Answer:
18.75in
Explanation:
Modulus of elasticity = Stress/Strain
Since stress = Force/Area
Given
Force = 1000lb
Area = 0.75sqin
Stress = 1000/0.75
Stress = 1333.33lbsqin
Strain
Strain = Stress/Modulus of elasticity
Strain = 1333.33/5,000,000
Strain = 0.0002667
Also
Strain = extension/original length
extension = 0.005in
Original length = extension/strain
Original length = 0.005/0.0002667
Original length = 18.75in
Hence the original length of the rectangular bar is 18.75in
calculate the radius of a circular orbit for which the period is 1 day
Answer:
(T²/D³)sys1 = (T²/D³)sys2
sys1 = earth-moon
sys2 = earth-sat
(27.33day)²/(3.8e8m)³ = (1day)²/D³
D = cbrt(7.3e22m³) = 4.2e7 m
Explanation:
exchange in capacity whilst a satellite tv for pc differences altitude How plenty paintings could be executed to flow the satellite tv for pc into yet another around orbit it is bigger above the outdoors of the Earth? satellite tv for pc exchange in capacity with top Assuming the satellite tv for pc is to be boosted to a clean top r? Gravitational capacity capacity (to center of earth) new orbit(2) has a greater robust PE than old one(a million), so exchange is helpful PE = G m?m?/r earth GM = 3.98e14 ?PE = (GM)(m)(a million/r? – a million/r?) KE additionally differences. Get speed at each and every top. New orbit(2) has decrease speed, so exchange is damaging v = ?(GM/R) V? = ?(GM/r?) V? = ?(GM/r?) ?KE = –½m(V?² – V?²) ?KE = –½mGM(a million/r? – a million/r?) including the two ?E = (GM)(m)(a million/r? – a million/r?)– ½mGM(a million/r? – a million/r?) ?E = ½mGM(a million/r? – a million/r?) ?E = ½(3.98e14)(7500) [a million/(0.5e7) –a million/(3.3e7) ] ?E = ½(3.98e14)(7500)(1e-7) [a million/(0.5) –a million/(3.3) ] ?E = ½(3.98e7)(7500) [2 – 0.303 ] ?E = ½(3.98e7)(7500)(a million.70) ?E = 2.04e11 Joules edit, corrected .
The radius of a circular orbit will be "[tex]\frac{V}{2 \pi} \ km[/tex]".
According to the question,
The orbit period of satellite,Time = 1 day
Total distance will be equal to the orbit's circumference, thenDistance = [tex]2 \pi r[/tex]
Let,
The velocity be "V km/day".As we know,
→ [tex]Distance = Velocity\times time[/tex]
By substituting the values, we get
→ [tex]2 \pi r = V\times 1[/tex]
→ [tex]r = \frac{V}{2 \pi} \ km[/tex]
Thus the above is the right answer.
Learn more about radius of orbit here:
https://brainly.com/question/12859535
Fig_Q5
6. A steel rod is stressed by a tension force of 250 N. It is found that the rod has length of 45
m and diameter of 1.5 mm. If the modulus of elasticity of the steel rod is assumed as 2 x 105
MPa, determine the strain of the steel rod due to the applied force.
Answer:
The strain of the steel rod due to the applied force is 41.93
Explanation:
Modulus of elasticity is equal to stress divided by strain.
And stress is equal to force divided by area
Surface area of cylindrical rod
[tex]2\pi r (r+h)[/tex]
Substituting the given values we get -
[tex]2 *3.14 * \frac{1.5}{1000} * 45 (45 + \frac{1.5}{1000}) = 19.07[/tex]
[tex]2 * 10 ^5 = \frac{250}{19.07 * S=(\frac{\Delta L}{L} )}[/tex]
Hence, strain is equal to
Strain = 41.93
Knowing that the central portion of the link BD has a uniform cross-sectional area of 800 2, determine the magnitude of the load P for which the normal stress in that portion of BD is 50 .
Answer: 50
Explanation:
Define;
i) Voltage
ii) Current
iii) Electrical Power
iv) Electrical Energy
Answer:
I) Voltage - is the pressure from an electrical circuit's power source that pushes charged electrons (current) through a conducting loop, enabling them to do work such as illuminating a light. In brief, voltage = pressure, and it is measured in volts (V).
II) Current - is the movement of electrons through a wire. Electric current is measured in amperes (amps) and refers to the number of charges that move through the wire per second. If we want current to flow directly from one point to another, we should use a wire that has as little resistance as possible.
III) Electrical Power - is the rate, per unit time, at which electrical energy is transferred by an electric circuit. The SI unit of power is the watt, one joule per second. Electric power is usually produced by electric generators, but can also be supplied by sources such as electric batteries.
IV) Electrical Energy - is a form of energy resulting from the flow of electric charge. Energy is the ability to do work or apply force to move an object. In the case of electrical energy, the force is electrical attraction or repulsion between charged particles.
Explanation:
I hope ot helps to you a lot! Correct me if I'm wrong.
state the parallelogram law of forces
Answer:
The law of parallelogram of forces states that if two vectors acting on a particle at the same time be represented in magnitude and direction by the two adjacent sides of a parallelogram drawn from a point their resultant vector is represented in magnitude and direction by the diagonal of the parallelogram drawn from .
The ____ neurons allow the body to move and are greatly influenced by electri
A. compression
B. motor
C. positive
D. mobile
Answer:
the answer would be B motor
Fill in the blank to output the quotient of dividing 100 by 42. print (100______42)
Answer:
print(100/42)
Explanation:
This is the operand for division in python and some other languages.
For some metal alloy, a true stress of 345 MPa (50040 psi) produces a plastic true strain of 0.02. How much will a specimen of this material elongate when a true stress of 412 MPa (59760 psi) is applied if the original length is 480 mm (18.90 in.)? Assume a value of 0.22 for the strain-hardening exponent, n.
Answer:
the elongation of the metal alloy is 21.998 mm
Explanation:
Given the data in the question;
K = σT/ (εT)ⁿ
given that metal alloy true stress σT = 345 Mpa, plastic true strain εT = 0.02,
strain-hardening exponent n = 0.22
we substitute
K = 345 / [tex]0.02^{0.22[/tex]
K = 815.8165 Mpa
next, we determine the true strain
(εT) = (σT/ K)^1/n
given that σT = 412 MPa
we substitute
(εT) = (412 / 815.8165 )^(1/0.22)
(εT) = 0.04481 mm
Now, we calculate the instantaneous length
[tex]l_i[/tex] = [tex]l_0e^{ET[/tex]
given that [tex]l_0[/tex] = 480 mm
we substitute
[tex]l_i[/tex] =[tex]480mm[/tex] × [tex]e^{0.04481[/tex]
[tex]l_i[/tex] = 501.998 mm
Now we find the elongation;
Elongation = [tex]l_i - l_0[/tex]
we substitute
Elongation = 501.998 mm - 480 mm
Elongation = 21.998 mm
Therefore, the elongation of the metal alloy is 21.998 mm
2. (Problem 4.60 on main book, diameters different) Water flows steadily through a fire hose and nozzle. The hose is 35 mm diameter and the nozzle tip is 25 mm diameter; water gage pressure in the hose is 510 kPa, and the stream leaving the nozzle is uniform. The exit speed and pressure are 32 m/s and atmospheric, respectively. Find the force transmitted by the coupling between the nozzle and hose. Indicate whether the coupling is in tension or compression.
Answer:
coupling is in tension
Force = -244.81 N
Explanation:
Diameter of Hose ( D1 ) = 35 mm
Diameter of nozzle ( D2 ) = 25 mm
water gage pressure in hose = 510 kPa
stream leaving the nozzle is uniform
exit speed and pressure = 32 m/s and atmospheric
Determine the force transmitted by the coupling between the nozzle and hose
attached below is the remaining part of the detailed solution
Inlet velocity ( V1 ) = V2 ( D2/D1 )^2
= 32 ( 25 / 35 )^2
= 16.33 m/s
g Design of a spindle present in an existing design needs to be reviewed for use under new loading needs. It is currently designed to withstand combined torsional and compressive loading. The design team needs to determine what the maximum torque it can withstand before failing if a compressive, axial load of 15 kips is present. The ultimate compressive and tensile strengths of the material are 135 ksi and 40 ksi, respectively. Determine the torsional shear stress that will just cause failure using a non-conservative failure theory.
Answer: its c
Explanation:
In 1951, a small approach embankment was constructed for a highway bridge over a river south of Los Angeles. The embankment was underlain by 5 ft of organic clay. Records of the settlement rate indicate that 90% of the consolidation settlements occurred in the first 4.5 years after construction. A new bridge over the river is now planned for a site a few hundred yards from the old bridge. The approach embankment to the new bridge will be underlain by 20 ft of the same organic clay found at the old bridge site. Estimate the time required to achieve an average degree of consolidation of 90% under the new embankment. Assume single drainage from the organic clay at both sites..
Answer:
72 years
Explanation:
The degree of consideration is the same for both bridges = 90%
Height of first highway bridge( d1 ) = 5 ft
Time to consolidation ( t1 )= 4.5 years
Height of second bridge ( d2 ) = 20 ft
Time to consolidation ( t2 ) = ?
we will apply this relation below
Tv = Cv * t / d^v
Tv = constant
for a single drainage condition : t ∝ d^v hence; d = H
∴ [tex]\frac{t_{2} }{t_{1} } = (\frac{d_{2} }{d_{1} })[/tex]^2
t2 = t1 ( d2/d1 )^2
= 4.5 ( 20 / 5 )^2
= 72 years
a Compass is a weak magnet that aligns itself to the local Electric Field
Select one:
True
False
Answer:
true
Explanation:
can someone please help me with this
I've an exams tomorrow
Answer:
I am in Eight Grade
Explanation:
Combinations of velocity and acceleration
Answer:
acceleration=change in velocity/ time
Explanation:
The velocity of an object is its speed in a particular direction. Velocity is a vector quantity because it has both a magnitude and an associated direction. To calculate velocity, displacement is used in calculations, rather than distance.
In warm climates, a vapor barrier is placed on the exterior side of the insulation, and in cold climates it is installed on the interior side of the
insulation. Which of the following explains this placement of the barrier?
The barrier should always be placed on the side opposite from where the water condenses.
The barrier should always be placed on the side opposite where rain or snow hit.
The barrier should always be placed on the side where rain or snow hit.
The barrier should always be placed on the side where the water condenses
Answer: its c
Explanation:
Which statements describe the motion of car A and car B? Check all that apply. Car A and car B are both moving toward the origin. Car A and car B are moving in opposite directions. Car A is moving faster than car B. Car A and car B started at the same location. Car A and car B are moving toward each other until they cross over.
Answer:
car a is moving faster than the car b
Answer:
B: Car A and car B are moving in opposite directions.
C: Car A is moving faster than car B.
E: Car A and car B are moving toward each other until they cross over.
Explanation:
I just did the assignment on EDGE2020 and it's 200% correct!
Also, heart and rate if you found this answer helpful!! :) (P.S It makes me feel good to know I helped someone today!!) :)