Answer:
4 sandwiches
Step-by-step explanation:
To find the answer, all we have to do is 238 / 54 which is about 4.
A psychology professor assigns letter grades on a test according to the following scheme. A: Top 10% scores, B: Scores below 10% and above the bottom 63%, C: Scores below the top 37% and above the bottom 20%, D: Scores below the top 80% and above the bottom 7%, F: Bottom 7 % of scores Scores on the test are normally distributed with a mean of 71.5 and a standard deviation of 9.5. Find the numerical limits for a D grade. Round your answers to the nearest whole number if necessary.
Answer:
The numerical limits for a D grade is between 57 and 64.
Step-by-step explanation:
When the distribution is normal, we use the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this question:
[tex]\mu = 71.5, \sigma = 9.5[/tex]
D: Scores below the top 80% and above the bottom 7%
Between the 7th and the 100 - 80 = 20th percentile.
7th percentile:
X when Z has a pvalue of 0.07. So X when Z = -1.475.
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]-1.475 = \frac{X - 71.5}{9.5}[/tex]
[tex]X - 71.5 = -1.475*9.5[/tex]
[tex]X = 57.49[/tex]
So 57
20th percentile:
X when Z has a pvalue of 0.2. So X when Z = -0.84.
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]-0.84 = \frac{X - 71.5}{9.5}[/tex]
[tex]X - 71.5 = -0.84*9.5[/tex]
[tex]X = 63.52[/tex]
So 64
The numerical limits for a D grade is between 57 and 64.
How many ways can you distribute $4$ identical balls among $4$ identical boxes?
Answer:
5 ways
Step-by-step explanation:
We have to name the cases.
1. 4 - 0 - 0 - 0
2. 3 - 1 - 0 - 0
3. 2 - 2 - 0 - 0
4. 2 - 1 - 1 - 0
5. 1 - 1 - 1 - 1
We don't name 0 - 0 - 1 - 3 or 0 - 1 - 1 - 2 etc. because it is the same thing.
There are 35 ways to distribute 4 identical balls among 4 identical boxes
How to determine the number of ways?The given parameters are:
Balls, n = 4
Boxes, r = 4
The number of ways is then calculated as:
(n + r - 1)C(r - 1)
This gives
(4 + 4 - 1)C(4 - 1)
Evaluate
7C3
Apply the combination formula
7C3 = 7!/((7 - 3)! * 3!)
Evaluate the difference
7C3 = 7!/(4! * 3!)
Evaluate the expression
7C3 = 35
Hence, the number of ways is 35
Read more about combination at:
https://brainly.com/question/11732255
#SPJ6
If we transform the parabola y = (x + 1)2 + 2 by shifting 7 units to the right and 5 units down, what is the vertex of the resulting parabola? ( a0, a1)
Answer:
(6,-3)
Step-by-step explanation:
The tread life of a particular brand of tire is a random variable best described by a normal distribution with a mean of 60,000 miles and a standard deviation of 2900 miles. What is the probability a particular tire of this brand will last longer than 57,100 miles
Answer:
84.13% probability a particular tire of this brand will last longer than 57,100 miles
Step-by-step explanation:
When the distribution is normal, we use the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this question, we have that:
[tex]\mu = 60000, \sigma = 2900[/tex]
What is the probability a particular tire of this brand will last longer than 57,100 miles
This is 1 subtracted by the pvalue of Z when X = 57100. So
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{57100 - 60000}{2900}[/tex]
[tex]Z = -1[/tex]
[tex]Z = -1[/tex] has a pvalue of 0.1587
1 - 0.1587 = 0.8413
84.13% probability a particular tire of this brand will last longer than 57,100 miles
A certain three-cylinder combination lock has 65 numbers on it. To open it, you turn to a number on the first cylinder, then to a second number on the second cylinder, and then to a third number on the third cylinder and so on until a three-number lock combination has been effected. Repetitions are allowed, and any of the 65 numbers can be used at each step to form the combination. What is the probability of guessing a lock combination on the first try?
Answer:
1/275,625 ≈ 3.641×10^-6
Step-by-step explanation:
There are 65×65×65 = 274,625 possible combinations. The probability of guessing the correct one is 1/275,625 ≈ 3.641×10^-6.
Explain why it is preferable to perform a model utility test before using an estimated regression model to make predictions or to estimate the mean y value for specified values of the independent variables
Answer:
The answer is explained below
Step-by-step explanation:
The reason for making the regression is generally to make predictions. So one should ask in what situations is the resulting estimated regression line y = b0 + b1 * x useful. In other words, since there is a linear relationship between x and y, in what situations would it be valid to say that the knowledge of the value x is not useful to predict a corresponding y.
When the value of B1 (or, equivalently, of p) is zero. However, it is entirely possible that B1 is 0 while b1 (our estimate for) is not zero due to random fluctuations between samples. Therefore, we require an inference procedure.
One of the inference procedures is that the model utility test is used to determine if there is any useful relationship between the dependent variable and the specified values of the independent variables.
So before using an estimated regression model, we run a utility test of the model
Write an expression:
You bought four
sandwiches that cost
$2.50 each and two
drinks that cost d
dollars each.
Answer:
2d + 10.
Step-by-step explanation:
If four sandwiches cost $2.50 each, you have 4 * 2.5.
If two drinks cost $d each, you have 2 * d.
4 * 2.5 + 2 * d
= 10 + 2d
= 2d + 10.
Hope this helps!
Using rigid motion, which statement is true
about the triangles?
Answer:
The triangles are not congruent
Step-by-step explanation:
Triangle ABC is congruent to triangle DEF
Triangle ABC is congruent to triangle FED
Two trianges ABC and DEF are given on a coordinate plane
Are 4x and 15 + x equivalent expressions? Explain your reasoning.
can you answer with explanation how its answer is 0.63?? Aja's favorite cereal is running a promotion that says 1-in-4 boxes of the cereal contain a prize. Suppose that Aja is going to buy 5 boxes of this cereal, and let X represent the number of prizes she wins in these boxes. Assume that these boxes represent a random sample, and assume that prizes are independent between boxes. What is the probability that she wins at most 1 prize in the 5 boxes
Let n = total boxes (5)
Probability (p) = 1 out of 4 = 1/4 = 0.25
Probability she wins at most 1 out of 5 is p(x <=1) Which is also = p (x =0) + p(x=1)
Probability of not winning would be 0.75 ( 1-0.25)
No prizes in 5 boxes = 0.75^5
1 prize in 5 boxes = 5 x 0.25 x 0.75^4
Total probability = 0.75^5 + 5 x 0.25 x 0.75^4 = 0.63
Answer: 0.63
Step-by-step explanation:
Suppose that the relationship between the tax rate t on imported shoes and the total sales S (in millions of dollars) is given by the function below. Find the tax rate t that maximizes revenue for the government. (Round your answer to three decimal places.)
S(t) = 7 â 6(cubedroot(t))
Answer:
66.992%
Step-by-step explanation:
[tex]Sales, S(t)=7-6\sqrt[3]{t}[/tex]
Since we want to maximize revenue for the government
Government's Revenue= Sales X Tax Rate
[tex]R(t)=t \cdot S(t)\\R(t)=t(7-6\sqrt[3]{t})\\=7t-6t^{1+1/3}\\R(t)=7t-6t^{4/3}[/tex]
To maximize revenue, we differentiate R(t) and equate it to zero to solve for its critical points. Then we test that this critical point is a relative maximum for R(t) using the second derivative test.
Now:
[tex]R'(t)=7-6*\frac{4}{3} t^{4/3-1}\\=7-8t^{1/3}[/tex]
Setting the derivative equal to zero
[tex]7-8t^{1/3}=0\\7=8t^{1/3}\\t^{1/3}=\dfrac{7}{8} \\t=(\frac{7}{8})^3\\t=0.66992[/tex]
Next, we determine that t=0.6692 is a relative maximum for R(t) using the second derivative test.
[tex]R''(t)=-8*\frac{1}{3} t^{1/3-1}\\R''(t)=-\frac{8}{3} t^{-2/3}[/tex]
R''(0.6692)=-3.48 (which is negative)
Therefore, t=0.66992 is a relative maximum for R(t).
The tax rate, t that maximizes revenue for the government is:
=0.66992 X 100
t=66.992% (correct to 3 decimal places)
Cathy conducted an experimentin which she placed red, yellow, blue, and orange pieces of paper in a hat and drew them out without looking. The number of times Cathy drew each color is shown in the table above. What is the experimental probability that the next slip of paper Cathy draws will be orange?
Answer:
28/55
Step-by-step explanation:
First thing you do is add up all of the data values.
This is the total of everything you can draw.
in this case it would by 55.
We set this as the denominator and set the numerator to the ammount of times orange has been drawn.
This would result in our answer.
Hope this helps!
Express as a ratio in the lowest term
1. 360 metres to 3 kilometres
2. 2 minutes to 14 seconds
Answer:
1. 3:25
2. 60:7
Step-by-step explanation:
To express the ratio in the lowest terms:
1. 360 metres to 3 kilometres
First of all, we need to convert both the terms in same unit.
Let us convert kilometres to metres for simplicity.
We know that 1 km = 1000 m
So, 3 km = 3000 m
Hence, the ratio can be represented as:
[tex]360\ m: 3000\ m\\\Rightarrow \dfrac{360}{3000}\\ \\\text{Dividing by 10:}\\\Rightarrow \dfrac{36}{300}\\\\\text{Dividing by 12:}\\\Rightarrow \dfrac{3}{25}\\\Rightarrow 3:25[/tex]
So, the simplest ratio is 3:25.
2. 2 minutes to 14 seconds
Converting minutes to seconds.
1 minute = 60 seconds
2 minutes = 120 seconds
So, the ratio can be written as:
120 seconds : 14 seconds
Dividing by 2:
60:7
So, the simplest form is 60:7.
The answers are:
1. 3:25
2. 60:7
Fill in the green box.
Answer:
y=6solution,
Similar Right triangles:
[tex] \frac{c}{h} = \frac{h}{d} \\ {h}^{2} = cd \\ {y}^{2} = 4 \times 9 \\ {y = 36 }^{2} \\ y = \sqrt{ {(6)}^{2} } \\ y = 6[/tex]
Hope this helps..
Good luck on your assignment..
Answer:whats the measure of x i really need help
Step-by-step explanation:
if f(x) = 2x-1 and g(x) =3x + 5, what is the f(g(5)
Answer:
39
Step-by-step explanation:
g(5) = 3(5) + 5 = 20
f(20) = 2(20) - 1 = 39
Answer:
f ( 2 x + 1 ) = 6 x − 2
Step-by-step explanation:
Set up the composite result function.
f ( g ( x ) )
Evaluate f ( g ( x ) )
by substituting in the value of g into f
. f ( 2 x + 1 ) = 3 ( 2 x + 1 ) − 5
Simplify each term.
Apply the distributive property.
f ( 2 x + 1 ) = 3 ( 2 x )+ 3 ⋅ 1 − 5
Multiply 2 by 3 .
f ( 2 x + 1 ) = 6 x + 3 ⋅ 1 − 5
Multiply 3 by 1 .
f ( 2 x + 1 ) = 6 x + 3 − 5
Subtract 5 from 3 . f ( 2 x +1 ) = 6 x− 2
The International Air Transport Association surveys business travelers to develop quality ratings for transatlantic gateway airports. The maximum possible rating is 10. Suppose a simple random sample of 50 business travelers is selected and each traveler is asked to provide a rating for the Miami International Airport. The ratings obtained from the sample of 50 business travelers follow.
Click on the datafile logo to reference the data.
6 4 6 8 7 7 6 3 3 8 10 4 8
7 8 7 5 9 5 8 4 3 8 5 5 4
4 4 8 4 5 6 2 5 9 9 8 4 8
9 9 5 9 7 8 3 10 8 9 6
Develop a 95% confidence interval estimate of the population mean rating for Miami. If required, round your answers to two decimal places. Do not round intermediate calculations.
Answer:
The 95% confidence interval estimate of the population mean rating for Miami is (5.7, 7.0).
Step-by-step explanation:
The (1 - α)% confidence interval for the population mean, when the population standard deviation is not provided is:
[tex]CI=\bar x\pm t_{\alpha/2, (n-1)}\cdot\ \frac{s}{\sqrt{n}}[/tex]
The sample selected is of size, n = 50.
The critical value of t for 95% confidence level and (n - 1) = 49 degrees of freedom is:
[tex]t_{\alpha/2, (n-1)}=t_{0.05/2, 49}=2.000[/tex]
*Use a t-table.
Compute the sample mean and sample standard deviation as follows:
[tex]\bar x=\frac{1}{n}\sum {x}=\frac{1}{50}\times [6+4+6+...+9+6]=6.34\\\\s=\sqrt{\frac{1}{n-1}\sum (x-\bar x)^{2}}=\sqrt{\frac{1}{50-1}\times 229.22}=2.163[/tex]
Compute the 95% confidence interval estimate of the population mean rating for Miami as follows:
[tex]CI=\bar x\pm t_{\alpha/2, (n-1)}\cdot\ \frac{s}{\sqrt{n}}[/tex]
[tex]=6.34\pm 2.00\times\frac{2.163}{\sqrt{50}}\\\\=6.34\pm 0.612\\\\=(5.728, 6.952)\\\\\approx(5.7, 7.0)[/tex]
Thus, the 95% confidence interval estimate of the population mean rating for Miami is (5.7, 7.0).
A coin is tossed 8 times. Which of the following represents the probability of
the coin landing on heads all 8 times?
Answer:
1.25
Step-by-step explanation:
The Ericsson method is one of several methods claimed to increase the likelihood of a baby girl. In a clinical trial, results could be analyzed with a formal hypothesis test with the alternative hypothesis of pgreater than0.5,which corresponds to the claim that the method increases the likelihood of having a girl, so that the proportion of girls is greater than 0.5. If you have an interest in establishing the success of the method, which of the following P-values would you prefer: 0.999, 0.5, 0.95, 0.05, 0.01, 0.001? Why?
Answer:
0.001
Step-by-step explanation:
Here, the aim is to support the null hypothesis, Ha. Where Ha: p > 0.5. Which means we are to reject null hypothesis H0. Where H0: p = 0.5.
The higher the pvalue, the higher the evidence of success. We know If the pvalue is less than level of significance, the null hypothesis H0 is rejected.
Hence the smallest possible value 0.001 is preferred as the pvalue because it corresponds to the sample evidence that most strongly supports the alternative hypothesis that the method is effective
Find the distance from the point (−10,−5) to the line y = −5x − 3. Question options:
A. 2 √26 units
B. √24 units
C. 4 √6 units
D. √26 units
Answer:
The answer is not D it's A
Step-by-step explanation:
I just took the test
Not sure how to solve this
Answer:
(x, y) = (0, -14), (2, -8), (3, -5)
Step-by-step explanation:
Put the given values into the equation and solve.
x = 0
y = 3·0 -14 = -14
y = -8
-8 = 3x -14
6 = 3x . . . . . . add 14
2 = x . . . . . . . divide by 3
x = 3
y = 3·3 -14 = -5
__
The ordered pairs in your table are ...
(x, y) = (0, -14), (2, -8), (3, -5)
_____
Comment on the approach
In this problem, you are only asked for one x-value for a given y-value. If there were more, you would solve the equation generically (x = (y+14)/3) and use that to compute the desired values of x.
Write the equation of each line in slope intercept form (If possible please show work)
Answer:
y= -2/3 x - 9
Step-by-step explanation:
The slope intercept form is
y = mx+b where m is the slope and b is the y intercept
y = -2/3 x+b
We have a point to substitute into the equation
-5 = -2/3(-6) +b
-5 = 4 +b
Subtract 4 from each side
-5-4 = 4-4+b
-9 = b
y= -2/3 x - 9
The Precision Scientific Instrument Company manufactures thermometers that are supposed to give readings of 0degrees°C at the freezing point of water. Tests on a large sample of these thermometers reveal that at the freezing point of water, some give readings below 0degrees°C (denoted by negative numbers) and some give readings above 0degrees°C (denoted by positive numbers). Assume that the mean reading is 0degrees°C and the standard deviation of the readings is 1.00degrees°C. Also assume that the frequency distribution of errors closely resembles the normal distribution. A thermometer is randomly selected and tested. A quality control analyst wants to examine thermometers that give readings in the bottom 4%. Find the temperature reading that separates the bottom 4% from the others. Round to two decimal places.
Answer:
Step-by-step explanation:
Hello!
The variable of study is X: Temperature measured by a thermometer (ºC)
This variable has a distribution approximately normal with mean μ= 0ºC and standard deviation σ= 1.00ºC
To determine the value of X that separates the bottom 4% of the distribution from the top 96% you have to work using the standard normal distribution:
P(X≤x)= 0.04 ⇒ P(Z≤z)=0.04
First you have to use the Z tables to determine the value of Z that accumulates 0.04 of probability. It is the "bottom" 0.04, this means that the value will be in the left tail of the distribution and will be a negative value.
z= -1.75
Now using the formula of the distribution and the parameters of X you have to transform the Z-value into a value of X
z= (X-μ)/σ
z*σ = X-μ
(z*σ)+μ = X
X= (-1.75-0)/1= -1.75ºC
The value that separates the bottom 4% is -1.75ºC
I hope this helps!
A boy has 27 cubes, each with sides the length of 1cm. He uses these cubes to build one big cube. What is the volume of the big cube?
Answer:54
volume:side*side*side
side:1 cm*1 cm *1 cm
answer=icm
Identify the amount, base, and percent in the problem:
What is 60% of 485?
Answer:
amount 291 I'm not sure abt the others
Solve the logarithmic equation. When necessary, round answer to the nearest hundredth. log 4 (x over 2) = 2
Answer:
The solution is x = 32.
Step-by-step explanation:
To solve the logarithmic equation [tex]\log _4\left(\frac{x}{2}\right)=2[/tex] you must:
Use the logarithmic definition [tex]\mathrm{If}\:\log _a\left(b\right)=c\:\mathrm{then}\:b=a^c[/tex].
[tex]\log _4\left(\frac{x}{2}\right)=2\quad \Rightarrow \quad \frac{x}{2}=4^2[/tex]
Multiply both sides by 2
[tex]\frac{x}{2}\cdot \:2=4^2\cdot \:2[/tex]
Simplify
[tex]x=32[/tex]
Use the formula m =
V2 - V1
X2 - X1
to calculate the slope of the
line.
The slope of the line is -1
Answer:
[tex]\displaystyle m=2[/tex]
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
Brackets Parenthesis Exponents Multiplication Division Addition Subtraction Left to RightAlgebra I
Slope Formula: [tex]\displaystyle m=\frac{y_2-y_1}{x_2-x_1}[/tex]Step-by-step explanation:
Step 1: Define
Point (2, 8)
Point (-6, -8)
Step 2: Find slope m
Simply plug in the 2 coordinates into the slope formula to find slope m
Substitute in points [SF]: [tex]\displaystyle m=\frac{-8-8}{-6-2}[/tex][Fraction] Subtract: [tex]\displaystyle m=\frac{-16}{-8}[/tex][Fraction] Divide: [tex]\displaystyle m=2[/tex]Which is an expression in square units that represents the area of the shaded segment of C. Geometry
Answer:
[tex] \frac{1}{2} {r}^{2} ( \frac{1}{2}\pi - 1)[/tex]
option D is the right option.
solution,
Area of shaded region:
Area of sector-Area of ∆
[tex] = \frac{90}{360} \times \pi {r}^{2} - \frac{1}{2} \times r \times r \\ = \frac{1}{4} \pi {r}^{2} - \frac{1}{2} {r}^{2} \\ = \frac{1}{2} {r}^{2} ( \frac{1}{2} \pi - 1)[/tex]
Hope this helps...
Good luck on your assignment..
The expression in square units that represents the area of the shaded segment of C. Geometry is [tex]\frac{1}{2}r^2(\frac{1}{2}\pi - 1)[/tex]
Calculation of the expression:Since we know that
The area of the shaded region = Area of the sector - an area of a triangle
So,
[tex]= \frac{90}{360} \times \pi r^2 - \frac{1}{2} \times r\times r\\\\ = \frac{1}{4}\pi r^2 - \frac{1}{2}r^2 \\\\= \frac{1}{2}r^2(\frac{1}{2}\pi - 1)[/tex]
hence, The expression in square units that represents the area of the shaded segment of C. Geometry is [tex]\frac{1}{2}r^2(\frac{1}{2}\pi - 1)[/tex]
Learn more about area here: https://brainly.com/question/2502351
Find the sum of the positive divisors of 18.
Answer:
39
Step-by-step explanation:
factors of 18= 1, 2, 3, 6, 9, 18
1+2+3+6+9+18=39
Answer:
39
Step-by-step explanation:
The divisors of 18 are ...
1, 2, 3, 6, 9, 18
Their sum is ...
1 + 2 + 3 + 6 + 9 + 18 = 39
True or False?
2+3x=5
If x is 1.1?
Answer:
False
Step-by-step explanation:
2 + 3x = 5
Put x as 1.1.
2 + 3(1.1) = 5
2 + 3.3 = 5
5.3 = 5
False.
Answer:
FalseSolution,
X=1.1
[tex]2 + 3x = 5 \\ 2 + 3 \times 1.1 = 5 \\ 2 + 3.3 = 5 \\ 5.3 = 5 \: \: \\ hence \: it \: is \: false[/tex]
cube root of 99 is 4.626 find the cube root of 792
Answer:
the answer is: 9.25
Step-by-step explanation:
the cube root of 792 is approximately 9.252.
To find the cube root of 792, we can use the relationship between cube roots and cube numbers.
If the cube root of 99 is approximately 4.626, we can use this information to find the cube root of 792.
Let's calculate the cube root of 792 using the relationship:
(cube root of 792) = (cube root of 99) * (cube root of 8)
Since 792 is equal to 99 multiplied by 8 (792 = 99 * 8), we can rewrite the equation as:
(cube root of 792) = (4.626) * (cube root of 8)
Now, we need to find the cube root of 8:
(cube root of 8) = 2
Substituting this value back into the equation, we get:
(cube root of 792) = (4.626) * (2) = 9.252
Therefore, the cube root of 792 is approximately 9.252.
Learn more about cube root here
https://brainly.com/question/31599754
#SPJ2