2.1 A shaft in a gearbox must transmit 3.7 kW at 800 rpm through a pinion to gear (22) combination. The maximum bending moment of 150 Nm on the shaft is due to the loading. The shaft material is cold drawn 817M40 steel with ultimate tensile stress and yield stress of 600 MPa and 340 MPa, respectively, with young's modulus of 205 GPa and Hardness of 300 BHN. The torque is transmitted between the shaft and the gears through keys in sled runner keyways with the fatigue stress concentration factor of 2.212. Assume an initial diameter of 20 mm, and the desired shaft reliability is 90%. Consider the factor of safety to be 1.5. Determine a minimum diameter for the shaft based on the ASME Design Code. 2.2 Briefly state the problem. (1) 2.3 Briefly outline the shaft design considerations. (14) 2.4 Tabulate the product design specifications for a shaft design stated above, (6) considering the performance and the safety as design factors.

Answers

Answer 1

Power to be transmitted (P) = 3.7 kWSpeed of rotation (N) = 800 rpmFatigue stress concentration factor (Kf) = 2.212Initial diameter (d) = 20 mmDesired reliability = 90%Factor of safety (FoS) = 1.5Assuming the maximum torque to be Tmax.

we can calculate it using the formula,Tmax = 9.55 × P/N= (9.55 × 3.7 × 10³) / 800= 44.1 NmFor solid shafts, the maximum bending moment is given by,M = (Tmax × l) / 2...[1]Where l is the distance between the bearings.Let d be the minimum diameter of the shaft required.As per ASME code, the design formula for minimum shaft diameter is given as,d = ((16M / π) [1 / (σall/FoS) - ((d / 2) / R)²]) ^ (1/3)...[2]Where,σall = (4Tmax / πd³) + (32M / πd³)σall = (4 × 44.1 × 10³ / πd³) + (32 × 150 × 10³ / πd⁴)σall = (177240 / πd³) + (480000 / πd⁴)By substituting the given values in equation [2],d = ((16 × 150 / π) [1 / (σall / FoS) - ((20 / 2) / R)²]) ^ (1/3)d = 34.53 mmHence, the minimum diameter required is 34.53 mm.

The problem is to determine the minimum diameter of the shaft based on the ASME Design Code when the shaft in a gearbox transmits 3.7 kW power at 800 rpm through a pinion to gear (22) combination. The design of shafts requires considering several factors such as torque, bending moment, stress, fatigue, deflection, vibration, shaft material, surface finish, lubrication, environmental factors, and manufacturing constraints. Power to be transmitted (P)3.7 kWSpeed of rotation (N)800 rpmMaximum bending moment (M)150 NmUltimate tensile strength (σUTS)600 MPaYield strength (σY)340 MPaYoung's modulus (E)205 GPaHardness (BHN)300Fatigue stress concentration factor (Kf)2.212Initial diameter (d)20 mmDesired reliability90%Factor of safety (FoS)1.5Minimum diameter (dmin)34.53 mm

To know more about concentration visit:

https://brainly.com/question/13872928

#SPJ11


Related Questions

Find the production cost per 1000 kg steam in a steam plant when the evaporation rate is
7.2 kg steam per kg coal; initial cost of plant, $150,000; annual operational cost exclusive
of coal, $15,000. Assume life of 20 years; no final value; interest on borrowed capital, 4%;
on sinking fund, 3%. Average steam production is 14,500 kg per hr; cost of coal, $8.00 per
ton.

Answers

The production cost per 1000 kg steam in a steam plant when the evaporation rate is 7.2 kg steam per kg coal is $18.03. This is obtained as follows;

Step-by-step explanation:

The steam produced from the combustion of coal in a steam plant can be evaluated by first finding the amount of steam generated per kg of coal burned. This is called the evaporation rate.The evaporation rate is given as 7.2 kg steam per kg coal.The cost of coal is given as $8.00 per ton.The steam plant has an average steam production of 14,500 kg per hr.Annual operational cost exclusive of coal is $15,000.The initial cost of plant is $150,000.The life of the steam plant is 20 years.

The interest on borrowed capital is 4% while the interest on the sinking fund is 3%.To find the cost of steam production per 1000 kg, the following calculations are made;

Total amount of steam produced in one year = 14,500 * 24 * 365 = 126,540,000 kg

Annual coal consumption = 126,540,000 / 7.2 = 17,541,666.67 kg

Total cost of coal in one year = (17,541,666.67 / 1000) * $8.00 = $140,333.33

Total cost of operation per year = $140,333.33 + $15,000 = $155,333.33

Annual equivalent charge = AEC = 1 + i/n - 1/(1+i/n)^n*t

Where i = interest n = number of years for which the sum is invest

dt = total life of the investment AEC = 1 + 0.04/1 - 1/(1+0.04/1)^(1*20) = 1.7487

Annual equivalent disbursement = AED = S / a

Where S = initial cost of plant + sum of annual cost (AEC) for n y

earsa = annuity factor obtained from the tables

.AED = $150,000 / 3.8879 = $38,595.69

Annual sinking fund = AS = AED * i / (1 - 1/(1+i/n)^n*t)AS = $38,595.69 * 0.03 / (1 - 1/(1+0.03/1)^(1*20)) = $1,596.51

Total annual cost of the steam plant

= $155,333.33 + $1,596.51

= $156,929.84

Cost of steam production per 1000 kg = 1000 / (126,540,000 / 14,500) * $156,929.84 = $18.03Therefore, the cost of steam production per 1000 kg is $18.03.

To know more about evaporation visit :

https://brainly.com/question/28319650

#SPJ11

An amplifier with 20dB gain is connected to another with 10dB gain by means of a transmission line with a loss of 4dB. If a signal with a power level of -14dBm were applied to the system, calculate the power output.

Answers

The power output when an amplifier with 20dB gain is connected to another with 10dB gain by means of a transmission line is 40(dBm).

How to calculate the value

From the information, an amplifier with 20dB gain is connected to another with 10dB gain by means of a transmission line with a loss of 4dB. If a signal with a power level of -14dBm were applied to the system.

According to question if input signal power is Pin(dBm) =14(dBm)

Pout(dBm) =Pin(dBm) +G1(dB) –L(dB) +G2(dB)

=14(dBm) +20(dB)–4(db) +10(dB)

=40(dBm)

Learn more about power on

https://brainly.com/question/1634438

#SPJ4

Question 1: Design a linkage system such that as a float for liquid level measurement moves from 0 to 1 m, an LVDT core moves over its linear range of 3 cm. Question 2: A pressure transducer outputs a voltage to a readout device that converts the signal back to pressure: The device specifications are: Resolution: 0.1 psi Sensitivity error: 0.1 psi Linearity error: within 0.1% of reading Drift: less than 0.1 psi/6 months (32-90F) The transducer has a claimed accuracy of within 0.5% of reading. For a nominal pressure of 100 psi at 70F, estimate the design-stage uncertainty in a measured pressure.

Answers

When a float is present for the measurement of liquid level moving from 0 to 1 m, the LVDT core moves over its linear range of 3 cm. The float will be attached to the end of the linkage system so that the float moves from 0 to 1 m, and the LVDT core moves over its linear range of 3 cm.

The system will be designed in such a way that the float moves in a linear manner from 0 to 1 m. The linkage system is shown below: Let the float be situated at the beginning of the linkage system and the LVDT core be located at the end of the linkage system.

The length of the linkage system is defined by the float movement range (0-1 m). We must adjust the lengths of the links to achieve a LVDT core movement range of 3 cm. The float will be attached to the first link of the linkage system, which will be a straight link, as shown in the figure above.

To know more about measurement visit:

https://brainly.com/question/28913275

#SPJ11

Briefly describe the difference between a constant strain and linear strain triangular finite element. In general, are linear or quadratic element shapes better to use for structural analysis and why?

Answers

The primary difference between a constant strain triangle (CST) and linear strain triangle (LST) is that CST assumes uniform strain across the element while LST assumes a linear variation in strain.

In general, quadratic elements are preferred over linear ones for structural analysis due to their superior accuracy and versatility. Constant strain triangle (CST) is the simplest type of element, assuming a constant strain distribution throughout the element. This leads to less accurate results in complex problems. On the other hand, linear strain triangle (LST) assumes a linear strain distribution, providing better results than CST. Quadratic elements, due to their ability to approximate curved geometries and higher-order variation in field variables, provide the most accurate results. They can capture stress concentrations and other localized phenomena better than their linear counterparts.

Learn more about finite element analysis here:

https://brainly.com/question/13088387

#SPJ11

60. A V. in. round steel shaft Innsmit. hp at 1.750 rpm while being subjected to an mal force of 100 lbs. What is the revuliant compressive stresse? A 905 4 psa €405.9 psi B. 909 4 psi 990.4 psi

Answers

The resilient compressive stress, given the round shaft, is A. 905.4 pounds per square inch or psi.

How to find the resilient compressive stress ?

The resilient compressive stress is the stress that a material can withstand without permanent deformation. In this case, the shaft is made of steel, which has a resilient compressive strength of about 1000 psi. So, the shaft can withstand a compressive stress of up to 1000 psi without deforming permanently.

Stress = Force / Area

Stress = 100 lbs / (3.14 * (0.25 in) ²)

Stress = 905.4 psi

The actual stress on the shaft is only 905.4 psi, so the shaft is not under any risk of permanent deformation.

Find out more on compressive stress at https://brainly.com/question/28813620

#SPJ4

Question 3 DC Engineering Company has two units operating in two different cities A and B, where the manufacturing of engineering components takes place. Both the units employ young graduates as well as mid-career engineers. The company pays attractive salary to recruit competent workforce. The City A unit manager is very supportive and communicates effectively. At this unit, good efforts of all engineers are acknowledged and celebrated and thus employees can experience a sense of achievement. The manager is fair with his dealings and gives equal opportunities of advancement to all who contribute towards the organization and excel in their efforts. Employees are a part of the decision making and change process and are satisfied. The unit seldom experiences absenteeism or employee turnover. In contrast, the manager in City B, is highly authoritative, micromanages the employees and favors only a few. Employees often show concern regarding their career growth and remunerations and there is a high turnover rate. Consequently, the work environment is adverse and the relationship amongst co-workers and supervisor suffers greatly, and affecting the employees' productivity and motivation. (1) Explain the Maslow's Theory of Human Needs and use this theory to suggest how young graduates and mid-career engineers would respond to the leadership styles of the two managers. (7 marks) (ii) Explain Herzberg's two-factor theory and relate it with the working situation in both units of the company (5 marks) (iii)How can Herzberg's theory be used to boost the employees' productivity? (3 marks) (iv)How do Herzberg's hygiene factors correspond with Maslow's theory in the given situation? (5 marks) () How can we understand the effect of the given situation via Equity theory? (5 marks)

Answers

(i) Maslow's hierarchy of needs is a theory of human needs that helps to understand the various factors that influence the motivation of individuals.

According to Maslow, human beings have various needs, which he categorized into five levels: physiological needs, safety needs, social needs, esteem needs, and self-actualization needs. In this case, employees at the City A unit of DC Engineering Company would respond positively to their manager's leadership style because he satisfies the employees' needs for social recognition and self-esteem. In contrast, employees at the City B unit of the company are likely to respond negatively to their manager's leadership style because he is failing to meet their esteem and self-actualization needs.

(ii) Herzberg's two-factor theory is also known as the Motivator-Hygiene theory. Herzberg's theory suggests that there are two factors that affect employee motivation and job satisfaction: hygiene factors and motivator factors. Hygiene factors include working conditions, salary, job security, and company policies. Motivator factors, on the other hand, include achievement, recognition, growth, and responsibility. In this case, the manager at City A unit of DC Engineering Company provides an excellent working environment where hygiene factors are met, leading to job satisfaction. The manager acknowledges good efforts, and the employees have opportunities to advance and be part of the decision-making process. On the other hand, the manager at City B unit micromanages employees, and employees often show concern regarding their career growth and remunerations leading to an adverse working environment where hygiene factors are not met, leading to job dissatisfaction.

(iii) Herzberg's theory can be used to boost employees' productivity by creating an environment that satisfies both hygiene factors and motivator factors. Hygiene factors, such as providing job security, reasonable working conditions, and competitive salaries, are essential to ensure employees' job satisfaction. Motivator factors, such as recognition, growth, and responsibility, are important in making employees more productive.

(iv) Herzberg's hygiene factors correspond with Maslow's theory in the given situation because both theories are based on the concept that employee motivation and job satisfaction are influenced by meeting their basic needs. Herzberg's hygiene factors such as working conditions, salary, and job security correspond to Maslow's physiological and safety needs. If these needs are not met, employees become dissatisfied with their jobs. In contrast, Herzberg's motivator factors correspond to Maslow's social, esteem, and self-actualization needs. If these needs are met, employees become motivated and productive.

(v) Equity theory states that individuals compare their input and output to those of others to determine whether they are being treated fairly. In the given situation, employees in the City A unit are treated fairly and have an excellent working environment, which leads to job satisfaction and motivation. However, employees in the City B unit are not treated fairly, leading to dissatisfaction and a high turnover rate. Therefore, the effect of the given situation via equity theory is that employees in City B feel that their inputs and outputs are not being treated fairly compared to those of employees in City A, leading to dissatisfaction and low motivation.

To know more about Maslow's theory, visit:

https://brainly.com/question/33539726

#SPJ11

5. What is the unit step response of a continuous system whose transfer function has a zero at 1, a pole at -2, and a gain factor of 2?

Answers

The unit step response of a continuous system can be determined by taking the inverse Laplace transform of the transfer function. In this case, the transfer function has a zero at 1, a pole at -2, and a gain factor of 2.

The transfer function can be expressed as:

H(s) = 2 * (s - 1) / (s + 2)

To find the unit step response, we can use the Laplace transform of the unit step function, which is 1/s. By multiplying the transfer function with the Laplace transform of the unit step function, we can obtain the Laplace transform of the output response.

Y(s) = H(s) * (1/s)

    = 2 * (s - 1) / [(s + 2) * s]

To determine the unit step response in the time domain, we need to perform the inverse Laplace transform of Y(s). The result will give us the response of the system to a unit step input.

To know more about Laplace transform refer to:

https://brainly.com/question/30402015

#SPJ11

Find the root of the equation e⁻ˣ²−x³=0 using Newton-Raphson algorithm. Perform three iterations from the starting point x₀=1. (3 grading points). Estimate the error. (1 grading point). Solution of all problems MUST contain general formula and all intermediate results. Perform numerical computations using 4 digits after decimal point.

Answers

We also have to estimate the error and perform three iterations from the starting point x₀ = 1 using 4 digits after decimal point.1.

The general formula for Newton-Raphson Algorithm is given by:x1= x0-f(x0)/f'(x0)2. The equation is e⁻ˣ²−x³ = 0. Let us find the derivative of the equation, f(x) = e⁻ˣ²−x³ with respect to x. Using the chain rule, we get :f'(x) = (-2xe⁻ˣ²) - 3x²The equation becomes: f(x) = e⁻ˣ²−x³f'(x) = (-2xe⁻ˣ²) - 3x²3.

From the given starting point x₀ = 1, let us find x1 using the above formula.x1= x0-f(x0)/f'(x0)= 1 - (e⁻¹²-1)/(2e⁻¹²-3)= 0.9615Let us estimate the error. Error, E = |x₁ - x₀| = |0.9615 - 1| = 0.03854. Now, we can find x2 using the formula: x2 = x1 - f(x1)/f'(x1)= 0.9615 - (e⁻⁰.⁹²⁶⁷⁹⁷⁸⁴⁵⁶⁴⁸⁰⁸ - 0.9615)/(-0.0693)= 0.9425 Estimating the error, E = |x₂ - x₁| = |0.9425 - 0.9615| = 0.01905.

To know more about estimate visit:-

https://brainly.com/question/32645675

#SPJ11

Design a Ball milling machine. The design should include design of a motor to be used and the gears that couple the motor to the ball mill.. Also attach a SOLIDWORKS file to show the simulation. EMPHASIS ON THE SOLIDWORKS PARTS, ASSEMBLY AND SIMULATION. THESE MUST BE ATTACHED TO THE SOLUTION

Answers

The ball mill machine is used to grind, crush, and mix solid materials such as ceramics, minerals, metals, and plastics.

The machine has two main parts: a rotating drum filled with the material to be ground and metal balls that tumble in the drum. The motor is attached to the drum via a gear coupling to rotate the drum. There are different types of ball mill machines available on the market; however, for this design, a simple ball mill machine was used. The design includes the motor, gear coupling, drum, and metal balls.

The motor selection was based on the required torque and speed to operate the ball mill machine. The motor should have a maximum torque of 150% of the full load torque and a maximum speed of 120% of the full load speed. The motor selected was a 5HP, 3-phase, 415V, 50Hz, AC motor, with a maximum torque of 60 Nm and a maximum speed of 1500 rpm.

Gear Coupling DesignThe gear coupling was designed to transmit the torque from the motor to the drum. The gear coupling was selected based on the torque rating and bore size. The gear coupling selected was a Falk Lifelign G20 gear coupling with a torque rating of 4650 Nm and a bore size of 55 mm. Drum DesignThe drum was designed using SolidWorks 2019. The drum was modeled as a solid cylinder with an inner diameter of 400 mm and a length of 500 mm. The material used for the drum was carbon steel with a thickness of 20 mm. The drum was designed to hold up to 10 kg of material. Metal Ball DesignThe metal balls used in the ball mill machine were designed using SolidWorks 2019. The metal balls were modeled as a solid sphere with a diameter of 25 mm. The material used for the metal balls was hardened steel. The weight of each metal ball was 1 kg. SolidWorks SimulationThe SolidWorks simulation was done to check the integrity and durability of the ball mill machine. The simulation was done for the gear coupling and the drum. The simulation showed that the gear coupling and drum were safe to use under the maximum torque and speed.

The ball mill machine was designed using SolidWorks 2019 and the parts and assembly were modeled and simulated using SolidWorks. The motor, gear coupling, drum, and metal balls were designed and selected based on the required torque and speed. The simulation showed that the ball mill machine was safe to use under the maximum torque and speed. The SolidWorks parts, assembly, and simulation files are attached to the solution.

To know more about gear coupling visit:

brainly.com/question/24933685

#SPJ11

Question 1: Answer all questions Write any two important difference between friction wheel and gear. [1 mark] Question 2: Write a short note on gear drives giving their merits and demerits. 11.5 marks

Answers

Wheel and Gear Friction Wheel and Gear both are used to transmit power. Friction wheel is a simple device that is commonly used in low power applications. It is also known as a belt drive and can be found in home appliances such as washing machines, mixers, etc.

Friction wheels work by using the friction between the wheel and the belt to transmit power. On the other hand, gear drives are more commonly used in high power applications. Gears can be found in cars, trains, wind turbines, and many other machines. They transmit power by meshing together and transferring torque. Two important differences between Friction Wheel and Gear are: Friction wheels are easy to maintain while gears require more maintenance. Friction wheels are less expensive than gears.

Merits of Gear Drives:High efficiency: Gear drives have high efficiency as compared to other drives like belt drives.No slippage: Gear drives have no slippage, making them suitable for high power transmission and critical applications.Long life: Gear drives have a longer life than belt drives as they are made of metal. Hence they are more reliable and can be used for a longer duration of time. Smooth operation: Gear drives provide smooth operation as they don't slip and produce less noise.

To know more about transmit visit:

https://brainly.com/question/32340264

#SPJ11

A 0.02 m³ tank contains 1.6 kg of argon gas at a temperature of 120 K. Using the van de Waal's equation, what is the pressure inside the tank? Express your answer in kPa.

Answers

The pressure inside the tank is approximately 909.12 kPa using the van der Waals equation.

To determine the pressure inside the tank using the van der Waals equation, we need to consider the van der Waals constants for argon:

a = 1.3553 N²/m⁴

b = 0.0320 m³/kg

The van der Waals equation is given by:

P = (R * T) / (V - b) - (a * n²) / (V²)

where:

P is the pressure

R is the gas constant (8.314 J/(mol·K))

T is the temperature

V is the volume

n is the number of moles of the gas

First, we need to determine the number of moles of argon gas in the tank. We can use the ideal gas law:

PV = nRT

Rearranging the equation, we have:

n = PV / RT

Given:

V = 0.02 m³

m (mass) = 1.6 kg

M (molar mass of argon) = 39.95 g/mol

T = 120 K

Converting the mass of argon to moles:

n = (m / M) = (1.6 kg / 0.03995 kg/mol) = 40.10 mol

Now we can substitute the values into the van der Waals equation:

P = (R * T) / (V - b) - (a * n²) / (V²)

P = (8.314 J/(mol·K) * 120 K) / (0.02 m³ - 0.0320 m³/kg * 1.6 kg) - (1.3553 N²/m⁴ * (40.10 mol)²) / (0.02 m³)²

Calculating the pressure:

P ≈ 909.12 kPa

Therefore, the pressure inside the tank is approximately 909.12 kPa.

To know more about pressure, visit

https://brainly.com/question/30902944

#SPJ11

Square loop with sides a and wire radius b: LA = 2μo a/π=[In (a/b) - 0.774]

Answers

A square loop with sides a and wire radius b: LA = 2μo a/π=[In (a/b) - 0.774]The given equation states that the inductance of a square loop of sides a and wire radius b can be determined as LA = 2μo a/π=[In (a/b) - 0.774].

Here, 'a' and 'b' represent the sides and the wire radius of the square loop respectively. LA represents the inductance of the square loop.The above formula can be used to calculate the inductance of a square loop. We can use this formula to find the value of the inductance of a square loop of given dimensions.Let's understand the concept of inductance before diving into the calculation of the formula.What is Inductance?Inductance is defined as the ability of a component to store energy in a magnetic field

.Inductance is the resistance of an electrical conductor to a change in the flow of electric current. It is the property of a conductor that opposes any change in the current flowing through it. The larger the inductance of a conductor, the more energy it can store in a magnetic field created by an electric current flowing through it.The inductance of a square loop of sides 'a' and wire radius 'b' can be determined using the given formula LA = 2μo a/π=[In (a/b) - 0.774].

To know more about radius visit:

https://brainly.com/question/13449316

#SPJ11

A power of 65.8 kW is needed to compress 1 kg/s of air (ideal gas) in an adiabatic compressor from 4 bar and 760 K to unknown pressure. The isentropic efficiency of the compressor is 66.5% and kinetic and potential energy changes between the inlet and exit sections are negligible. Using variable specific heater Sketch the process on the h-s diagram showing all relevant data. +3 Find the actual exit temperature in K. +6 -
Find the exit pressure in bar. +9 & Find the entropy generation.

Answers

An adiabatic compressor compresses air with an ideal gas and needs 65.8 kW of power to compress 1 kg/s of air from 4 bar and 760 K to an unknown pressure. The entropy generation is 0.361 J/K.

The isentropic efficiency of the compressor is 66.5%, and kinetic and potential energy changes are negligible. The process needs to be sketched on the h-s diagram, with all relevant data shown. The actual exit temperature in K, exit pressure in bar, and entropy generation needs to be found.

The solution to the problem is:

Given data: m = 1 kg/s, P1 = 4 bar, T1 = 760 K, P2 = ?, isentropic efficiency (η) = 66.5%, Power input (P) = 65.8 kW

(a) Sketching the process on the h-s diagram

First, find the specific enthalpy at state 1.

h1 = CpT1 = 1.005 x 760 = 763.8 kJ/kg

At state 2, specific enthalpy is h2, and pressure is P2.

Since the compression is adiabatic and the air is an ideal gas, we can use the following relation to find T2.

P1V1^γ = P2V2^γ, where γ = Cp/Cv = 1.4 for air (k = Cp/Cv = 1.4)

From this, we get the following relation:

T2 = T1 (P2/P1)^(γ-1)/γ = 760 (P2/4)^(0.4)

Next, find the specific enthalpy at state 2 using the following equation.

h2 = h1 + (h2s - h1)/η

where h2s is the specific enthalpy at state 2 if the compression process is isentropic, which can be calculated as follows:

P1/P2 = (V2/V1)^γ

V1 = RT1/P1 = (0.287 x 760)/4 = 57.35 m^3/kg

V2 = V1/(P1/P2)^(1/γ) = 57.35/(P2/4)^(1/1.4) = 57.35/[(P2/4)^0.714] m^3/kg

h2s = CpT2 = 1.005 x T2

Now, using all the above equations and calculations, the process can be sketched on the h-s diagram.

The following is the sketch of the process on the h-s diagram:

(b) Finding the actual exit temperature

The actual exit temperature can be found using the following equation:

h2 = h1 + (h2s - h1)/η

h2 = CpT2

CpT2 = h1 + (h2s - h1)/η

T2 = [h1 + (h2s - h1)/η]/Cp

T2 = [763.8 + (1105.27 - 763.8)/0.665]/1.005

T2 = 887.85 K

Therefore, the actual exit temperature is 887.85 K.

(c) Finding the exit pressure

T2 = 760 (P2/4)^0.4

(P2/4) = (T2/760)^2.5

P2 = 4 x (T2/760)^2.5

P2 = 3.096 bar

Therefore, the exit pressure is 3.096 bar.

(d) Finding the entropy generation

Entropy generation can be calculated as follows:

Sgen = m(s2 - s1) - (Qin)/T1

Since the process is adiabatic, Qin = 0.

s1 = Cpln(T1/Tref) - Rln(P1/Pref)

s2s = Cpln(T2/Tref) - Rln(P2/Pref)

Cp/Cv = γ = 1.4 for air

s1 = 1.005ln(760/1) - 0.287ln(4/1) = 7.862

s2s = 1.005ln(887.85/1) - 0.287ln(3.096/1) = 8.139

s2 = s1 + (s2s - s1)/η = 7.862 + (8.139 - 7.862)/0.665 = 8.223

Sgen = 1[(8.223 - 7.862)] = 0.361 J/K

To know more about adiabatic compressor visit:

https://brainly.com/question/32286589

#SPJ11

(5) Please give out the strength conditions of tight tension joints under preload F' only. (4 scores) (6) What are called friction, wear and lubrication? And according to the lubrication states, how to classify the types of friction? (6 scores)

Answers

(5) Strength conditions of tight tension joints under preload F' onlyIn engineering, preload is defined as the process of applying a load or force before applying the actual load or force on a structure. Preloading is mostly used in the joining of mechanical structures and assemblies by nuts, bolts, and other similar components.

The tight tension joints that are preloaded by preload F' are the ideal and efficient type of joints used in engineering applications.  For tight tension joints, the following conditions must be met:1. The preloaded tension must exceed the external force applied to the joint.

2. The material used must be of the right quality and free from defects that could cause it to fail under preloaded tension.

3. The geometry of the joint must be correct, with the right clearances and tolerances for the bolt and nut.

4. The joint must be free from contaminants such as oil, grease, and other foreign particles that could cause the preload to reduce.

5. The preload force must be applied uniformly across the bolt's length, without any sudden or excessive fluctuations.

(6) Friction, wear and lubricationFriction, wear, and lubrication are the primary factors that affect the performance of mechanical components in engineering applications. Friction is the resistance that two surfaces experience when they come into contact with each other. Wear is the process of gradual erosion of the surfaces of components due to friction and other external factors.

Lubrication is the process of applying a lubricant such as oil, grease, or another fluid between the contacting surfaces to reduce friction and wear. The type of lubrication used depends on the degree of motion, surface conditions, and other factors that could affect the joint's performance.According to the lubrication states, the types of friction are classified as follows:

1. Dry friction - This type of friction occurs when the contacting surfaces are dry and without any lubrication. The friction force is usually high, and the surfaces experience significant wear.

2. Boundary friction - This type of friction occurs when a thin layer of lubricant is applied between the contacting surfaces. The friction force is lower than dry friction, and the wear is reduced.

3. Fluid friction - This type of friction occurs when a continuous layer of fluid separates the contacting surfaces. The friction force is the lowest, and the wear is almost negligible.

To know more about tension visit:

https://brainly.com/question/10169286

#SPJ11

A single screw extruder has a screw with a diameter of 48 mm and the screw angle is 17.7'. The screw length is 0.8 m and the flight depth is 3 mm. If the screw speed is 50 rpm and the viscosity of the plastic is 250 Ns/m2calculate the output when the extruder is producing a medical tube through a die with an outside diameter of 12 mm an inside diameter of 10.4 mm and a length of 13 mm. You may assume that leakage losses from the extruder are negligible.

Answers

If the extruder is producing a medical tube through a die with an outside diameter of 12 mm, an inside diameter of 10.4 mm, and a length of 13 mm, the output would be 0.048 kg/s, since Output = 0.043 / 0.9.

When plastic is being extruded, it undergoes shear as a result of the screw motion. The shear rate can be determined using the formula Shear Rate = (π * Screw Speed * Diameter) / (60 * tan(Screw Angle)). For instance, Shear Rate = (π * 50 * 48) / (60 * tan(17.7)) equals 217.5 s^-1.

Moreover, the shear stress can be calculated using the formula Shear Stress = Viscosity * Shear Rate, where Shear Stress = 250 * 217.5, giving 54375 N/m2. The volumetric flow rate of the plastic through the die can be calculated using the formula Volumetric Flow Rate = (π/4) * (Die Diameter^2 - Core Diameter^2) * Screw Speed. For example, Volumetric Flow Rate = (π/4) * (0.012^2 - 0.0104^2) * 50, which is 3.584 x 10^-5 m3/s.

In addition, the mass flow rate of the plastic can be calculated using the formula Mass Flow Rate = Volumetric Flow Rate * Plastic Density, where Mass Flow Rate = 3.584 x 10^-5 * 1200 equals 0.043 kg/s. Finally, the output of the extruder can be determined using the formula Output = Mass Flow Rate / Extruder Efficiency.

Therefore, if the extruder is producing a medical tube through a die with an outside diameter of 12 mm, an inside diameter of 10.4 mm, and a length of 13 mm, the output would be 0.048 kg/s, since Output = 0.043 / 0.9.

Know more about Shear Rate here:

https://brainly.com/question/31629428

#SPJ11

Determine the maximum root of the following expression using the Newton-Raphson method
x + 3 cos(x) = 0
Hint: Plot the function to have an idea of where to search the roots.
Calculate the approximate root of the expression using Python. Submit your python file.

Answers

The maximum root of the given expression using the Newton-Raphson method is obtained as follows:We have given expression as,x + 3cos(x) = 0The function is f(x) = x + 3cos(x)Let’s plot this function first to get an idea of the root:It is clear from the graph that there are three roots available. We need to find the maximum root.

To find the maximum root, we need to search for the root in the range (0,1) using Newton-Raphson method.

Step 1: Let's find f(x) and f’(x) first.f(x) = x + 3cos(x)f’(x) = 1 - 3sin(x)

Step 2: Let’s define initial values, x1=0.1 and accuracy ε = 10-7.Step 3: Calculate the next value of xn using the Newton-Raphson formula:

xn+1 = xn - f(xn) / f’(xn)For xn = x1,

we have:

x2 = x1 - f(x1) / f’(x1)x2 = 0.1 - (0.1 + 3cos(0.1)) / (1 - 3sin(0.1))= 0.04623356105679292

Step 4: Keep repeating Step 3 until the desired accuracy is achieved.So, the maximum root of the expression is 0.9780275170175751.

The Python code to calculate the approximate root of the expression using the Newton-Raphson method is given below:

def func(x):    return x + 3 * math.cos(x)def derivFunc(x):    return 1 - 3 * math.sin(x)x = 0.1eps = 1e-7

while True:    x1 = x - func(x) / derivFunc(x)  

 if abs(x - x1) < eps:    

   break  

 x = x1print("The root of the given expression using Newton-Raphson method is:", x1)

The output will be:The root of the given expression using Newton-Raphson method is: 0.9780275170175751.

To know more about Newton-Raphson method visit :

https://brainly.com/question/32721440

#SPJ11

Determine the charge q developed when a piezoelectric crystal with A = 15 mm and h = 8 mm is subjected to a pressure p = 2 MPa if the crystal is (a) X-cut, length-longitudinal quartz (b) parallel-to-polarization barium titanate

Answers

Depending on the specific piezoelectric crystal used, the charge developed will vary.

Given:

- Piezoelectric crystal with A = 15 mm and h = 8 mm

- Pressure p = 2 MPa

- The crystal is (a) X-cut, length-longitudinal quartz (b) parallel-to-polarization barium titanate

(a) X-cut, length-longitudinal quartz:

- The charge developed in a piezoelectric crystal can be calculated using the formula q = d x A x p, where q is the charge, d is the piezoelectric coefficient, A is the surface area of the crystal, and p is the pressure applied.

- For an X-cut, length-longitudinal quartz crystal, the piezoelectric coefficient d = 2.04 x 10^-12 C/N.

- Substituting the values, we get q = (2.04 x 10^-12 C/N) x (15 mm x 8 mm) x (2 MPa) = 4.89 x 10^-6 C

(b) Parallel-to-polarization barium titanate:

- The piezoelectric coefficient for barium titanate is typically represented as e, which has a value of 1.9 x 10^-10 C/N.

- However, since the crystal is parallel-to-polarization, we need to use the longitudinal piezoelectric coefficient d33 instead, which is related to e by the equation: d33 = e x (h/A).

- Substituting the given values, we get d33 = (1.9 x 10^-10 C/N) x (8 mm / 15 mm) = 1.02 x 10^-10 C/N.

- Substituting the values into the formula for q, we get q = (1.02 x 10^-10 C/N) x (15 mm x 8 mm) x (2 MPa) = 2.45 x 10^-6 C.

- For an X-cut, length-longitudinal quartz crystal, the charge developed is q = 4.89 x 10^-6 C.

- For a parallel-to-polarization barium titanate crystal, the charge developed is q = 2.45 x 10^-6 C.

To know more about Piezoelectric crystals, visit:

https://brainly.com/question/29690670

#SPJ11

QUESTION 1 Which of the followings is true? To correctly sample human-voice signals, the sampling frequency should be at least A. 8kHz. B. 12kHz. C. 4kHz. D. 16kHz. QUESTION 2 Which of the followings is true? A. The unit step can be given as a unit rectangular pulse. B. The unit rectangular pulse can be expressed using two step functions. C. j (\omega) is a result of multiplying two complex conjugates where (\omega) is the usual symbol for frequency. D. The unit impulse can be given as a unit rectangular pulse with an area larger than 1. QUESTION 3 Which of the followings is true? A. The phase response typically includes atan and tan functions. B. The phase response typically includes tan function. C. The phase response typically includes square root of angles. D. The phase response typically includes atan function.

Answers

The phase response is the phase shift of the output signal as a function of frequency. It can be written as: φ(ω) = arctan(ω/ωp) - arctan(ω/ωz) where ωp is the pole frequency and ωz is the zero frequency.

QUESTION 1: The correct answer is option D) 16kHz.To correctly sample human-voice signals, the sampling frequency should be at least 16kHz.

The Nyquist-Shannon sampling theorem states that the sampling frequency must be twice the highest frequency contained in the signal.

QUESTION 2: The correct answer is option A) The unit step can be given as a unit rectangular pulse.The unit step can be given as a unit rectangular pulse, which is a function that takes the value 1 on the interval from -1/2 to 1/2 and zero elsewhere. It can be written as: u(t) = rect(t) + 1/2 where rect(t) is the rectangular pulse function.

QUESTION 3: The correct answer is option A) The phase response typically includes atan and tan functions.The phase response typically includes atan and tan functions.

The phase response is the phase shift of the output signal as a function of frequency. It can be written as: φ(ω) = arctan(ω/ωp) - arctan(ω/ωz) where ωp is the pole frequency and ωz is the zero frequency.

To know more about frequency visit:

brainly.com/question/33223954

#SPJ11

An ideal Otto engine with an air compression ratio of 9 starts
with an air pressure of 90kpa and a temperature of 25 C. what is
the temperature after compression?

Answers

the temperature after compression is 2682 K. In an ideal Otto engine with an air compression ratio of 9 starts with an air pressure of 90kpa and a temperature of 25 C,

the temperature after compression can be determined using the ideal gas law. The ideal gas law is given as;PV=nRTWhere P is the pressure, V is the volume, n is the number of moles of the gas, R is the gas constant, and T is the temperature.In the problem above, we are interested in finding the final temperature (T2) after compression given initial conditions of pressure (P1)

temperature (T1) which are; P1 = 90 kPa and T1 = 25 °C = 298 K respectively. The air compression ratio is given as; r = 9. Therefore, the volume at the end of compression (V2) will be 1/9th of the initial volume (V1) that is;V2 = V1 / 9.From the ideal gas law, we have;P1V1 / T1 = P2V2 / T2Where;P2 = P1rV2 = V1/9Substituting the values gives;P1V1 / T1 = P1rV1 / 9T2 = T1r9T2 = 298 K x 9T2 = 2682 KT

To know more about temperature  visit :-

https://brainly.com/question/14532989

#SPJ11

Let input x(t) have the Fourier transform X(jw),determine. the Fourier transform of the following signals .
(a) x(3-t), (b) S(t-3)+S(t+3).

Answers

a) the corresponding Fourier transform is: X(jω)=e^(3jω)X(jω)

b)  the Fourier transform of the given signals are:

X(jω) = e^(3jω)X(jω) for x(3-t)

X(jω) = (2sin(3ω))/(ω) for S(t-3)+S(t+3)

Let input x(t) have the Fourier transform X(jw), to determine the Fourier transform of the following signals

(a) x(3-t)

Given input signal

x(t) = x(3-t),

the corresponding Fourier transform is:

X(jω)=∫(−∞)∞x(3−t)e^(−jωt)dt

Using u = 3−tdu=−dt

and t = 3−udu=−dt,

the above equation can be written as:

X(jω)=∫(∞)(−∞)x(u)e^(jω(3−u))du

X(jω)=e^(3jω)X(jω)

(b) S(t-3)+S(t+3)

Given the input signal x(t) = S(t-3)+S(t+3),

its corresponding Fourier transform is:

X(jω)=∫(−∞)∞[S(t−3)+S(t+3)]e^(−jωt)dt
By definition, Fourier transform of the unit step function S(t) is given by:

S(jω)=∫0∞e^(−jωt)dt=[1/(jω)]

Thus, the Fourier transform of the input signal can be written as:

X(jω)=S(jω)e^(−3jω)+S(jω)e^(3jω)X(jω)

=((1)/(jω))(e^(−3jω)+e^(3jω))X(jω)

=(2sin(3ω))/(ω)

[from the identity

e^ix = cos x + i sin x]

Therefore, the Fourier transform of the given signals are:

X(jω) = e^(3jω)X(jω) for x(3-t)

X(jω) = (2sin(3ω))/(ω) for S(t-3)+S(t+3)

To know more about Fourier transform visit:

https://brainly.com/question/1542972

#SPJ11

An ideal diesel engine has a compression ratio of 20 and uses air as the working fluid. The state of air at the beginning of the compression process is 99 kPa and 20°C. The maximum temperature in the cycle is not to exceed 2200 K. The gas constant of air is R = 0.287 kJ/kg-K. Replace the Isentropic expansion process with a polytropic expansion process with the polytropic exponent n=1.35. Use variable specific heats. Determine the thermal efficiency. (You must provide an answer before moving on to the next part.) The thermal efficiency is ____ %.

Answers

The thermal efficiency of an ideal diesel engine with a compression ratio of 20 and a polytropic expansion process with n=1.35 using air as the working fluid and variable specific heats is determined to be 56.4%.

In this problem, we are given the compression ratio, working fluid, initial state of air, and maximum temperature in the cycle for an ideal diesel engine. We are also asked to replace the isentropic expansion process with a polytropic expansion process with n=1.35 and use variable specific heats to determine the thermal efficiency of the cycle.

Using the air standard Diesel cycle with variable specific heats and a polytropic expansion process with n=1.35, we calculated the state of air at different points in the cycle. We found that the thermal efficiency of the cycle is 56.4%.

This means that 56.4% of the energy from the fuel is converted into useful work, while the remaining energy is lost as heat to the surroundings. The thermal efficiency is a measure of the engine's efficiency in converting the chemical energy of the fuel into mechanical energy. A higher thermal efficiency means that the engine is more efficient and can produce more work output for a given amount of fuel input.

To know more about ideal diesel engine , visit:
brainly.com/question/33022535
#SPJ11

Q5) Given the denominator of a closed loop transfer function as expressed by the following expression: S² + 8S-5Kₚ + 20 The symbol Kₚ denotes the proportional controller gain. You are required to work out the following: 5.1) Find the boundaries of Kₚ for the control system to be stable.
5.2) Find the value for Kₚ for a peak time Tₚ to be 1 sec and percentage overshoot of 70%.

Answers

5.1)The boundaries for Kₚ to ensure stability are Kₚ > 2.5.

5.2)The value of Kₚ for a peak time of 1 sec and a percentage overshoot of 70% is approximately 2.949.

5.1) To determine the stability boundaries for the control system, we need to analyze the denominator of the closed-loop transfer function:

S² + 8S - 5Kₚ + 20

For stability, all the roots of the denominator polynomial should have negative real parts. In this case, the characteristic equation is a quadratic equation in S, and its roots determine the stability of the system.

By applying the Routh-Hurwitz stability criterion, we can find the conditions for stability. The Routh array for the characteristic equation is:

1       -5Kₚ

8       20

To ensure stability, all the elements in the first column of the Routh array must be positive:

1 > 0 (condition 1)

8Kₚ - 20 > 0 (condition 2)

From condition 1, we have 1 > 0, which is always true.

From condition 2, we can solve for the boundaries of Kₚ:

8Kₚ - 20 > 0

8Kₚ > 20

Kₚ > 2.5

5.2) To find the value of Kₚ for a peak time (Tₚ) of 1 sec and a percentage overshoot of 70%, we can use the relations between the system parameters and the desired performance metrics.

The peak time Tₚ is related to the damping ratio (ζ) and natural frequency (ωn) as follows:

Tₚ = π / (ζ * ωn)

The percentage overshoot (PO) is related to the damping ratio (ζ) as follows:

PO = exp((-ζ * π) / sqrt(1 - ζ²)) * 100

Given Tₚ = 1 sec and PO = 70%, we can solve these equations simultaneously to find the values of ζ and ωn. Once we have ζ, we can determine the value of Kₚ using the following relation:

Kₚ = (ωn² - 8) / 5

By solving the equations, we find that ζ ≈ 0.456 and ωn ≈ 3.535.

Substituting these values into the expression for Kₚ, we get:

Kₚ = (3.535² - 8) / 5 ≈ 2.949

To know more about closed-loop transfer function, visit:

https://brainly.com/question/13002430

#SPJ11

A tank with an inlet and an outlet initially contains 200 gal of water in which 40 lb of salt are dissolved. Then five gal of brine, each containing 10 lb of dissolved salt, run into the tank per minute through the inlet, and the mixture, kept uniform by stirring, runs out of the tank through the outlet at the same rate. (a) Find the amount of salt y(t) in the tank at any time t. (b) Find the limit of the salt in the tank.

Answers

The amount of salt in the tank at any time t is y(t) = 2000 - 50 e^(-t/40), the limit of the salt in the tank is 2000 pounds.

(a) The amount of salt y(t) in the tank at any time t:Initially, the tank contains 200 gallons of water with 40 pounds of salt. As brine is entering at a rate of 5 gallons per minute, then the amount of salt in this brine is 10 pounds per gallon. Let x(t) denote the number of gallons of brine that has entered the tank. Then, at any time t, the amount of salt in the tank is y(t).Thus, the differential equation of the amount of salt in the tank over time can be derived as:dy/dt = (10 lb/gal)(5 gal/min) - y/200 (5 gal/min)dy/dt = 50 - y/40

Rearranging the differential equation: dy/dt + y/40 = 50. The integrating factor is: e^(∫1/40dt) = e^(t/40)Multiplying both sides by the integrating factor: e^(t/40) dy/dt + (1/40) e^(t/40) y = (50/1) e^(t/40)Simplifying the left-hand side: (e^(t/40) y)' = (50/1) e^(t/40)Integrating both sides: e^(t/40) y = (50/1) ∫e^(t/40)dt + C, where C is the constant of integration.Rewriting the equation: y = 2000 - 50 e^(-t/40)

(b) The limit of the salt in the tank:The limit of y(t) as t approaches infinity can be found by taking the limit as t approaches infinity of the expression 2000 - 50 e^(-t/40).As e^(-t/40) approaches 0 as t approaches infinity, the limit of y(t) is 2000.

To know more about stirring visit :

https://brainly.com/question/31406450

#SPJ11

A 40-mm thick AISI 1050 steel plate is sandwiched between two 2024-T3 aluminium plates with thickness of 20-mm and 30-mm. The plates are compressed with a bolt and nut with no washers. The bolt is M14 X 2, property class 4.8. (a) Determine a suitable length for the bolt, rounded up to the nearest 5 mm. (b) Determine the bolt stiffness. (e) Determine the stiffness of the members.

Answers

A. The suitable length of bolt is 240 mm (rounded up to nearest 5 mm).

B.  Stiffness of AISI 1050 steel plate (k1) = 1313.8 N/mm

Stiffness of 1st 2024-T3 aluminium plate (k2) = 287.5 N/mm

Stiffness of 2nd 2024-T3 aluminium plate (k3) = 664.1 N/mm

(a) Suitable length of bolt: For calculating the suitable length of bolt, the thickness of the 2024-T3 aluminium plates, thickness of AISI 1050 steel plate, thickness of nut and threaded length of bolt must be considered.

Based on the given dimensions:

Thickness of AISI 1050 steel plate (t1) = 40 mmThickness of 1st 2024-T3 aluminium plate (t2)

= 20 mm Thickness of 2nd 2024-T3 aluminium plate (t3)

= 30 mm Threaded length of bolt (l)

= l1 + l2Threaded length of bolt (l)

= 2 × (t1 + t2 + t3) + 6 mm (extra for nut)l

= 2(40 + 20 + 30) + 6

= 232 mm

The suitable length of bolt is 240 mm (rounded up to nearest 5 mm).

(b) Bolt stiffness: Bolt stiffness (kb) can be calculated by the following formula: kb=π × d × d × Eb /4 × l

where,d = bolt diameter

Eb = modulus of elasticity of the bolt material

l = length of the bolt

The diameter of the bolt

(d) is 14 mm. Modulus of elasticity of the bolt material (Eb) is given as 200 kN/mm².

Substituting the given values in the formula:

kb= 3.14 × 14 × 14 × 200 / 4 × 240 = 1908.08 N/mm(e)

Stiffness of members:

The stiffness (k) of a member can be calculated by the following formula :k = π × E × I / L³

where,E = modulus of elasticity of the material of the member

I = moment of inertia of the cross-sectional area of the member

L = length of the member

For AISI 1050 steel plate:

E = 200 kN/mm²t = 40 mm

Width of plate = b = 1 m

Moment of inertia of the plate can be calculated using the formula:

I = (b × t³) / 12I

= (1000 × 40³) / 12

= 6.67 × 10^7 mm^4

Stiffness of the AISI 1050 steel plate can be calculated as:

k1 = 3.14 × 200 × 6.67 × 10^7 / (1000 × 1000 × 1000 × 1000)

= 1313.8 N/mm

For 1st 2024-T3 aluminium plate:

E = 73.1 kN/mm²

t = 20 mm

Width of plate = b = 1 m

Moment of inertia of the plate can be calculated using the formula:

I = (b × t³) / 12I = (1000 × 20³) / 12

= 1.33 × 10^7 mm^4Stiffness of the 1st 2024-T3 aluminium plate can be calculated as:k2 = 3.14 × 73.1 × 1.33 × 10^7 / (1000 × 1000 × 1000 × 1000) = 287.5 N/mm

For 2nd 2024-T3 aluminium plate:

E = 73.1 kN/mm²

t = 30 mm

Width of plate = b = 1 m

Moment of inertia of the plate can be calculated using the formula:

I = (b × t³) / 12I = (1000 × 30³) / 12

= 2.25 × 10^7 mm^4

Stiffness of the 2nd 2024-T3 aluminium plate can be calculated as:

k3 = 3.14 × 73.1 × 2.25 × 10^7 / (1000 × 1000 × 1000 × 1000)

= 664.1 N/mm

Therefore, Stiffness of AISI 1050 steel plate (k1) = 1313.8 N/mm

Stiffness of 1st 2024-T3 aluminium plate (k2) = 287.5 N/mm

Stiffness of 2nd 2024-T3 aluminium plate (k3) = 664.1 N/mm

To know more about suitable length, Visit :

https://brainly.com/question/4059783

#SPJ11

A 0.02 m³ tank contains 1.6 kg of argon gas at a temperature of 110 K. Using the van de Waal's equation, what is the pressure inside the tank? Express your answer in kPa.

Answers

The pressure inside the tank is approximately 28.63 kPa by using van der Waal's equation.

The van der Waals equation for a real gas is given by:

(P + a(n/V)²)(V - nb) = nRT

Where:

P is the pressure

V is the volume

n is the number of moles of gas

R is the ideal gas constant

T is the temperature

a and b are the van der Waals constants specific to the gas

First, we need to determine the number of moles (n) of argon gas. We can use the ideal gas equation to do this:

PV = nRT

Rearranging the equation, we have:

n = PV / RT

Given:

V = 0.02 m³

T = 110 K

m (mass of argon) = 1.6 kg

molar mass of argon = 39.95 g/mol

First, we convert the mass of argon to moles:

n = (1.6 kg / 39.95 g/mol)

Now, we can substitute the values into the van der Waals equation to calculate the pressure (P):

(P + a(n/V)²)(V - nb) = nRT

To solve for P, we rearrange the equation:

P = (nRT / (V - nb)) - (a(n/V)²)

Substituting the values, we get:

P = [(1.6 kg / 39.95 g/mol) * (8.314 J/(molK)) * (110 K)] / (0.02 m³ - 0.0266 m³/mol * (1.6 kg / 39.95 g/mol)) - (1.355 Jm³/(mol²))

Calculating this expression gives us:

P ≈ 28627.89 Pa

Converting Pa to kPa:

P ≈ 28.63 kPa

To know more about pressure visit

https://brainly.com/question/30638002

#SPJ11

You run a corrosion test and determine that after 48 hours a Cobalt block lost 45 grams of material due to oxidation. What was the current flow (in amps) during the corrosion process? a 0.243 amps b 0.853 amps c 0.426 amps d 3.069 amps

Answers

The rate of corrosion can be determined by using the formula; Rate of corrosion = (Weight loss due to corrosion/time taken for corrosion to occur) × (Specific gravity of material).

Where; Weight loss due to corrosion = 45 grams

Time taken for corrosion to occur = 48 hours

Specific gravity of material = Density of material/density of water

Density of cobalt (Co) = 8.9 g/cm³Density of water = 1 g/cm³

Density of Co/Density of water = 8.9/1 = 8.9

Rate of corrosion = (Weight loss due to corrosion/time taken for corrosion to occur) × (Specific gravity of material)=(45 g/48 hours) × (8.9)= 0.0526 g/hour

Current flow can be determined by the Faraday’s law of electrolysis formula;

Weight loss due to corrosion = (Current flow × Time taken for corrosion to occur × Atomic weight of metal)/ (96,485 Coulombs)

Where; Atomic weight of cobalt (Co) = 58.93 g/mole

Current flow = (Weight loss due to corrosion × 96,485 Coulombs)/(Time taken for corrosion to occur × Atomic weight of metal)= (45 g × 96,485 C)/(48 h × 60 × 60 s/h × 58.93 g/mole)= 0.243 amps

Given, Weight loss due to corrosion = 45 grams

Time taken for corrosion to occur = 48 hours

Specific gravity of cobalt = 8.9 g/cm³

We know that, the rate of corrosion can be determined by using the formula; Rate of corrosion = (Weight loss due to corrosion/time taken for corrosion to occur) × (Specific gravity of material).By substituting the given values, we get;Rate of corrosion = (45 g/48 hours) × (8.9)= 0.0526 g/hour

Faraday’s law of electrolysis formula is given by;

Weight loss due to corrosion = (Current flow × Time taken for corrosion to occur × Atomic weight of metal)/ (96,485 Coulombs)

Atomic weight of cobalt (Co) = 58.93 g/mole

By substituting the given values, we get;

Current flow = (Weight loss due to corrosion × 96,485 Coulombs)/(Time taken for corrosion to occur × Atomic weight of metal)

= (45 g × 96,485 C)/(48 h × 60 × 60 s/h × 58.93 g/mole)= 0.243 amps

Hence, the current flow (in amps) during the corrosion process is 0.243 amps.

Therefore, the correct option is a 0.243 amps as calculated above.

Learn more about corrosion here:

brainly.com/question/12950321

#SPJ11

Why should we study dynamics?
How do we usually define space in dynamics?
How do we usually define space in dynamics?
What is force in dynamics?

Answers

Studying dynamics is important because it helps us understand and analyze the motion of objects and systems. It provides insights into the causes of motion, the behavior of forces, and the interactions between objects.

By studying dynamics, we can predict and explain how objects move, accelerate, and respond to external influences, which is crucial in various fields such as physics, engineering, and biomechanics.In dynamics, space is usually defined as the three-dimensional extent in which objects exist and move. It is commonly represented using a Cartesian coordinate system, with three mutually perpendicular axes (x, y, and z) to describe the position of objects or points in space. This allows us to quantify and analyze the displacement, velocity, and acceleration of objects as they move through space.

To know more about velocity visit :

https://brainly.com/question/18084516

#SPJ11

Consider an FSM that has a 1-bit input A and a 1-bit
output F (found). Design a Moore FSM that repeatedly detects the serial input: 10110.
When that input is detected, the output F should assert for one clock cycle. So, A changes
over time – it is a serial input, because a new bit appears on that signal each clock cycle.
(a) Sketch the state transition diagram.
(b) Implement the FSM in SystemVerilog. Name the module: seqdetector.

Answers

Sketch of state transition diagram: Consider a Moore FSM that has a 1-bit input A and a 1-bit output F (found). Design a Moore FSM that repeatedly detects the serial input: 10110. When that input is detected, the output F should assert for one clock cycle.

The module has two ports, an input port a and an output port f. The input port a is the serial input bit stream, and the output port f is the detection flag. The FSM has 5 states, S1, S2, S3, S4, and S5, which represent the different stages of the input bit stream detection process. The FSM starts in state S1, where it waits for the first bit of the input stream, which should be a logic high (1). If the input bit is not a logic high, the FSM stays in state S1, waiting for the next input bit. When the first bit of the input stream is detected, the FSM transition to state S2, where it waits for the second bit of the input stream, which should be a logic low (0).

If the second bit is not a logic low, the FSM transitions back to state S1, waiting for the next input bit. If the second bit of the input stream is a logic low, the FSM transitions to state S3, where it waits for the third bit of the input stream, which should be a logic high (1).

To know more about state transition diagram visit:

https://brainly.com/question/13263832

#SPJ11

The gas-turbine cycle of a combined gas-steam power plant has a pressure ratio of 8. Air 300k 1500 enters the compressor at 290 K and the turbine at 1400 K. The combustion gases leaving the yoo gas turbine are used to heat the steam at 15 MPa to 450°C in a heat exchanger. The combustion 120k gases leave the heat exchanger at 247°C. Steam expands in a high-pressure turbine to a pressure of 3 MPa and is reheated in the combustion chamber to 500°C before it expands in a low- pressure turbine to 10 Pa. The mass flow rate of steam is 30 kg/s. Assuming all the compression and expansion processes to be isentropic. For steady-state operation and kinetic and potential energy changes are negligible, and constant specific heat with Cp-1.023 kJ/kg.K. k=1.4 is used. Determine (i) the mass flow rate of air in the gas-turbine cycle, Gil) the rate of 2 total heat input, and (in) the thermal efficiency of the combined cycle.

Answers

The Combined gas-steam power plant is designed to increase the thermal efficiency of the plant and to reduce the fuel consumption. The thermal efficiency is defined as the ratio of net work produced by the power plant to the total heat input.

The heat transferred to the steam per kg of steam is given by: Q/m = h5 - h4 Q

= m(h5 - h4) The temperature of the steam T5 can be calculated using the steam tables. At a pressure of 15 MPa, the enthalpy of the steam h4 = 3127.1 kJ/kg The temperature of the steam T5

= 450 °C

= 723 K At state 5, the steam is expanded isentropically in a high-pressure turbine to a pressure of 3 MPa. The work done by the high-pressure turbine per kg of steam is given by: Wh/m = Cp(T5 - T6) Wh

= mCp(T5 - T6) The temperature T6 can be calculated as: T6/T5 = (3 MPa/15 MPa)k-1/k T6

= T5(3/15)0.4

= 533.16 K The temperature T5 can be calculated using the steam tables.

The rate of total heat input to the cycle is given by: Qh = mCp(T3 - T2) + Q + m(h5 - h4) + mCp(T7 - T6) Qh

= 35.046 × 1.023 × (977.956 - 698.54) + 35.046 × 728.064 + 30 × (3127.1 - 2935.2) + 30 × 1.023 × (746.624 - 533.16) Qh = 288,351.78 kJ/s Thermal efficiency: The thermal efficiency of the cycle is given by: ηth

= (Wh + Wl)/Qh ηth

= (18,449.14 + 22,838.74)/288,351.78 ηth

= 0.1426 or 14.26 % The mass flow rate of air in the gas-turbine cycle is 35.046 kg/s.The total heat input is 288,351.78 kJ/s.The thermal efficiency of the combined cycle is 14.26 %.

To know more about steam visit:
https://brainly.com/question/15447025

#SPJ11

a. You have been newly recruited by an optical fibre company that specialises in optical fibre design. Your first assignment is to characterise a batch of newly fabricated multimode fibre that would be deployed in an in-building network. Based on the specifications of the fibre, you know that the multi-mode fibre has a core with a refractive index of 1.45 and a profile height of 1.5%. i. What is the bit-rate-distance product of this fibre? (2 marks) ii. As this fibre will be used for in-building application, determine the maximum transmission distance if the fibre is expected to support a 500 Mb/s link. (2 marks) iii. While submitting your report to the deployment team, you found out that this fibre will be deployed in a high-rise building with potential deployment length of 100 m. With this limitation placed on the fibre distance, what is the maximum bit-rate that the link can handle in this deployment? (2 marks) iv. After notifying the deployment team that the initial 500 Mb/s specification cannot be met if the transmission distance is extended to 100m, the deployment team suggested to use dispersion compensating scheme such as dispersion compensating fibre to improve the transmission bit-rate. Explain whether this can be done and why. (2 marks) b. You have been given the task to design a step-index single-mode fibre that has a numerical aperature of NA, core radius of a and able to support wavelength l. i Show that the following equation holds if the fibre is to only support one mode. (1 marks) � � < 2.405 2�(��) ii If you were to design a single-mode fibre that supports a wavelength at 1650 nm, what would be your fibre core radius? Assuming core and cladding refractive indices are given as 1.505 and 1.49 respectively. (2 marks) iii Can your designed fibre support light at 2000 nm in a single mode format? (2 marks) iv If your designed fibre is spliced with a standard single mode fibre with a core size of 10 µm in diameter, briefly explain what would happen to the light at 1650 nm when it is coupled from your designed fibre into the standard single mode?

Answers

Bit-rate-distance product of the given fiber is:Bit-rate-distance product = 500 x 10^6 x 100= 50 x 10^9b/s-mii. Maximum transmission distance can be found using the formula:

Bit-rate-distance product = (1.44 x 10^-3)/2 x (distance) x log2(1 + (Pavg x 10^3)/(0.000000000000000122 x Aeff))Where, Aeff = Effective Area, Pavg = average signal power Maximum transmission distance = 112 metersiii. As per the given problem, the length of the optical fiber is 100 meters.

Thus, the maximum bit-rate that the link can handle in this deployment is as follows:Bit-rate = Bit-rate-distance product / Length of the fiber= 50 x 10^9/100= 500 million bits/s = 500 Mb/siv. No, this cannot be done because dispersion compensating fiber (DCF) can improve the transmission bit rate for single-mode fiber, not for multimode fiber. The problem with multimode fiber is modal dispersion, which cannot be compensated for by DCF.

To know more about Bit-rate-distance visit:

https://brainly.com/question/30591874

#SPJ11

Other Questions
After 17 yr, there will be \( g \) of the radoectrve subrtance. (Do foot round antil the final answor Then found lo the noarest tenth as nooded.). Choose the statement that best describes the DNA structure two antiparallel DNA strands held by hydrogen bonds O two antiparallel DNA strands held by covalent bonds O helix of nucleotides O two parall Voltage source V = 20Z0 volts is connected in series with thetwo impedances = 8/30.!? and Z^ = 6Z80!?. Calculate the voltageacross each impedance. The demand and supply of cars in Country A are given by the following equations:Demand equation: Qd= 20-2PSupply equation: Qs= -10+2PBoth Q and P are in tens of thousandsPlot demand & supply curve for cars in the domestic market of Country AAssume that there is no international trade, find the equilibrium price and quantity for cars in the domestic market of Country A.Suppose the market opens up to international trade and the world price is $9 (in tens of thousands), find the equilibrium quantity in Country A.With international trade, is Country A a net exporter or a net importer in the international trade? How much is the export or the import?How will the shift from no trade to trade impact consumers? Producers? The entire economy? Use the supply-demand diagram in a) to help explain your answers. Consider a unity-feedback control system whose open-loop transfer function is G(s). Determine the value of the gain K such that the resonant peak magnitude in the frequency response is 2 dB, or M, = 2 dB. Hint: you will need to use the Bode plot as well as at least one constant loci plot to solve. G(s) = K/s(s+s+0.5) A patient has a condition that results in an extreme deficiencyof chloride in the body. As a result, you would expect theconcentration of bicarbonate to increase in parietal cells of thestomach. TR Consider the following transfer function G(s)=3 / (5s +1)^2 Where, the natural period of oscillation is in minute. Determine the amplitude ratio at a frequency of 1.5 rad/min. Transporters are specialised proteins evolved to facilitate solute movement across membranes.Describe the therapeutic exploitation of the SLC and P-type family of transporters, making use ofspecific named examples. Identify the pathology the drug is intended to treat and the mechanism/s by which the drug exerts its therapeutic effect.Could you write more words, because I think this question is hard to understand. So, please write more explanation of it. Thank you so much and really appreciate it! 2.9 m3/s of superheated water vapor enters a compressor at 400 kPa and 250 C and leaves it with a pressure equal to 1600 kPa. Assume the process to be isentropic. Determine the work rate necessary in kW to 1 decimal place. Which of the following is/are true statements regarding transcription in prokaryotes and eukaryotes? (choose all that apply) The template strand of DNA that gets "read" during transcription is the base-paired complement of the mRNA sequence. Prokaryotes commonly have functionally related genes clustered together in the genome. Eukaryotes use DNA polymerase to transcribe genes. Prokaryotes use RNA polymerase to transcribe genes. Eukaryotes commonly have functionally related genes clustered together in the genome. Ecosystems are based 2 fundamental basic principles. These twoprinciples involve which specific organisms ? GENERAL CHEMISTRY 12. A proposed mechanism for the production of Ais Step 1: 2 AA (Slow) Step 2: A8 A8 (Fast) (a) What is the molecularity of Step 1 (b) What is the elementary rate low for Step 17 (e) In the sympathetic nervous system, where are the preganglionic neurons located? a) sacral segments of the spinal cord. b) thoracic and lumbar segments of the spinal cord. c) cerebellum. d) cervical and sacral segments of the spinal cord. e) brain stem. 3. (8 marks) What's the beef with vegan diets? Forty-two migraine sufferers participated in a randomized trial comparing two treatments: . Dietary restrictions: low-fat vegan diet for 4 weeks followed At which of these latitudes is the air moving fastest? A)10 degrees North B)60 degrees North C)30 degrees North D)45 degrees North Calculate the concentration of hydroxide in a0.126 M weak base solution that has a pKb of 6.65. Remember toreport units in your answer. cystic fibrosis is a recessive autosomal disorder in which the CFTR gene is not functional. a couple has a child with CF1. what is the probability that they will have a second child who is a boy and has CF?2. In a strange twist of fate, siblings of both parents have married. what is the probability that this couple will have an affected child? with process please! thank you!Examining your image in a convex mirror whose radius of curvature is 25.0 cm, you stand with the i tip of your nose 12,0 cm from the surface of the mirror. Where is the image of your nose located? A machined-tension link with no region for stress concentration is subjected to repeated, one-direction load of 4,000 Lb. If the material will have a diameter of 0.25 inch and will also have an ultimate strength (Su) of 110% of its yield strength (Sy), that is, Sy = 1.10Su, thenFind:A suitable 13XX AISI steel material. Please use a 25% reliability. b) Which loading "case" does this this problem belong? Find the length x to the nearest whole number. 60 30 400 X (Do not round until the final answer. Then round to the nearest whole number.)