectory, hence, the hawk needed 6.8s - 2.0s = 4.8 s to travel the distance equivalent to the hypotenuse to catch the mouse.

You use the value of h and 4.8s to find the diving speed of the hawk:

[tex]v_d=\frac{229.83m}{4.8s}=47.88\frac{m}{s}[/tex]

The diving speed of the Hawk is 47.88m/s

(b) The angle is given by:

[tex]\theta=cos^{-1}(\frac{c_1}{h})=cos^{-1}(\frac{36m}{229.83m})=80.9 \°[/tex]

Then angle between the horizontal and the trajectory of the Hawk when it is descending is 80.9°

(c) The mouse is falling down during 6.8 s

A long cylindrical rod of diameter 200 mm with thermal conductivity of 0.5 W/m⋅K experiences uniform volumetric heat generation of 24,000 W/m3. The rod is encapsulated by a circular seeve having an outer diameter of 400 mm and a thermal conductivity of 4 W/m⋅K. The outer surface of the sleeve is exposed to cross flow air at 27∘C with a convection coefficient of 25 W/m2⋅K.
(a) Find the temperature at the interface between the rod and sleeve and on the outer surface.
(b) What is the temperature at the center of the rod?

Answers

Answer:

a, 71.8° C, 51° C

b, 191.8° C

Explanation:

Given that

D(i) = 200 mm

D(o) = 400 mm

q' = 24000 W/m³

k(r) = 0.5 W/m.K

k(s) = 4 W/m.K

k(h) = 25 W/m².K

The expression for heat generation is given by

q = πr²Lq'

q = π . 0.1² . L . 24000

q = 754L W/m

Thermal conduction resistance, R(cond) = 0.0276/L

Thermal conduction resistance, R(conv) = 0.0318/L

Using energy balance equation,

Energy going in = Energy coming out

Which is = q, which is 754L

From the attachment, we deduce that the temperature between the rod and the sleeve is 71.8° C

At the same time, we find out that the temperature on the outer surface is 51° C

Also, from the second attachment, the temperature at the center of the rod was calculated to be, 191.8° C

Consider two identical springs. At the start of an experiment, Spring A is already stretched out 3 cm, while Spring B remains at the zero position. Both springs are then stretched an additional three centimeters. What conclusion can you draw about the force required to stretch these springs during the experiment

Answers

Answer:

Explanation:

In this interesting exercise we have that spring A is 3 cm longer, due to previous experiments if these experiments did not reach the non-linear elongation point, the cosecant Km of the spring must remain the same, therefore when we lengthen the two springs these the longitudinal are lengthened.

As a consequence of the above according to Hockey law, the prediction of lengthening is the same, therefore the outside is the same in two two systems

            F = K Δx

A block slides down a ramp with friction. The friction experienced by the block is 21 N. The mass of the block is 8 kg. The ramp is 6 meters long (meaning, the block slides across 6 meters of ramp with friction). The block is originally 2 meters vertically above the ground (the bottom of the ramp). What is the change in energy of the block due to friction, expressed in Joules

Answers

Complete Question

The complete question is shown on the first uploaded image

Answer:

the change in energy of the block due to friction is  [tex]E = -126 \ J[/tex]

Explanation:

From the question we are told that

    The  frictional force is  [tex]F_f = 21 \ N[/tex]

    The mass of the block is  [tex]m_b = 8 \ kg[/tex]

    The length of the ramp is  [tex]l = 6 \ m[/tex]

    The height of the block is  [tex]h = 2 \ m[/tex]

The change in energy of the block due to friction is mathematically represented as

     [tex]\Delta E = - F_s * l[/tex]

The negative sign is to show that the frictional force is acting against the direction of the block movement

  Now substituting values

      [tex]\Delta E = -(21)* 6[/tex]

      [tex]\Delta E = -126 \ J[/tex]

Potential difference of a battery is 2.2 V when it is connected
across a resistance of 5 ohm, if suddenly the potential difference
falls to 1.8V, its internal resistance will be​

Answers

Answer:

1.1ohms

Explanation:

According to ohms law E = IR

If potential difference of a battery is 2.2 V when it is connected across a resistance of 5 ohm and if suddenly the voltage Falls to 1.8V then the current in the 5ohms resistor I = V/R = 1.8/5

I = 0.36A (This will be the load current).

Before we can calculate the value of the internal resistance, we need to know the voltage drop across the internal resistance.

Voltage drop = 2.2V - 1.8V = 0.4V

Then we calculate the internal resistance using ohms law.

According to the law, V = Ir

V= voltage drop

I is the load current

r = internal resistance

0.4 = 0.36r

r = 0.4/0.36

r = 1.1 ohms

An air bubble underwater has the same pressure as that of the surrounding water. As the air bubble rises toward the surface (and its temperature remains constant), the volume of the air bubble.
a) increase or decrease, depending on the rate it rises.
b) decreases.
c) increases.
d) remains constant

Answers

Answer:

D Remains constant

Explanation:

Light rays from stars bend toward smaller angles as they enter Earth's atmosphere. a. Explain why this happens using Snell's law and the speed of light. b. Where are the actual stars in relation to their apparent position as viewed from the Earth's surface?

Answers

Answer:

Following are the answer to this question:

Explanation:

In option (a):

The principle of Snells informs us that as light travels from the less dense medium to a denser layer, like water to air or a thinner layer of the air to the thicker ones, it bent to usual — an abstract feature that would be on the surface of all objects. Mostly, on the contrary, glow shifts from a denser with a less dense medium. This angle between both the usual and the light conditions rays is referred to as the refractive angle.  Throughout in scenario, the light from its stars in the upper orbit, the surface area of both the Earth tends to increase because as light flows from the outer atmosphere towards the Earth, it defined above, to a lesser angle.

In option (b):

Rays of light, that go directly down wouldn't bend, whilst also sun source which joins the upper orbit was reflected light from either a thicker distance and flex to the usual, following roughly the direction of the curve of the earth.  Throughout the zenith specific position earlier in this thread, astronomical bodies appear throughout the right position while those close to a horizon seem to have been brightest than any of those close to the sky, and please find the attachment of the diagram.

3.Cuanto Calor pierden 514 ml de agua si su temperatura desciende de 12°C a 11°C. Expresa el resultado en calorias.
514 cal
51.4 Kcal
514J/cal
5.149 Cal

Answers

Answer:

514 cal

Explanation:

In order to calculate the lost heat by the amount of water you first take into account the following formula:

[tex]Q=mc(T_2-T_1)[/tex]         (1)

Q: heat lost by the amount of water = ?

m: mass of the water

c: specific heat of water = 1cal/g°C

T2: final temperature of water = 11°C

T1: initial temperature = 12°C

The amount of water is calculated by using the information about the density of water (1g/ml):

[tex]m=\rho V=(1g/ml)(514ml)=514g[/tex]

Then, you replace the values of all parameters in the equation (1):

[tex]Q=(514g)(1cal/g\°C)(11\°C-12\°C)=-514cal[/tex]

The amount of water losses a heat of 514 cal

A total charge Q is distributed uniformly over a large flat insulating surface of area A . If the electric field magnitude is equal to 1000 NC/ at a point located a perpendicular distance of 0.1 m away from the center of the sheet, then the electric field at a point a perpendicular distance 0.2 m from the center of the sheet is:_______

a. 1000N/C
b. 500N/C
c. Impossible to say since we are not given Q and A
d. 250 N/C

Answers

Answer:

a. 1000N/C

Explanation:

Data mentioned in the question

Electrical field magnitude = 1000 NC

Perpendicular distance = 0.1 m

Perpendicular distance = 0.2 m

Based on the above information, the electric field is

As we know that

[tex]E = \frac{\sigma}{2\times E_o}[/tex]

where,

[tex]\sigma[/tex] = surface charge density

E = distance from nearby point to sheet i.e be independent

The distance at 0.1 and 0.2, the electric field would remain the same

So,

Based on the above explanation, the first option is correct

A 60.0-kg boy is surfing and catches a wave which gives him an initial speed of 1.60 m/s. He then drops through a height of 1.57 m, and ends with a speed of 8.50 m/s. How much nonconservative work was done on the boy

Answers

Answer:

Work = 1167.54 J

Explanation:

The amount of non-conservative work here can be given by the difference in kinetic energy and the potential energy. From Law of conservation of energy, we can write that:

Gain in K.E = Loss in P.E + Work

(0.5)(m)(Vf² - Vi²) - mgh = Work

where,

m = mass of boy = 60 kg

Vf = Final Speed = 8.5 m/s

Vi = Initial Speed = 1.6 m/s

g = 9.8 m/s²

h = height drop = 1.57 m

Therefore,

(0.5)(60 kg)[(8.5 m/s)² - (1.6 m/s)²] - (60 kg)(9.8 m/s²)(1.57 m) = Work

Work = 2090.7 J - 923.16 J

Work = 1167.54 J

13. Under what condition (if any) does a moving body experience no energy even though there
is a net force acting on it?
(2 marks)​

Answers

Answer:

When the Net Forces are equal to 0

Explanation:

Momentum of a body can be defined as product of mass and velocity. It is in the same direction as in velocity. When the momentum of a body doesn't change, it is said to be conserved. If the momentum of a body is constant, the the net forces acting on a body becomes zero. When net forces acting on a body is zero, it means that no kinetic energy is being lost or gained, hence the kinetic energy is also conserved. If no energy is being gained or lost, it means that the body will experience no energy.

A solenoidal coil with 23 turns of wire is wound tightly around another coil with 310 turns. The inner solenoid is 20.0 cm long and has a diameter of 2.20 cm. At a certain time, the current in the inner solenoid is 0.130 A and is increasing at a rate of 1800 A/s. For this time, calculate:
(a) the average magnetic flux through each turn of the inner solenoid;
(b) the mutual inductance of the two solenoids;
(c) the emf induced in the outer solenoid by the changing current in the inner solenoid.

Answers

Answer:

Explanation:

From the given information:

(a)

the average magnetic flux through each turn of the inner solenoid can be calculated by the formula:

[tex]\phi _ 1 = B_1 A[/tex]

[tex]\phi _ 1 = ( \mu_o \dfrac{N_i}{l} i_1)(\pi ( \dfrac{d}{2})^2)[/tex]

[tex]\phi _ 1 = ( 4 \pi *10^{-7} \ T. m/A ) ( \dfrac{310}{20*10^{-2} \ m }) (0.130 \ A) ( \pi ( \dfrac{2.20*10^{-2} \ m }{2})^ 2[/tex]

[tex]\phi_1 = 9.625 * 10^{-8} \ Wb[/tex]

(b)

The mutual inductance of the two solenoids is calculated by the formula:

[tex]M = 23 *\dfrac{9.625*10^{-8} \ Wb}{0.130 \ A}[/tex]

M = [tex]1.703 *10^{-5}[/tex] H

(c)

the emf induced in the outer solenoid by the changing current in the inner solenoid can be calculate by using the formula:

[tex]\varepsilon = -N_o \dfrac{d \phi_1}{dt}[/tex]

[tex]\varepsilon = -M \dfrac{d i_1}{dt}[/tex]

[tex]\varepsilon = -(1.703*10^{-5} \ H) * (1800 \ A/s)[/tex]

[tex]\varepsilon = -0.030654 \ V[/tex]

[tex]\varepsilon = -30.65 \ V[/tex]

A fox locates rodents under the snow by the slight sounds they make. The fox then leaps straight into the air and burrows its nose into the snow to catch its meal. If a fox jumps up to a height of 85 cm , calculate the speed at which the fox leaves the snow and the amount of time the fox is in the air. Ignore air resistance.

Answers

Answer:

v = 4.08m/s₂

Explanation:

Two metal spheres are hanging from nylon threads. When you bring the spheres close to each other, they tend to attract. Based on this information alone, discuss all the possible ways that the spheres could be charged. Is it possible that after the spheres touch, they will cling together? Explain.

Answers

Explanation:

In the given question, the two metal spheres were hanged with the nylon thread.

When these two spheres were brought close together, they attracted each other. The attraction between these spheres is the result of the opposite charges between them.

The possible ways by which these two metal spheres can be charged are by induction that is touching the metal or by rubbing them.

During induction, the same charges are transferred to each sphere. In this case, either both the spheres will be negatively charged or positively charged.

It is not possible that after the sphere touch each other they will cling together because the same charge repels each other and during touching, if one sphere is neutral, then the charged one will transfer the same charge. And as we know that same charge repel each other therefore they will repel each other.

If the number of loops in a coil around a moving magnet doubles, the emf created:_________

a. Doubles
b. Halves
c. Remains the same

Answers

Answer is a. Doubles

when the loops are increased in the coil then the magnetic field created doubles

A 5.3 kg block initially at rest is pulled to the right along a frictionless, horizontal surface by a constant horizontal force of magnitude 21 N. Find the block's speed after it has moved through a horizontal distance of 6.4 m.

Answers

whatever the person said

A heavy, 6 m long uniform plank has a mass of 30 kg. It is positioned so that 4 m is supported on the deck of a ship and 2 m sticks out over the water. It is held in place only by its own weight. You have a mass of 70 kg and walk the plank past the edge of the ship. How far past the edge do you get before the plank starts to tip, in m

Answers

Answer:

about 1 meter

Explanation:

   

The distance past the edge that the man will get before the plank starts to tip is; 0.4285 m

We are given;

Mass of plank; m = 30 kg

Length of plank; L = 6m

Mass of man; M = 70 kg

Since the plank has 2 supports which are the deck of the ship, then it means that, we can take moments about the right support before the 2m stick out of the plank.

Thus;

Moment of weight of plank about the right support;

τ_p = mg((L/2) - 2)

τ_p = 30 × 9.8((6/2) - 2)

τ_p = 294 N.m

Moment of weight of man about the right support;

τ_m = Mgx

where x is the distance past the edge the man will get before the plank starts to tip.

τ_m = 70 × 9.8x

τ_m = 686x

Now, moment of the board is counterclockwise while that of the man is clockwise. Thus;

τ_m = τ_p

686x = 294

x = 294/686

x = 0.4285 m

Read more at; https://brainly.com/question/22150651

A man stands on a platform that is rotating (without friction) with an angular speed of 1.2 rev/s; his arms are outstretched and he holds a brick in each hand.The rotational inertia of the system consisting of the man, bricks, and platform about the central vertical axis of the platform is 6.0 k g times m squared. If by moving the bricks the man decreases the rotational inertia of the system to 2.0 k g times m squared, what is the resulting angular speed of the platform in rad/s

Answers

Answer:

resulting angular speed = 3.6 rev/s

Explanation:

We are given;

Initial angular speed; ω_i = 1.2 rev/s

Initial moment of inertia;I_i = 6 kg/m²

Final moment of inertia;I_f = 2 kg/m²

From conservation of angular momentum;

Initial angular momentum = Final angular momentum

Thus;

I_i × ω_i = I_f × ω_f

Making ω_f the subject, we have;

ω_f = (I_i × ω_i)/I_f

Plugging in the relevant values;

ω_f = (6 × 1.2)/2

ω_f = 3.6 rev/s

In a device called the ballistic pendulum, a compressed spring is used to launch a steel ball horizontally into a soft target hanging from a string. The ball embeds in the target and the two swing together from the string. Describe the energy transfers and/or transformations that take place during the use of the ballistic pendulum and at what points they occur

Answers

Answer:

When the spring in the ballistic pendulum is compressed, energy is stored up in the spring as potential energy. When the steel ball is launched by the spring, the stored up potential energy of the compressed spring is transformed and transferred into the kinetic energy of the steel ball as it flies off to hit its target. On hitting the soft target, some of the kinetic energy of the steel ball is transferred to the soft target (since they stick together), and they both start to swing together. During the process of swinging, the system's energy is transformed between kinetic and potential energy. At the maximum  displacement of the ball from its point of rest, all the energy is converted to potential energy of the system. At the lowest point of travel (at the rest point), all the energy of the system is transformed into kinetic energy. In between these two points, energy the energy of the system is a combination of both kinetic and potential energy.

In the end, all the energy will be transformed and lost as heat to the surrounding; due to the air resistance around; bringing the system to a halt.

Two narrow slits, illuminated by light consisting of two distinct wavelengths, produce two overlapping colored interference patterns on a distant screen. The center of the eighth bright fringe in one pattern coincides with the center of the third bright fringe in the other pattern. What is the ratio of the two wavelengths?

Answers

Answer:

The ration of the two wavelength is  [tex]\frac{\lambda_1}{\lambda_2} = \frac{8}{3}[/tex]

Explanation:

Generally two slit constructive interference can be mathematically represented as

      [tex]\frac{y}{L} = \frac{m * \lambda}{d}[/tex]

Where  y is the distance between fringe

           d  is the distance between the two slit

           L is the distance between the slit and the wall

           m is the order of the fringe

given that  y , L  , d  are constant  we have that

     [tex]\frac{m }{\lambda } = constant[/tex]

So  

    [tex]\frac{m_1 }{\lambda_1 } = \frac{m_2 }{\lambda_2 }[/tex]

So     [tex]m_1 = 8[/tex]

  and  [tex]m_2 = 3[/tex]

=>     [tex]\frac{m_2}{m_1} = \frac{\lambda_1}{\lambda_2}[/tex]

=>     [tex]\frac{8}{3} = \frac{\lambda_1}{\lambda_2}[/tex]

So

     [tex]\frac{\lambda_1}{\lambda_2} = \frac{8}{3}[/tex]

Other Questions
ditermine the maximum value of y=2x^2-36x+130 8.Which of the statements below best describes a motif in literature? 1.The first words a character says, which carry special meaning.. 2.A vivid image which frightens the reader, like that of Piggy's head being smashed on the rocks after his terrible final fall. 3.An image (usually a place or object) which appears repeatedly, each time its significance echoes through the text. The conch shell is an important motif in Lord of the Flies. 2x - 1 = 53 Please include explanation if possible. Read the passage. Bobby hid in his room, angry that his friends forgot his birthday. Meanwhile, his friends sat quietly in the other room. They couldnt wait to see his face when they all yelled, Surprise! What is the point of view? A.third-person limited B.third-person omniscient C.first-person What number should go in the space? Multiplying by 0.65 is the same as decreasing by _____% This passage is from a science fiction story about an alien invasion of Earth that was written in 1898. What historical theme might create a strong emotional response in readers during that time? if a person had 20 kids and 15 dogs, and they had to feed each 15g of food each day and 15g's of food cost $17. how much money does she spend on one gram why Estonia is so highly technologically advanced country? Cmo va a ser el invierno en Chicago (the windy city)?A. Va a hacer fro y nevar.B. Va a hacer mucho viento.C. El agua va a estar fresca.D. Va a haber muchos peces.E. Va a ser seco y va a hacer mucho calor. In a persuasive message, an effective introduction of a product, service, or idea: a. describes an anecdote that is likely familiar to the audience. b. is written using a deductive outline. c. is cohesive and action centered. d. uses abstract nouns and passive verbs. The graph of the function is shown below: f(x) = 4 * 3^x Select the best answer from the choices provided: -T -F Let U be the 3 2 matrix [0.45 0.42, 0.25 0.35, 0.15 0.15]. The first column of U lists the costs per dollar of output for manufacturing product B, and the second column lists the costs per dollar of output for manufacturing product C. The first row is the cost of materials, the second row is the cost of labor, and the third row is the cost of overhead. Let q1 be a vector in set of real numbers R2 that lists the output (measured in dollars) of products B and C manufactured during the first quarter of the year, and let q2, q3 , and q4 be the analogous vectors that list the amounts of products B and C manufactured in the second, third, and fourth quarters, respectively. Give an economic desciption of the data in the matrix UQ, where Upper Q = [q1 q2 q3 q4].A. The 4 columns of UQ list the profit made from selling products B and C during the 4 quarters of the year. B. The 3 rows of UQ list the costs for materials, labor, and overhead used to manufacture products B and C for the year. C. The 4 columns of UQ list the total costs for materials, labor, and overhead used to manufacture products B and C during the 4 quarters of the year. D. The 4 columns of UQ list the total number of each product manufactured during the 4 quarters of the year. The product of 3 and a number is 33. What is the number? Aria and her children went into a bakery and will buy donuts and brownies. She must buy at least 6 donuts and brownies altogetherWrite an inequality that would represent the possible values for the number of donuts purchased, d, and the number of brownies purchased, b. Find the area of a triangle that has a base of 6 foot in the height of 5 foot Can Someone Help Me Match These!! Thank You what are the signs of AIDS in a person infected with HIV? What is the vertex form of the quadratic function that has a vertex at (2, 1)and goes through the point (3,-2)? Simplify (3^-2)^4Arrows mean its a exponent .A.) 1/3^2 B.) 3^8C.) 3^2D.) 1/3^8 A circular swimming pool has a diameter of 20 ft, the sides are 6 ft high, and the depth of the water is 5 ft. How much work (in ft-lb) is required to pump all of the water out over the side