1)To pump water up to a hilly area, a pipe is laid out and a pump is attached at the ground level. At the pump, the pipe of diameter 6 cm has water flowing though it at a speed 7 m/s at a pressure 6 x 105 N/m2. The pipe is initially horizontal, then goes up at an angle of 30° to reach a height of 22 m, after which it again becomes horizontal, and the pipe diameter is reduced to 4 cm. Calculate the pressure of water in the section of pipe that has the smaller diameter. Density of water = 1000 kg/m3. Write your answer in terms of kN/m2 (i.e. in terms of kilo-newtons/square meter)
2)Suppose that you are standing in a park, and another person is running in a straight line. That person has a mass of 65 kg, and is running at a constant speed of 4.6 m/s, and passes by you at a minimum distance of 9.1 meters from you (see fig.) Calculate the linear momentum of that person, and the angular momentum with respect to you when he is at the position marked 'A'. Input the Linear Momentum (in kg.m/s) as the answer in Canvas.

Answers

Answer 1

The question involves calculating the pressure of water in a section of pipe with a smaller diameter. The pipe initially has a diameter of 6 cm and carries water at a certain speed and pressure. It then becomes horizontal and the diameter reduces to 4 cm. The goal is to determine the pressure in the section with the smaller diameter, given the provided information.

The question asks for the linear momentum and angular momentum of a person running in a straight line, passing by another person at a minimum distance. The person's mass, speed, and the minimum distance are given, and the objective is to calculate their linear momentum at the given position.

To calculate the pressure in the section of pipe with the smaller diameter, we can use Bernoulli's equation, which relates the pressure, velocity, and height of a fluid flowing in a pipe. We can apply this equation to the initial horizontal section and the section with the smaller diameter. By considering the change in velocity and height, we can solve for the pressure in the smaller diameter section.

The linear momentum of an object is given by the product of its mass and velocity. In this case, we are given the mass of the running person and their constant speed. By multiplying these values together, we can find the linear momentum. The angular momentum with respect to a point is given by the product of the moment of inertia and the angular velocity. However, since the person is moving in a straight line, the angular momentum with respect to the observer (standing in the park) is zero.

In summary, the first part involves calculating the pressure in a section of pipe with a smaller diameter using Bernoulli's equation, and the second part requires finding the linear momentum of a running person and noting that the angular momentum with respect to the observer is zero.

Learn more about Linear momentum:

https://brainly.com/question/30767107

#SPJ11


Related Questions

What is the wave speed if a wave with a wavelength of 8.30 cm
has a period of 2.44 s? Answer to the hundredths place or two
decimal places.

Answers

The wave speed is approximately 3.40 cm/s.The wave speed is determined by dividing the wavelength by the period of the wave.

The wave speed represents the rate at which a wave travels through a medium. It is determined by dividing the wavelength of the wave by its period. In this scenario, the wavelength is given as 8.30 cm and the period as 2.44 s.

To calculate the wave speed, we divide the wavelength by the period: wave speed = wavelength/period. Substituting the given values, we have wave speed = 8.30 cm / 2.44 s. By performing the division and rounding the answer to two decimal places, we can determine the wave speed.

To learn more about speed click here:
brainly.com/question/28224010

#SPJ11

We know that for a relativistic particle, we can write the energy as E? = p° + m?. For a matter wave, we
may also express the energy and momentum via the de Broglie relations: E = hw and p = hik. i. Compute the phase velocity, Up = „ , for a relativistic particle. Express your answer in terms of, m, c, t,
and k.

Answers

The phase velocity can be expressed in terms of m, c, t, and k as Up = c(1 + (m²c²)/(hc²k²)) where p is the momentum of the particle and m is its rest mass.

For a relativistic particle, we can write the energy as E = pc + mc² where p is the momentum of the particle and m is its rest mass. The de Broglie relations for a matter wave are E = hν and p = h/λ, where h is Planck's constant, ν is the frequency of the wave, and λ is its wavelength.The phase velocity, Up is given by:Up = E/p= (pc + mc²) / p= c + (m²c⁴)/p²Using the de Broglie relation p = h/λ, we can express the momentum in terms of wavelength:p = h/λSubstituting this in the expression for phase velocity:Up = c + (m²c⁴)/(h²/λ²) = c + (m²c²λ²)/h²The wavelength of the matter wave can be expressed in terms of its frequency using the speed of light c:λ = c/fSubstituting this in the expression for phase velocity:Up = c + (m²c²/c²f²)h²= c[1 + (m²c²)/(c²f²)h²]= c(1 + (m²c²)/(hc²k²))where f = ν is the frequency of the matter wave and k = 2π/λ is its wave vector. So, the phase velocity can be expressed in terms of m, c, t, and k as Up = c(1 + (m²c²)/(hc²k²)).

Learn more about momentum:

https://brainly.com/question/24030570

#SPJ11

A parallel-plate capacitor is made of 2 square parallel conductive plates, each with an area of 2.5 × 10-3 m? and have a distance of 1.00 × 10 m between the 2 plates. A paper dielectric (k = 2.7)
with the same area is between these 2 plates. (E = 8.85 × 10-12 F/m)
What is the capacitance of this parallel-plate capacitor?

Answers

Therefore, the capacitance of the parallel-plate capacitor is 5.94 × 10^-11 F

Capacitance (C) is given by the formula:

Where ε is the permittivity of the dielectric, A is the area of the plates, and d is the distance between the plates.

The capacitance of a parallel-plate capacitor with a dielectric is calculated by the following formula:

[tex]$$C = \frac{_0}{}$$[/tex]

Where ε0 is the permittivity of free space, k is the dielectric constant, A is the area of the plates, and d is the distance between the plates.

By substituting the given values, we get:

[tex]$$C = \frac{(8.85 × 10^{-12})(2.7)(2.5 × 10^{-3})}{1.00 × 10^{-3}}[/tex]

=[tex]\boxed{5.94 × 10^{-11} F}$$[/tex]

Therefore, the capacitance of the parallel-plate capacitor is

5.94 × 10^-11 F

To know more about plate visit;

brainly.com/question/29523305

#SPJ11

Object A, which has been charged to +13.96 nC, is at the origin.
Object B, which has been charged to -25.35 nC, is at x=0 and y=1.42
cm. What is the magnitude of the electric force on object A?

Answers

the magnitude of the electric force on Object A is 0.0426 N.

Given data:Object A charge = +13.96 nC.Object B charge = -25.35 nC.Object B location = (0, 1.42) cm.The formula used to find the magnitude of the electric force is:

F = k * q1 * q2 / r^2 where k is Coulomb's constant which is equal to 9 x 10^9 Nm^2/C^2.q1 and q2 are the charges of object A and object B, respectively.r is the distance between the objects.

To find the distance between Object A and Object B, we use the distance formula which is:d = sqrt((x2 - x1)^2 + (y2 - y1)^2)where x1 and y1 are the coordinates of Object A (which is at the origin) and x2 and y2 are the coordinates of Object B.Using the given data, we can calculate:d = sqrt((0 - 0)^2 + (1.42 - 0)^2)d = 1.42 cm = 0.0142 m

Now we can substitute all the values into the formula:F = k * q1 * q2 / r^2F = (9 x 10^9 Nm^2/C^2) * (13.96 x 10^-9 C) * (-25.35 x 10^-9 C) / (0.0142 m)^2F = -4.26 x 10^-2 N = 0.0426 N (to three significant figures)

Therefore, the magnitude of the electric force on Object A is 0.0426 N.

For further information on Electric force visit :

https://brainly.com/question/13099698

#SPJ11

The magnitude of the electric force on object A is 8.10×10⁻² N.

The electric force between two charges can be determined using Coulomb's Law which is defined as F = k q1 q2 / r², where F is the force exerted by two charges, q1 and q2, k is the Coulomb constant, and r is the distance between the two charges.

Coulomb's Law states that the electric force between two charges is directly proportional to the product of their charges and inversely proportional to the square of the distance between them.

The electric force between object A and object B is given as F = k(q1q2 / r²)

Here, q1 = 13.96 nC and q2 = -25.35 nC.

Therefore, the electric force between object A and object B is given as F = k q1 q2 / r²

F = 9 x 10⁹ (13.96 x 10⁻⁹) (25.35 x 10⁻⁹) / (0.0142)²

F = 8.10 x 10⁻² N.

Thus, the magnitude of the electric force on object A is 8.10×10⁻² N.

Learn more about Coulomb's Law:

https://brainly.com/question/506926

#SPJ11

The gravitational field strength at the surface of an hypothetical planet is smaller than the value at the surface of earth. How much mass (in kg) that planet needs to have a gravitational field strength equal to the gravitational field strength on the surface of earth without any change in its size? The radius of that planet is 14.1 x 106 m. Note: Don't write any unit in the answer box. Your answer is required with rounded off to minimum 2 decimal places. An answer like 64325678234.34 can be entered as 6.43E25 A mass m = 197 kg is located at the origin; an identical second mass m is at x = 33 cm. A third mass m is above the first two so the three masses form an equilateral triangle. What is the net gravitational force on the third mass? All masses are same. Answer:

Answers

1. Calculation of mass to get equal gravitational field strengthThe gravitational field strength is given by g = GM/R2, where M is the mass of the planet and R is the radius of the planet. We are given that the radius of the planet is 14.1 x 106 m, and we need to find the mass of the planet that will give it the same gravitational field strength as that on Earth, which is approximately 9.81 m/s2.

2. Calculation of net gravitational force on the third massIf all masses are the same, then we can use the formula for the gravitational force between two point masses: F = Gm2/r2, where m is the mass of each point mass, r is the distance between them, and G is the gravitational constant.

The net gravitational force on the third mass will be the vector sum of the gravitational forces between it and the other two masses.

To know more about the gravitational field, visit:

https://brainly.com/question/31829401

#SPJ11

A two-stage rocket moves in space at a constant velocity of +4010 m/s. The two stages are then separated by a small explosive charge placed between them. Immediately after the explosion the velocity of the 1390 kg upper stage is +5530 m/s. What is the velocity (magnitude and direction) of the 2370-kg lower stage immediately after the explosion?

Answers

The velocity of the 2370-kg lower stage immediately after the explosion is -3190 m/s in the opposite direction.

Initially, the two-stage rocket is moving in space at a constant velocity of +4010 m/s.

When the explosive charge is detonated, the two stages separate.

The upper stage, with a mass of 1390 kg, acquires a new velocity of +5530 m/s.

To find the velocity of the lower stage, we can use the principle of conservation of momentum.

The total momentum before the explosion is equal to the total momentum after the explosion.

The momentum of the upper stage after the explosion is given by the product of its mass and velocity: (1390 kg) * (+5530 m/s) = +7,685,700 kg·m/s.

Since the explosion only affects the separation between the two stages and not their masses, the total momentum before the explosion is the same as the momentum of the entire rocket: (1390 kg + 2370 kg) * (+4010 m/s) = +15,080,600 kg·m/s.

To find the momentum of the lower stage, we subtract the momentum of the upper stage from the total momentum of the rocket after the explosion: +15,080,600 kg·m/s - +7,685,700 kg·m/s = +7,394,900 kg·m/s.

Finally, we divide the momentum of the lower stage by its mass to find its velocity: (7,394,900 kg·m/s) / (2370 kg) = -3190 m/s.

Therefore, the velocity of the 2370-kg lower stage immediately after the explosion is -3190 m/s in the opposite direction.

To learn more about velocity click here:

brainly.com/question/30559316

#SPJ11

: (a) What is the de Broglie wavelength (in m) of a proton moving at a speed of 2.07 x 104 m/s? (b) What is the de Broglie wavelength (in m) of a proton moving at a speed of 2.16 x 108 m/s? Note that the proton is moving very close to the speed of light in this case. Therefore, we cannot use the non-relativistic approximation for momentum. What is the relativistic relationship between momentum and speed? What is the gamma factor? (c) What is the de Broglie wavelength for a (relativistic) electron having a kinetic energy of 3.35 MeV?

Answers

(a) The de Broglie wavelength of a proton moving at a speed of 2.07 x 10⁴ m/s is approximately 3.34 x 10⁻¹¹ m.

(b) The relativistic relationship between momentum (p) and speed (v) is p = γ × m × v, where γ is the gamma factor. The gamma factor for a proton moving at a speed close to the speed of light can be calculated using γ = 1 / √(1 - (v² / c²)), where c is the speed of light (approximately 3.00 x 10⁸ m/s). The de Broglie wavelength can be calculated using the de Broglie wavelength formula λ = h / p, where h is Planck's constant.

(c) The de Broglie wavelength for a relativistic electron with a kinetic energy of 3.35 MeV is approximately 4.86 x 10⁻¹² m.

(a) To calculate the de Broglie wavelength of a proton, we can use the formula:

λ = h / p

where λ is the de Broglie wavelength, h is the Planck's constant, and p is the momentum of the proton.

v = 2.07 x 10⁴ m/s

To find the momentum of the proton, we can use the formula:

p = m × v

where m is the mass of the proton.

The mass of a proton is approximately 1.67 x 10⁻²⁷ kg.

Substituting the values into the formula:

p = (1.67 x 10⁻²⁷ kg) × (2.07 x 10⁴ m/s)

Now we can calculate the de Broglie wavelength:

λ = h / p

Given that h = 6.63 x 10⁻³⁴ J·s, we can substitute the values and calculate the wavelength.

(b) For the case of a proton moving at a speed close to the speed of light, we need to consider the relativistic relationship between momentum (p) and speed (v):

p = γ × m × v

where γ is the gamma factor, m is the mass of the proton, and v is the speed of the proton.

The gamma factor is given by:

γ = 1 / √(1 - (v² / c²))

where c is the speed of light, approximately 3.00 x 10⁸ m/s.

Given the speed of the proton as v = 2.16 x 10⁸ m/s, we can calculate the gamma factor (γ) using the above formula.

Once we have the gamma factor, we can use it in the de Broglie wavelength formula to find the wavelength.

(c) To find the de Broglie wavelength of a relativistic electron with a kinetic energy, we can use the equation:

λ = h / √(2 × m × KE)

where λ is the de Broglie wavelength, h is the Planck's constant, m is the mass of the electron, and KE is the kinetic energy of the electron.

The mass of an electron is approximately 9.11 x 10⁻³¹ kg.

Given the kinetic energy as 3.35 MeV, we need to convert it to joules by multiplying by the conversion factor 1 MeV = 1.6 x 10⁻¹³ J.

Once we have the values, we can substitute them into the formula to calculate the de Broglie wavelength.

Read more on De-Broglie wavelength here: https://brainly.com/question/30404168

#SPJ11

A dentist's drill starts from rest. After 2.90s of constant angular acceleration, it turns at a rate of 2.47 x 10ª rev/min. (a) Find the drill's angular acceleration. rad/s² (along the axis of rotation) (b) Determine the angle through which the drill rotates during this period. rad

Answers

(a) The drill's angular acceleration is approximately 0.149 rad/s² (along the axis of rotation).

(b) The drill rotates through an angle of approximately 4.28 rad during the given time period.

(a) To find the drill's angular acceleration, we can use the equation:

θ = ω₀t + (1/2)αt²,

where θ is the angle of rotation, ω₀ is the initial angular velocity, α is the angular acceleration, and t is the time.

Given that ω₀ (initial angular velocity) is 0 rad/s (starting from rest), t is 2.90 s, and θ is given as 2.47 x 10^3 rev/min, we need to convert the units to rad/s and s.

Converting 2.47 x 10^3 rev/min to rad/s:

ω = (2.47 x 10^3 rev/min) * (2π rad/rev) * (1 min/60 s)

≈ 257.92 rad/s

Using the equation θ = ω₀t + (1/2)αt², we can rearrange it to solve for α:

θ - ω₀t = (1/2)αt²

α = (2(θ - ω₀t)) / t²

Substituting the given values:

α = (2(2.47 x 10^3 rad/s - 0 rad/s) / (2.90 s)² ≈ 0.149 rad/s²

Therefore, the drill's angular acceleration is approximately 0.149 rad/s².

(b) To find the angle of rotation, we can use the equation:

θ = ω₀t + (1/2)αt²

Using the given values, we have:

θ = (0 rad/s)(2.90 s) + (1/2)(0.149 rad/s²)(2.90 s)²

≈ 4.28 rad

Therefore, the drill rotates through an angle of approximately 4.28 rad during the given time period.

(a) The drill's angular acceleration is approximately 0.149 rad/s² (along the axis of rotation).

(b) The drill rotates through an angle of approximately 4.28 rad during the given time period.

To know more about acceleration ,visit:

https://brainly.com/question/460763

#SPJ11

Part B What is the current through the 3.00 2 resistor? | ΑΣφ I = A Submit Previous Answers Request Answer X Incorrect; Try Again; 4 attempts remaining Part C What is the current through the 6.00 2 resistor? V] ΑΣφ ? I = A Submit Previous Answers Request Answer X Incorrect; Try Again; 4 attempts remaining Part D What is the current through the 12.00 resistor? | ΑΣΦ I = A < 1 of 1 Submit Request Answer E = 60.0 V, r = 0 + Part E 3.00 12 12.0 12 Ω What is the current through the 4.00 resistor? ХМУ | ΑΣΦ 6.00 12 4.00 12 I = А

Answers

We are given a circuit with resistors of different values and are asked to determine the currents passing through each resistor.

Specifically, we need to find the current through a 3.00 Ω resistor, a 6.00 Ω resistor, a 12.00 Ω resistor, and a 4.00 Ω resistor. The previous answers were incorrect, and we have four attempts remaining to find the correct values.

To find the currents through the resistors, we need to apply Ohm's Law, which states that the current (I) flowing through a resistor is equal to the voltage (V) across the resistor divided by its resistance (R). Let's go through each resistor individually:

Part B: For the 3.00 Ω resistor, we need to know the voltage across it in order to calculate the current. Unfortunately, the voltage information is missing, so we cannot determine the current at this point.

Part C: Similarly, for the 6.00 Ω resistor, we require the voltage across it to find the current. Since the voltage information is not provided, we cannot calculate the current through this resistor.

Part D: The current through the 12.00 Ω resistor can be determined if we have the voltage across it. However, the given information only mentions the resistance value, so we cannot find the current for this resistor.

Part E: Finally, we are given the necessary information for the 4.00 Ω resistor. We have the voltage (E = 60.0 V) and the resistance (R = 4.00 Ω). Applying Ohm's Law, the current (I) through the resistor is calculated as I = E/R = 60.0 V / 4.00 Ω = 15.0 A.

In summary, we were able to find the current through the 4.00 Ω resistor, which is 15.0 A. However, the currents through the 3.00 Ω, 6.00 Ω, and 12.00 Ω resistors cannot be determined with the given information.

Learn more about resistors here: brainly.com/question/30672175

#SPJ11

Exercise 3: Radio waves travel at the speed of 3x10 m/s. If your radio tunes to a station that broadcasts with a wavelength of 300m. At what frequency does this radio transmit?

Answers

The frequency at which the radio transmits is approximately 1 MHz.

The speed of light in a vacuum is approximately 3 × 10^8 m/s, and radio waves travel at the speed of light. The relationship between the speed of light (c), frequency (f), and wavelength (λ) is given by the equation c = f * λ.

Rearranging the equation to solve for frequency, we have f = c / λ.

Substituting the given values, with the speed of light (c) as 3 × 10^8 m/s and the wavelength (λ) as 300 m, we can calculate the frequency (f).

f = (3 × 10^8 m/s) / (300 m)

= 1 × 10^6 Hz

= 1 MHz

Therefore, the radio transmits at a frequency of approximately 1 MHz.

To learn more about frequency , click here : https://brainly.com/question/14316711

#SPJ11

An 93kg diver inhales to have a body density of 948 kg/m3, then swims to the bottom of a shallow sea (sea water density = 1024 kg/m") and begins to float to the surface. What is his acceleration? (g=9.8 m/s2)

Answers

The diver's acceleration is approximately 1.01 m/s^2.

To calculate the diver's acceleration, we need to consider the forces acting on the diver.

1. Weight force: The weight force acts downward and is given by the formula:

Weight = mass × gravity

             = 93 kg × 9.8 m/s^2

             = 911.4 N

2. Buoyant force: When the diver inhales to have a body density less than the surrounding water, there will be an upward buoyant force acting on the diver. The buoyant force is given by:

Buoyant force = fluid density × volume submerged × gravity

The volume submerged is equal to the volume of the diver. Since the diver's body density is 948 kg/m^3, we can calculate the volume submerged as:

Volume submerged = mass / body density

                                 = 93 kg / 948 kg/m^3

                                 = 0.0979 m^3

  Now we can calculate the buoyant force:

  Buoyant force = 1024 kg/m^3 × 0.0979 m^3 × 9.8 m/s^2

                           = 1005.5 N

Now, let's calculate the net force acting on the diver:

Net force = Buoyant force - Weight

         = 1005.5 N - 911.4 N

         = 94.1 N

Since the diver is floating to the surface, the net force is directed upward. We can use Newton's second law to calculate the acceleration:

Net force = mass × acceleration

Rearranging the formula, we find:

Acceleration = Net force / mass

            = 94.1 N / 93 kg

            ≈ 1.01 m/s^2

Therefore, the diver's acceleration is approximately 1.01 m/s^2.

Learn more about acceleration https://brainly.com/question/460763

#SPJ11

17. In experiment 10, a group of students found that the
moment of inertia of the plate+disk was 1.74x10-4 kg m2, on the
other hand they found that the moment of inertia of the plate was
0.34x10-4 kg

Answers

The main answer is that the moment of inertia of the disk in this configuration can be calculated by subtracting the moment of inertia of the plate from the total moment of inertia of the plate+disk.

To understand this, we need to consider the concept of moment of inertia. Moment of inertia is a measure of an object's resistance to changes in its rotational motion and depends on its mass distribution. When a plate and disk are combined, their moments of inertia add up to give the total moment of inertia of the system.

By subtracting the moment of inertia of the plate (0.34x10-4 kg m2) from the total moment of inertia of the plate+disk (1.74x10-4 kg m2), we can isolate the moment of inertia contributed by the disk alone. This difference represents the disk's unique moment of inertia in this particular configuration.

The experiment demonstrates the ability to determine the contribution of individual components to the overall moment of inertia in a composite system. It highlights the importance of considering the distribution of mass when calculating rotational properties and provides valuable insights into the rotational behavior of objects.

To learn more about inertia click here

brainly.com/question/3268780

#SPJ11

Automated grid generation for several simple shapes: a pipe of circular cross-section, a spherical ball, a duct of rectangular cross-section, a 2D channel with a backward-facing step, and so on. In each case, create a grid with clustering near the walls. Try different cell shapes and different algorithms of grid generation, if available. Analyze the quality of each grid
This is a question of Computational Fluid Dynamics (CFD)subject.

Answers

In Computational Fluid Dynamics (CFD), grid generation plays a crucial role in accurately representing the geometry and capturing the flow features. The grid should be structured or unstructured depending on the problem.

Here's a brief overview of grid generation for the mentioned shapes:

Pipe of Circular Cross-section:

For a pipe, a structured grid with cylindrical coordinates is commonly used. The grid points are clustered near the pipe walls to resolve the boundary layer. Various methods like algebraic, elliptic, or hyperbolic grid generation techniques can be employed to generate the grid. The quality of the grid can be evaluated based on smoothness, orthogonality, and clustering near the walls.

Spherical Ball:

For a spherical ball, structured grids may be challenging to generate due to the curved surface. Instead, unstructured grids using techniques like Delaunay triangulation or advancing front method can be employed. The grid can be clustered near the surface of the ball to capture the flow accurately. The quality of the grid can be assessed based on element quality, aspect ratio, and smoothness.

Duct of Rectangular Cross-section:

For a rectangular duct, a structured grid can be easily generated using techniques like algebraic grid generation or transfinite interpolation. The grid can be clustered near the walls to resolve the boundary layers and capture flow features accurately. The quality of the grid can be analyzed based on smoothness, orthogonality, and clustering near the walls.

2D Channel with a Backward-facing Step:

For a 2D channel with a backward-facing step, a combination of structured and unstructured grids can be used. Structured grids can be employed in the main channel, and unstructured grids can be used near the step to capture complex flow phenomena. Techniques like boundary-fitted grids or cut-cell methods can be employed. The quality of the grid can be assessed based on smoothness, orthogonality, grid distortion, and capturing of flow features.

To analyze the quality of each grid, various metrics can be used, such as aspect ratio, skewness, orthogonality, grid density, grid convergence, and comparison with analytical or experimental results if available. Additionally, flow simulations using the generated grids can provide further insights into the accuracy and performance of the grids.

It's important to note that specific grid generation techniques and algorithms may vary depending on the CFD software or tool being used, and the choice of grid generation method should be based on the specific requirements and complexities of the problem at hand.

To learn more about Fluid Dynamics click here

https://brainly.com/question/31020521

#SPJ11

At a site where the Earth's magnetic field has a magnitude of 0.42 gauss (where 1 gauss = 1.00 X 104 T) and points to the north, 680 below the horizontal, a high-voltage pover line 153 m in length
carries a current or TEA.
Determine the magnitude and direction of the magnetic force exerted on this wire, if the orientation of the vire and hence the current is as follove
horizontally toward the south

Answers

The magnitude of the magnetic force is 3.99 TEA and its direction is upward.

Magnitude of Earth's magnetic field, |B|=0.42 G=0.42 × 10⁻⁴ T

Angle between direction of Earth's magnetic field and horizontal plane, θ = 680

Length of power line, l = 153 m

Current flowing through the power line, I = TEA

We know that the magnetic force (F) exerted on a current-carrying conductor placed in a magnetic field is given by the formula

F = BIl sinθ,where B is the magnitude of magnetic field, l is the length of the conductor, I is the current flowing through the conductor, θ is the angle between the direction of the magnetic field and the direction of the conductor, and sinθ is the sine of the angle between the magnetic field and the conductor. Here, F is perpendicular to both magnetic field and current direction.

So, magnitude of magnetic force exerted on the power line is given by:

F = BIl sinθ = (0.42 × 10⁻⁴ T) × TEA × 153 m × sin 680F = 3.99 TEA

Now, the direction of magnetic force can be determined using the right-hand rule. Hold your right hand such that the fingers point in the direction of the current and then curl your fingers toward the direction of the magnetic field. The thumb points in the direction of the magnetic force. Here, the current is flowing horizontally toward the south. So, the direction of magnetic force is upward, that is, perpendicular to both the direction of current and magnetic field.

So, the magnitude of the magnetic force is 3.99 TEA and its direction is upward.

Learn more about magnetic force https://brainly.com/question/26257705

#SPJ11

Two objects, of masses my and ma, are moving with the same speed and in opposite directions along the same line. They collide and a totally inelastic collision occurs. After the collision, both objects move together along the same line with speed v/2. What is the numerical value of the ratio m/m, of their masses?

Answers

`[(au + (v/2)]/[(u - (v/2))]`is the numerical value of the ratio m/m, of their masses .

Two objects, of masses my and ma, are moving with the same speed and in opposite directions along the same line. They collide and a totally inelastic collision occurs.

After the collision, both objects move together along the same line with speed v/2.

The numerical value of the ratio of the masses m1/m2 can be calculated by the following formula:-

                 Initial Momentum = Final Momentum

Initial momentum is given by the sum of the momentum of two masses before the collision. They are moving with the same speed but in opposite directions, so momentum will be given by myu - mau where u is the velocity of both masses.

`Initial momentum = myu - mau`

Final momentum is given by the mass of both masses multiplied by the final velocity they moved together after the collision.

So, `final momentum = (my + ma)(v/2)`According to the principle of conservation of momentum,

`Initial momentum = Final momentum

`Substituting the values in the above formula we get: `myu - mau = (my + ma)(v/2)

We need to find `my/ma`, so we will divide the whole equation by ma on both sides.`myu/ma - au = (my/ma + 1)(v/2)

`Now, solving for `my/ma` we get;`my/ma = [(au + (v/2)]/[(u - (v/2))]

`Hence, the numerical value of the ratio m1/m2, of their masses is: `[(au + (v/2)]/[(u - (v/2))

Therefore, the answer is given by `[(au + (v/2)]/[(u - (v/2))]`.

Learn more about Final Momentum

brainly.com/question/29990455

#SPJ11

A light ray of wavelength 589 nm traveling through air is incident on a smooth, flat slab of crown glass. If θ1 = 30° then: (A) Find the angle of refraction. (B) Find the speed of this light once it enters the glass. (C) What is the wavelength of this light in the glass? (D) What is the frequency of this light inside the glass? (E) Calculate the refracted exit angle. (F) Calculate the critical angle of refraction.

Answers

a. The angle of refraction is 52.19°.

b. The speed of light once it enters the glass is 1.97 × 108 m/s.

c. The wavelength of this light in the glass is 387.50 × 10⁻⁹ m.

d. The frequency of this light inside the glass is 5.08 × 10¹⁴ Hz.

e. The refracted exit angle is 52.19°.

f.  The critical angle of refraction is 41.1°.

Given: Wavelength of light, λ = 589 nm

           Angle of incidence in air, θ1 = 30°

          Angle of refraction in glass, θ2 = ?

Formulae: Snell's law of refraction, n1 sin θ1 = n2 sin θ2. The refractive index of glass with respect to air, ng = 1.52 (Given) Critical angle of refraction, sin θc = 1 / n2

Part A: Angle of refraction is given by Snell's law of refraction

n1 sin θ1 = n2 sin θ2ng

sin θ1 = 1.52

sin θ2sin θ2 = (ng / 1)

sin θ1sin θ2 = 1.52 × sin 30°sin θ2 = 0.78θ2 = 52.19°

The angle of refraction is 52.19°.

Part B: Speed of light in air, v1 = 3 × 108 m/s

Speed of light in glass, v2 = ?

We know that the refractive index of glass is given by

ng = v1 / v2

where v1 is the speed of light in air and

           v2 is the speed of light in glass

v2 = v1 / ngv2 = 3 × 108 / 1.52v2 = 1.97 × 108 m/s

The speed of light once it enters the glass is 1.97 × 108 m/s.

Part C: Wavelength of light in glass, λ2 = ?

We know that the refractive index of glass is given by

ng = c / v2

where c is the speed of light in vacuum and

           v2 is the speed of light in glass

λ2 = λ / ng

λ2 = 589 × 10⁻⁹ / 1.52

λ2 = 387.50 × 10⁻⁹ m

The wavelength of this light in the glass is 387.50 × 10⁻⁹ m.

Part D: Frequency of light inside the glass, f2 = ?

We know that frequency is given by the formula,

v = f λ

where v is the velocity of light and

          λ is the wavelength of light

v2 = f2

λ2f2 = v2 / λ2f2 = 1.97 × 10⁸ / 387.50 × 10⁻⁹f2 = 5.08 × 10¹⁴ Hz

The frequency of this light inside the glass is 5.08 × 10¹⁴ Hz.

Part E: Refracted exit angle is given by Snell's law of refraction

n1 sin θ1 = n3 sin θ3ng

sin θ1 = 1 sin θ3sin θ3 = ng sin θ1sin θ3 = 1.52 × sin 30°sin θ3 = 0.78θ3 = 52.19°

The refracted exit angle is 52.19°.

Part F: Critical angle of refraction is given by,

sin θc = 1 / n2sin θc = 1 / 1.52θc = sin⁻¹ (1 / 1.52)θc = 41.1°

The critical angle of refraction is 41.1°.

Learn more about angle of refraction at https://brainly.com/question/30952453

#SPJ11

A ray of light in glass strikes a water-glass interface. The index of refraction for water is 1.33, and for the glass it is 1.50. a) What is the maximum angle of the incidence that one can observe refracted light? () b) If the incident angle in the glass is 45 degrees, what angle does the refracted ray in the water make with the normal?

Answers

The maximum angle of incidence that one can observe refracted light is approximately 51.6 degrees. The refracted ray in the water makes an angle of approximately 35.3 degrees with the normal.

a) To find the maximum angle of incidence, we need to consider the case where the angle of refraction is 90 degrees, which means the refracted ray is grazing along the interface. Let's assume the angle of incidence is represented by θ₁. Using Snell's law, we can write:

sin(θ₁) / sin(90°) = 1.33 / 1.50

Since sin(90°) is equal to 1, we can simplify the equation to:

sin(θ₁) = 1.33 / 1.50

Taking the inverse sine of both sides, we find:

θ₁ = sin^(-1)(1.33 / 1.50) ≈ 51.6°

Therefore, the maximum angle of incidence that one can observe refracted light is approximately 51.6 degrees.

b) If the incident angle in the glass is 45 degrees, we can calculate the angle of refraction using Snell's law. Let's assume the angle of refraction is represented by θ₂. Using Snell's law, we have:

sin(45°) / sin(θ₂) = 1.50 / 1.33

Rearranging the equation, we find:

sin(θ₂) = sin(45°) * (1.33 / 1.50)

Taking the inverse sine of both sides, we get:

θ₂ = sin^(-1)(sin(45°) * (1.33 / 1.50))

Evaluating the expression, we find:

θ₂ ≈ 35.3°

Therefore, the refracted ray in the water makes an angle of approximately 35.3 degrees with the normal.

To learn more about maximum angle visit:

brainly.com/question/30925659

#SPJ11

Lab Question:
Imagine you have a irrelevant material that has a thin slit. You would like to find the width of this thin slit.
A 650nm laser is provided, and the tools to measure the intensity of the light that will create a pattern after the light has gone through the slit, you can also measure any other distances necessary for your calculations (except for the width of the slit).
Explain all work and basic equations, talk through how you can find the width of this slit. Make sure to include a final equation at the end.

Answers

The width of a thin slit can be calculated by using the phenomenon of diffraction. We measure the distance between the central bright spot and the first dark fringe using a 650nm laser. Then we use the equation w = (λ * L) / (2 * d) to calculate the width of the slit.

The phenomenon of diffraction states that when light passes through a narrow slit, it diffracts and creates a pattern of alternating bright and dark regions called a diffraction pattern. The width of the slit can be determined by analyzing this pattern.

By measuring the distance between the central bright spot and the first dark fringe on either side of it, we can calculate the width of the slit using the equation:

d = (λ * L) / (2 * w)

where:

d is the distance between the central bright spot and the first dark fringe,

λ is the wavelength of the laser light (650 nm or 650 × 10^(-9) m),

L is the distance between the slit and the screen where the diffraction pattern is observed,

and w is the width of the slit.

By rearranging the equation, we can solve for the width of the slit (w):

w = (λ * L) / (2 * d)

Therefore, by measuring the distance between the central bright spot and the first dark fringe, along with the known values of the wavelength and the distance between the slit and the screen, we can determine the width of the thin slit.

To know more about diffraction, refer to the link:

https://brainly.com/question/30739151#

#SPJ11

Light of wavelength λ 0 ​ is the smallest wavelength maximally reflected off a thin film with index of refraction n 0 ​ . The thin film is replaced by another thin film of the same thickness, but with slightly larger index of refraction n f ​ >n 0 ​ . With the new film, λ f ​ is the smallest wavelength maximally reflected off the thin film. Select the correct statement. λ f ​ =λ 0 ​ λ f ​ >λ 0 ​ λ f ​ <λ 0 ​ ​ The relative size of the two wavelengths cannot be determined.

Answers

The correct statement is: λf > λ0. So left-hand side is larger in the case of the new film, the corresponding wavelength, λf, must also be larger than the original wavelength, λ0.

When light is incident on a thin film, interference occurs between the reflected light waves from the top and bottom surfaces of the film. This interference leads to constructive and destructive interference at different wavelengths. The condition for constructive interference, resulting in maximum reflection, is given by:

2nt cosθ = mλ

where:

n is the refractive index of the thin film

t is the thickness of the thin film

θ is the angle of incidence

m is an integer representing the order of the interference (m = 0, 1, 2, ...)

In the given scenario, the original thin film has a refractive index of n0, and the replaced thin film has a slightly larger refractive index of nf (> n0). The thickness of both films is the same.

Since the refractive index of the new film is larger, the value of nt for the new film will also be larger compared to the original film. This means that the right-hand side of the equation, mλ, remains the same, but the left-hand side, 2nt cosθ, increases.

For constructive interference to occur, the left-hand side of the equation needs to equal the right-hand side. That's why λf > λ0.

To learn more about refractive index: https://brainly.com/question/30761100

#SPJ11

Required information A scuba diver is in fresh water has an air tank with a volume of 0.0100 m3. The air in the tank is initially at a pressure of 100 * 107 Pa. Assume that the diver breathes 0.500 l/s of air. Density of fresh water is 100 102 kg/m3 How long will the tank last at depths of 5.70 m² min

Answers

In order to calculate the time the tank will last, we need to consider the consumption rate of the diver and the change in pressure with depth.

As the diver descends to greater depths, the pressure on the tank increases, leading to a faster rate of air consumption. The pressure increases by 1 atm (approximately 1 * 10^5 Pa) for every 10 meters of depth. Therefore, the change in pressure due to the depth of 5.70 m²/min can be calculated as (5.70 m²/min) * (1 atm/10 m) * (1 * 10^5 Pa/atm).

To find the time the tank will last, we can divide the initial volume of the tank by the rate of air consumption, taking into account the change in pressure. However, we need to convert the rate of air consumption to cubic meters per second to match the units of the tank volume. Since 1 L is equal to 0.001 m³, the rate of air consumption becomes 0.500 * 10^-3 m³/s.

Finally, we can calculate the time the tank will last by dividing the initial volume of the tank by the adjusted rate of air consumption. The formula is: time = (0.0100 m³) / ((0.500 * 10^-3) m³/s + change in pressure). By plugging in the values for the initial pressure and the change in pressure, we can calculate the time in seconds or convert it to minutes by dividing by 60.

In the scuba diver's air tank with a volume of 0.0100 m³ and an initial pressure of 100 * 10^7 Pa will last a certain amount of time at depths of 5.70 m²/min. By considering the rate of air consumption and the change in pressure with depth, we can calculate the time it will last. The time can be found by dividing the initial tank volume by the adjusted rate of air consumption, taking into account the change in pressure due to the depth.

learn more about scuba diver here:

brainly.com/question/20530297

#SPJ11

A 2.70 kg bucket is attached to a disk-shaped pulley of radius 0.131 m and a mass of 0.742 kg. If the bucket is allowed to fall,(1) What is its linear acceleration? a = (?) m/s^2
(2) What is the angular acceleration of the pulley? α = (?) rad/s^2
(3) How far does the bucket drop in 1.00 s? Δy = (?) m

Answers

A 2.70 kg bucket attached to a disk-shaped pulley of radius 0.131 m and mass of 0.742 kg. If the bucket is allowed to fall, the linear acceleration can be calculated as shown below:

1. Linear acceleration:The tension, T, in the string is the force acting to move the bucket upwards; it is given by T = mg. The force acting downwards is equal to the weight of the bucket; therefore, its weight is given by the product of its mass and the acceleration due to gravity. Thus, F = ma. For the system of the pulley and the bucket, the net force acting downwards is the force due to the weight of the bucket, Fg, minus the tension, T. Thus, the net force is given by the difference of the two forces.ΣF = Fg - T. Therefore, we can write:Fg - T = maBut Fg is equal to mg. Therefore, we have:mg - T = maBut T is equal to the tension in the string, which can be written as Iα/ r2. Therefore, we have:Iα/r2 = mg - ma. We need to determine the angular acceleration, α. To do this, we need to find the moment of inertia of the pulley. The moment of inertia is given by:I = (1/2) mr2. Therefore, we have:Iα/r2 = mg - ma. Solving for a, we obtain:a = g(m - (I/r2 m)) / (m + M). Substituting the values given, we have:

a = (9.81 m/s²)(2.70 kg - ((0.5)(0.742 kg)(0.131 m)²)/(2.70 kg + 0.742 kg))a = 2.90 m/s².

The linear acceleration of the bucket is 2.90 m/s².

2. Angular acceleration. The angular acceleration, α, can be calculated as follows:T = Iα/ r2. But T is equal to the tension in the string, which can be written as mg - ma. Therefore, we have:(mg - ma)r = Iαα = (mg - ma)r / IA substituting the values given, we have:

α = (9.81 m/s²)(2.70 kg - (2)(0.742 kg)(0.131 m)²)/(0.5)(0.742 kg)(0.131 m)²α = 10.1 rad/s².

The angular acceleration of the pulley is 10.1 rad/s².3. The distance the bucket drops in 1.00 s can be calculated as follows:Δy = 1/2 at². Using the value of a obtained above, we have:Δy = 1/2 (2.90 m/s²)(1.00 s)²Δy = 1.45 m

The linear acceleration of the bucket is 2.90 m/s².The angular acceleration of the pulley is 10.1 rad/s².The distance the bucket drops in 1.00 s is 1.45 m.

To know more about acceleration visit:

brainly.com/question/2303856

#SPJ11

The vector position of a particle varies in time according to the expression F = 7.20 1-7.40t2j where F is in meters and it is in seconds. (a) Find an expression for the velocity of the particle as a function of time. (Use any variable or symbol stated above as necessary.) V = 14.8tj m/s (b) Determine the acceleration of the particle as a function of time. (Use any variable or symbol stated above as necessary.) a = ___________ m/s² (c) Calculate the particle's position and velocity at t = 3.00 s. r = _____________ m
v= ______________ m/s

Answers

"(a) The expression for the velocity of the particle as a function of time is: V = -14.8tj m/s. (b) The acceleration of the particle as a function of time is: a = -14.8j m/s². (c) v = -14.8tj = -14.8(3.00)j = -44.4j m/s."

(a) To find the expression for the velocity of the particle as a function of time, we can differentiate the position vector with respect to time.

From question:

F = 7.20(1 - 7.40t²)j

To differentiate with respect to time, we differentiate each term separately:

dF/dt = d/dt(7.20(1 - 7.40t²)j)

= 0 - 7.40(2t)j

= -14.8tj

Therefore, the expression for the velocity of the particle as a function of time is: V = -14.8tj m/s

(b) The acceleration of the particle is the derivative of velocity with respect to time:

dV/dt = d/dt(-14.8tj)

= -14.8j

Therefore, the acceleration of the particle as a function of time is: a = -14.8j m/s²

(c) To calculate the particle's position and velocity at t = 3.00 s, we substitute t = 3.00 s into the expressions we derived.

Position at t = 3.00 s:

r = ∫V dt = ∫(-14.8tj) dt = -7.4t²j + C

Since we need the specific position, we need the value of the constant C. We can find it by considering the initial position of the particle. If the particle's initial position is given, please provide that information.

Velocity at t = 3.00 s:

v = -14.8tj = -14.8(3.00)j = -44.4j m/s

To know more about position of particles visit:

https://brainly.com/question/30685477

#SPJ11

3. Mike owes James the following obligations: 1. P10,000 due at the end of 4 years II. P1,500 due at the end of 6 years with accumulated interest from today at (0.06, m = 2) Mike will be allowed to replace his total obligation by a payment at P2,000 at the end of 2 years and a second payment at the end of 5 years, with money worth 5%. a) Find the unknown payment. Comparison date: at the end of 5 years. b) Mike wishes to replace the obligations by a first payment at the end of 2 years and twice as much at the end of 6 years with money worth 2 1/2%. Find the unknown payments at a comparison date at the end of 5 years.

Answers

a) Unknown payment: P5,180.47 b) First payment: P4,442.27, Second payment: P8,884.54

a) To find the unknown payment at the end of 5 years, we need to calculate the present value of the existing obligations and equate it to the present value of the proposed payment schedule.

For the first obligation: P10,000 due at the end of 4 years.

Present Value (PV1) = P10,000 / (1 + 0.06/2)^(4*2) = P7,348.36

For the second obligation: P1,500 due at the end of 6 years with accumulated interest.

Present Value (PV2) = P1,500 / (1 + 0.06/2)^(6*2) = P1,104.90

Now, let's calculate the present value of the proposed payment schedule:

First payment: P2,000 at the end of 2 years.

Present Value (PV3) = P2,000 / (1 + 0.05/2)^(2*2) = P1,822.70

Second payment: Unknown payment at the end of 5 years.

Present Value (PV4) = Unknown payment / (1 + 0.05/2)^(5*2) = Unknown payment / (1.025)^10

Since Mike wants to replace his total obligation, we can set up the equation:

PV1 + PV2 = PV3 + PV4

P7,348.36 + P1,104.90 = P1,822.70 + Unknown payment / (1.025)^10

Simplifying the equation, we can solve for the unknown payment:

Unknown payment = (P7,348.36 + P1,104.90 - P1,822.70) * (1.025)^10

Unknown payment = P5,180.47

Therefore, the unknown payment at the end of 5 years is P5,180.47.

b) Similarly, to find the unknown payments at the end of 5 years under the new proposal, we can follow the same approach.

First payment: End of 2 years

Present Value (PV5) = Unknown payment / (1 + 0.025/2)^(2*2)

Second payment: Twice as much at the end of 6 years

Present Value (PV6) = 2 * Unknown payment / (1 + 0.025/2)^(6*2)

Setting up the equation with the present value of existing obligations:

PV1 + PV2 = PV5 + PV6

P7,348.36 + P1,104.90 = PV5 + PV6

Unknown payment = (P7,348.36 + P1,104.90 - PV5 - PV6)

By substituting the present value calculations, we can find the unknown payments at the end of 5 years.

To learn more about Present value - brainly.com/question/17322936

#SPJ11

Consider a sealed cylindrical container released from a height h and rolling without friction on an inclined plane. If water is added to the container, would the velocity of the cylinder when it reaches the end of the incline be faster than of the empty one? Consider that water slides without friction inside the container and in both cases the cylinder is released from the
same height.
Select one:
O True
O False

Answers

False. If water is added to the container, the velocity of the cylinder when it reaches the end of the incline will not be faster than of the empty one

The velocity of the cylinder when it reaches the end of the incline would not be affected by the addition of water to the container. The key factor determining the velocity of the cylinder is the height from which it is released and the incline angle of the plane. The mass of the water inside the container does not affect the acceleration or velocity of the cylinder because it is assumed to slide without friction.

The cylinder's velocity is determined by the conservation of mechanical energy, which depends solely on the initial height and the angle of the incline. Therefore, the addition of water would not make the cylinder reach the end of the incline faster or slower compared to when it is empty.

Learn more about mechanical energy here:

https://brainly.com/question/24443465

#SPJ11

After a fall, a 96 kg rock climber finds himself dangling from the end of a rope that had been 17 m long and 9.8 mm in diameter but has stretched by 3.4 cm. For the rope, calculate (a) the strain, (b) the stress, and (c) the Young's modulus.

Answers

The strain is 0.002, the stress is approximately 1.25 × 10^7 Pa, and Young's modulus is approximately 6.25 × 10^9 Pa.

To calculate the strain, stress, and Young's modulus for the given situation, we'll use the following formulas and information:

The formula for strain:

Strain (ε) = ΔL / L

The formula for stress:

Stress (σ) = F / A

Formula for Young's modulus:

Young's modulus (E) = Stress / Strain

Given information:

Mass of the rock climber (m) = 96 kg

Length of the rope (L) = 17 m

The original meter of the rope (d) = 9.8 mm = 0.0098 m

Change in length of the rope (ΔL) = 3.4 cm = 0.034 m

First, let's calculate the strain (ε):

Strain (ε) = ΔL / L

Strain (ε) = 0.034 m / 17 m

Strain (ε) = 0.002

Next, we need to calculate the stress (σ):

To calculate the force (F) exerted on the rope, we'll use the gravitational force formula:

Force (F) = mass (m) × gravitational acceleration (g)

Gravitational acceleration (g) = 9.8 m/s²

Force (F) = 96 kg × 9.8 m/s²

Force (F) = 940.8 N

To calculate the cross-sectional area (A) of the rope, we'll use the formula for the area of a circle:

Area (A) = π × (radius)²

Radius (r) = (diameter) / 2

Radius (r) = 0.0098 m / 2

Radius (r) = 0.0049 m

Area (A) = π × (0.0049 m)²

Area (A) = 7.54 × 10^-5 m²

Now, we can calculate the stress (σ):

Stress (σ) = F / A

Stress (σ) = 940.8 N / 7.54 × 10^-5 m²

Stress (σ) ≈ 1.25 × 10^7 Pa

Finally, we can calculate Young's modulus (E):

Young's modulus (E) = Stress / Strain

Young's modulus (E) = (1.25 × 10^7 Pa) / 0.002

Young's modulus (E) = 6.25 × 10^9 Pa

Therefore, for the given rope, the strain is 0.002, the stress is approximately 1.25 × 10^7 Pa, and Young's modulus is approximately 6.25 × 10^9 Pa.

To know more about Young's modulus visit:

https://brainly.com/question/13257353

#SPJ11

An uncharged 1.5mf (milli farad) capacitor is connected in
series with a 2kilo ohm resistor A switch and ideal 12 volt emf
source Find the charge on the capacitor 3 seconds after the switch
is closed

Answers

The charge on the capacitor 3 seconds after the switch is closed is approximately 4.5 mC (milliCoulombs).

To calculate the charge on the capacitor, we can use the formula Q = Q_max * (1 - e^(-t/RC)), where Q is the charge on the capacitor at a given time, Q_max is the maximum charge the capacitor can hold, t is the time, R is the resistance, and C is the capacitance. Given that the capacitance C is 1.5 mF (milliFarads), the resistance R is 2 kilo ohms (kΩ), and the time t is 3 seconds, we can calculate the charge on the capacitor:

Q = Q_max * (1 - e^(-t/RC))

Since the capacitor is initially uncharged, Q_max is equal to zero. Therefore, the equation simplifies to:

Q = 0 * (1 - e^(-3/(2 * 1.5 * 10^(-3) * 2 * 10^3)))

Simplifying further:

Q = 0 * (1 - e^(-1))

Q = 0 * (1 - 0.3679)

Q = 0

Thus, the charge on the capacitor 3 seconds after the switch is closed is approximately 0 Coulombs.

Therefore, the charge on the capacitor 3 seconds after the switch is closed is approximately 0 mC (milliCoulombs).

To learn more about capacitor , click here : https://brainly.com/question/31627158

#SPJ11

An end window Geiger counter is used to survey the rate at which beta particles from 32P are incident on the skin. The Geiger counter, which is almost 100% efficient at these energies (1.7 MeV), has a surface area of 5 cm^2 and records
200 counts per sec. What is the skin dose rate?

Answers

The skin dose rate of 32P is 6.8 mGy/h.

An end-window Geiger counter is a device that counts high-energy particles such as beta particles. 32P, or phosphorus-32, is a radioactive isotope that emits beta particles. The Geiger counter's surface area is 5 cm^2 and it records 200 counts per second. The energy of beta particles is approximately 1.7 MeV, and the Geiger counter is almost 100% effective at this energy.

The following equation can be used to calculate the dose rate: D = Np / AE where: D is the dose rate in gray per hour (Gy/h)N is the number of counts per second (cps)p is the radiation energy per decay (Joules per decay)A is the Geiger counter area in cm^2E is the detector efficiency.

At 1.7 MeV, the detector efficiency is almost 100%.

p = 1.7 MeV × (1.6 × 10^-19 J/MeV)

= 2.72 × 10^-13 J.

Np = 200 cps, AE = 5 cm^2 × 100 = 500,

D = (200 × 2.72 × 10^-13 J) / 500 = 6.8 × 10^-11 Gy/h = 6.8 mGy/h

Therefore, the skin dose rate of 32P is 6.8 mGy/h.

Learn more about beta particles here:

https://brainly.com/question/2193947

#SPJ11

Helium ions He?* of mass 6.70 × 1027 kg and charge Ze are emitted from a source at zero electric potential and are attracted towards an electrode at a potential of 800 V. Select the option closest to the magnitude of the momentum acquired by a helium ion immediately before
it strikes the electrode. You may neglect the initial speed of the ions as they leave the source.
KEY for 012
A
B
C
2.6 × 10-1 kgms-1
3.4 × 10-17 kgms
8.8 × 10-18 kgms
D 9.1 × 10-19 kgms
E
1.0 x 10-20 kgms-1
F
1.9 × 10-21 kgms-1
G 8.9 × 10-22 kgms-1
H 5.5 × 10-23 kgms

Answers

The momentum acquired by a helium ion immediately before it strikes the electrode can be determined by considering the potential difference and the charge of the ion. The option closest to the magnitude of the momentum is 9.1 ×[tex]10^-19[/tex] kg·m/s (option D).

The momentum acquired by a charged particle can be calculated using the equation p = qV, where p is the momentum, q is the charge of the particle, and V is the potential difference.

In this case, the helium ions ([tex]He^+2[/tex]) have a charge of Ze, where Z is the charge number of the ion (2 for helium) and e is the elementary charge.

Given the potential difference of 800 V and the charge of the helium ion, we can calculate the momentum using the formula mentioned above. Substituting the values, we find that the momentum acquired by the helium ion is equal to (2Ze)(800) = 1600Ze.

The magnitude of the momentum acquired by the helium ion is equal to the absolute value of the momentum, which in this case is 1600Ze.

Since the magnitude of the charge Ze is constant for all helium ions, we can compare the options provided and select the one closest to 1600. The option that is closest is 9.1 × [tex]10^-19[/tex] kg·m/s (option D).

Learn more about Helium ions from the given link:
https://brainly.com/question/2886630

#SPJ11

Show how to calculate the sample standard deviation (for a small sample size) of these numbers: 23, 24, 26, 28, 29, 28, 26, 24. Display all steps

Answers

The Sample Standard Deviation is 1.97. The sample standard deviation is a statistical measure that is used to determine the amount of variation or dispersion of a set of data from its mean.

To calculate the sample standard deviation of the given numbers, follow these steps:

Step 1: Find the mean of the given numbers.

Step 2: Subtract the mean from each number to get deviations.

Step 3: Square each deviation to get squared deviations.

Step 4: Add up all squared deviations.

Step 5: Divide the sum of squared deviations by (n - 1), where n is the sample size.

Step 6: Take the square root of the result from Step 5 to get the sample standard deviation.

It is calculated as the square root of the sum of squared deviations from the mean, divided by (n - 1), where n is the sample size.

To calculate the sample standard deviation of the given numbers, we need to follow the above-mentioned steps.

First, find the mean of the given numbers which is 26. Next, subtract the mean from each number to get deviations. The deviations are -3, -2, 0, 2, 3, 2, 0, and -2. Then, square each deviation to get squared deviations which are 9, 4, 0, 4, 9, 4, 0, and 4. After that, add up all squared deviations which is 34. Finally, divide the sum of squared deviations by (n - 1), where n is the sample size (8 - 1), which equals 4.86. Now, take the square root of the result from Step 5 which equals 1.97. Therefore, the sample standard deviation is 1.97.

To know more about the standard deviation visit:

https://brainly.com/question/475676

#SPJ11

A quantum particle is described by the wave functionψ(x) = { A cos (2πx/L) for -L/4 ≤ x ≤ L/40 elsewhere(a) Determine the normalization constant A.

Answers

The normalization constant A is equal to √(2/L).

To determine the normalization constant A, we need to ensure that the wave function ψ(x) is normalized, meaning that the total probability of finding the particle in any location is equal to 1.

To normalize the wave function, we need to integrate the absolute square of ψ(x) over the entire domain of x. In this case, the domain is from -L/4 to L/4.

First, let's calculate the absolute square of ψ(x) by squaring the magnitude of A cos (2πx/L):

[tex]|ψ(x)|^2 = |A cos (2πx/L)|^2 = A^2 cos^2 (2πx/L)[/tex]

Next, we integrate this expression over the domain:

[tex]∫[-L/4, L/4] |ψ(x)|^2 dx = ∫[-L/4, L/4] A^2 cos^2 (2πx/L) dx[/tex]
To solve this integral, we can use the identity cos^2 (θ) = (1 + cos(2θ))/2. Applying this, the integral becomes:

[tex]∫[-L/4, L/4] A^2 cos^2 (2πx/L) dx = ∫[-L/4, L/4] A^2 (1 + cos(4πx/L))/2 dx[/tex]
Now, we can integrate each term separately:

[tex]∫[-L/4, L/4] A^2 dx + ∫[-L/4, L/4] A^2 cos(4πx/L) dx = 1[/tex]

The first integral is simply A^2 times the length of the interval:

[tex]A^2 * (L/2) + ∫[-L/4, L/4] A^2 cos(4πx/L) dx = 1[/tex]
Since the second term is the integral of a cosine function over a symmetric interval, it evaluates to zero:

A^2 * (L/2) = 1

Solving for A, we have:

A = √(2/L)

Therefore, the normalization constant A is equal to √(2/L).

To know more about magnitude visit:

https://brainly.com/question/31022175

#SPJ11

Other Questions
How much should you pay for a $1,000 bond with 12% coupon, annual payments, and 7 years to maturity if the interest rate is 10%? a. $927.90 b. $981.40 C. $1000 d. $1,097.37 The electronic density of a metal is 4.2*1024 atoms/m3 and has a refraction index n = 1.53 + i2.3.a)find the plasma frequency. The charge of electrons is qe = 1.6*10-19C and the mass of these e- is me=9.1*10-31kg , o = 8.85*10-12 c2/Nm2.b) please elaborate in detail if this imaginary metal is transparent or notc) calculate the skin depth for a frequency = 2*1013 rad/s XYZ has been specialized in manufacturing shoes for over 30 years. Located in Boston, XYZ managed to open stores in over 30 states. The franchises have been sold only to successful candidates which helped the businesses to expand all over the states. XYZ CEO figures out that the companys success is function of the success of each franchise. In the past, there was no cohesiveness in terms of selection practices. Each franchise has its own method for screening applicants. In order to standardize its hiring practices, XYZ CEO requires all franchise owners to use the same preemployment tests.Which of the following questions is most relevant to XYZ's decision to implement preemployment testing for all franchises?Select one:a. How does testing correlate with XYZ's mission and vision statements?b. How will XYZ ensure the confidentiality of an applicant's test results?c. Should XYZ use internal or external sources for job candidates?d. What is the role of testing in Golden XYZ's strategic performance management syste Find the magnitude of the electric field where the verticaldistance measured from the filament length is 34 cm when there is along straight filament with a charge of -62 C/m per unitlength.E=___ The sentence "Police help dog bite victim" is an example of this type of ambiguity.SemanticSyntactic ADVANCED ANALYSIS Assume that the consumption schedule for a private open economy is such that consumption C = 100 + 0.75Y. Assume further that planned investment Ig, government spending G, and net exports Xn are independent of the level of real GDP and constant at Ig = 60, G = 0, and Xn = 10. Recall also that, in equilibrium, the real output produced (Y) is equal to aggregate expenditures: Y = C + Ig + G + Xn. Instructions: Round your answers to the nearest whole number.a. Calculate the equilibrium level of income or real GDP for this economy.$b. What happens to equilibrium Y if Ig changes to 40?$What does this outcome reveal about the size of the multiplier?Multiplier = Functions in lipid and carbohydrate metabolism and detoxification of harmful substancesA. Rough endoplasmic reticulumB. MitochondriaC. Smooth endoplasmic reticulumD. Golgi apparatusE. Lysosome One of the drawbacks for an ERP system is that they can be expensive and time-consuming to install O True False If the Fed responds to a negative real shock by increasing the money supply, the real growth rate will: "A nurse is collecting data from older adult client who hascysistis,which of the following should the nurse anticipateA reffered pain in right shoulderB orange colored urineC .HypothermiaD Confusion A golf ball is hit off a tee at the edge of a cliff. Its x and y coordinates as functions of time are given by x= 18.3t and y-3.68 -4.90, where x and y are in meters and it is in seconds. (a) Write a vector expression for the ball's position as a function of time, using the unit vectors i and j. (Give the answer in terms of t.) m r= _________ mBy taking derivatives, do the following. (Give the answers in terms of t.) (b) obtain the expression for the velocity vector as a function of time v= __________ m/s (c) obtain the expression for the acceleration vector a as a function of time m/s a= ____________ m/s2 (d) Next use unit-vector notation to write expressions for the position, the velocity, and the acceleration of the golf ball at t = 2.79 1. m/s m/sr= ___________ m v= ___________ m/sa= ____________ m/s2 Each student will conduct a research and make a project report. Student will select an organization and 1 job position (like HR generalist, IT manager, Sales manager etc.) of your choice.Conduct research by contacting the Human Resource Manager or employee working in the selected organization.Explore 2 alternative career options for the selected job title supported by feasible rationale. Apply a model of career development form the course while selecting the alternative job titles (CLO 2- 3 marks)List the various tasks, responsibilities, accountabilities, job experience and skills required to perform the selected job title (Job Analysis). Examine the contemporary issues faced by the job holder. (CLO 3- 3 +3= 6 Marks)Analyze the job analysis result and identify and document the current job task areas for improvements through training. (CLO 4- 6 Marks)Recommend 2 effective career management practices for the improvement of the career management in the organization (CLO 5- 5 marks)5-7 pages (including title page, table of contents, contents, references) 1. Write a short description on ALL of the following: a) Lock and key theory for the enzyme-substrate complex and the different approaches to derive the rate equation of enzyme reaction. (Hint: provide the drawing of the mechanism involved) b) Mechanism of an enzyme inhibition and the associated plots. what 7 odd numbers add up to get 30 without decimals Find the present value of the given future amount. Assume 360 days in a year. $87,996 for 159 days at 6.5% simple interest. What is the present value? (Round to the nearest dollar as needed.) Myosin binding sites are specifically found onA. F-actinB. tropomyosinC. troponinD. G-actinE. myosin draw the complete arrow pushing mechanism for the reaction in part i. 2. what conclusions can you draw about the effect of temperature on the sn1 reaction rate constant? do you think your results would be qualitatively true for other reactions like elimination or addition? explain your reasoning. Match each excerpt to the correct stanza structure.It was many and many a year ago,In a kingdom by the sea,That a maiden there lived whom you may knowBy the name of Annabel Lee;And this maiden she lived with no other thoughtThan to love and be loved by me.(from "Annabel Lee" by Edgar Allan Poe)O thou, new-year, delaying long,Delayest the sorrow in my blood,That longs to burst a frozen budAnd flood a fresher throat with song.(from "In Memoriam" by Alfred Lord Tennyson)Natures first green is gold,Her hardest hue to hold.Her early leafs a flowerBut only so an hour.Then leaf subsides to leaf.So Eden sank to grief,;So dawn goes down to day.Nothing gold can stay.(from "Nothing Gold Can Stay" by Robert Frost)At Sestos Hero dwelt; Hero the fair,Whom young Apollo courted for her hair,And offered as a dower his burning throne,Where she should sit for men to gaze upon.The outside of her garments were of lawn,The lining purple silk, with gilt stars drawn;(from "Hero and Leander" by Christopher Marlowe)StructurePoemquatrain arrowRightcoupletarrowRightoctavearrowRightsestetarrowRight Match each excerpt to the correct stanza structure. Place How were the political divisions of the East carried into the West?