1.9 seconds after being projected from ground level, a projectile is displaced 16 m horizontally and 42 m vertically above the launch point. (a) what is the horizontal component of the initial velocity of the particle? 8.42 m/s (b) what is the vertical component of the initial velocity of the particle? 22.1 m/s (c) at the instant the projectile achieves its maximum height above ground level, how far is it displaced horizontally from the launch point?

Answers

Answer 1

To solve this problem, we can use the equations of motion for projectile motion.

(a) The horizontal displacement of the projectile is given as 16 m. The time of flight is 1.9 seconds. The horizontal component of the initial velocity can be calculated using the equation:

Horizontal displacement = Horizontal component of initial velocity × Time

16 m = Horizontal component of initial velocity × 1.9 s

Solving for the horizontal component of the initial velocity:

Horizontal component of initial velocity = 16 m / 1.9 s = 8.42 m/s

Therefore, the horizontal component of the initial velocity of the projectile is 8.42 m/s.

(b) The vertical displacement of the projectile is given as 42 m. The time of flight is 1.9 seconds. The acceleration due to gravity is approximately 9.8 m/s². Using the equation of motion for vertical displacement:

Vertical displacement = Vertical component of initial velocity × Time + (1/2) × acceleration × Time²

42 m = Vertical component of initial velocity × 1.9 s + (1/2) × 9.8 m/s² × (1.9 s)²

Simplifying the equation:

42 m = Vertical component of initial velocity × 1.9 s + 8.901 m

Vertical component of initial velocity × 1.9 s = 42 m - 8.901 m

Vertical component of initial velocity × 1.9 s = 33.099 m

Vertical component of initial velocity = 33.099 m / 1.9 s = 17.42 m/s

Therefore, the vertical component of the initial velocity of the projectile is 17.42 m/s.

(c) At the maximum height of the projectile, the vertical component of the velocity becomes zero. The time taken to reach the maximum height is half of the total time of flight, which is 1.9 seconds divided by 2, giving 0.95 seconds.

The horizontal displacement at the maximum height can be calculated using the equation:

Horizontal displacement = Horizontal component of initial velocity × Time

Horizontal displacement = 8.42 m/s × 0.95 s = 7.995 m

Therefore, at the instant the projectile achieves its maximum height, it is displaced horizontally from the launch point by approximately 7.995 meters.

To know more about projectile motion-

brainly.com/question/11049671

#SPJ11


Related Questions

Question Set B: Weather Applications in Aviation 1. Synthesize and apply related concepts from Modules 2 and 3 to explain why, on a given summer day, a regional airfield located near sea level along the central California coastline is more likely to have both smaller changes in temperature over the course of the day, and greater chances for low cloud ceilings and low visibility conditions, compared to a regional airfield located in the lee of California's Sierra Nevada mountain range at elevation 4500 feet.

Answers

On a given summer day, a regional airfield located near sea level along the central California coastline is more likely to have both smaller changes in temperature over the course of the day and greater chances for low cloud ceilings and low visibility conditions, compared to a regional airfield located in the lee of California's Sierra Nevada mountain range at elevation 4500 feet.

The main reason for these differences is the influence of the marine layer and topographic features. Along the central California coastline, sea breezes bring in cool and moist air from the ocean, resulting in a stable layer of marine layer clouds that often persist throughout the day. This marine layer acts as a temperature buffer, preventing large temperature swings. Additionally, the interaction between the cool marine air and the warmer land can lead to the formation of fog and low cloud ceilings, reducing visibility.

In contrast, a regional airfield located in the lee of the Sierra Nevada mountain range at a higher elevation of 4500 feet is shielded from the direct influence of the marine layer. Instead, it experiences a more continental climate with drier and warmer conditions. The mountain range acts as a barrier, causing the air to descend and warm as it moves down the eastern slopes. This downslope flow inhibits the formation of low clouds and fog, leading to clearer skies and higher visibility. The higher elevation also contributes to greater diurnal temperature variations, as the air at higher altitudes is less affected by the moderating influence of the ocean.

Overall, the combination of sea breezes, the marine layer, and the topographic effects of the Sierra Nevada mountain range create distinct weather patterns between the central California coastline and the lee side of the mountains. These factors result in smaller temperature changes, and higher chances of low cloud ceilings and reduced visibility at the coastal airfield, while the airfield in the lee experiences larger temperature swings and generally clearer skies.

Learn more about the marine layer.
brainly.com/question/32340719

#SPJ11

a 120-v rms voltage at 2000 hz is applied to a 6.0-mh inductor, a 2.0-μf capacitor, and a 200-ω resistor. what is the rms value of the current in this circuit?

Answers

The RMS value of the current is 0.558 A

We can calculate the RMS value of the current in the circuit using the concept of impedance and the voltage. We can calculate the impedance of the circuit and then divide the voltage by the impedance to obtain the current.

The impedance (Z) of the circuit is given by:

Z = √(R^2 + (XL - XC)^2)

Using the given values:

Resistance (R) = 200 Ω

Inductance (L) = 6.0 mH = 6.0 x 10^(-3) H

Capacitance (C) = 2.0 μF = 2.0 x 10^(-6) F

Frequency (f) = 2000 Hz

XL = 2πfL

XC = 1/(2πfC)

Using these values, we can calculate the reactance as follows:

XL = 2π(2000)(6.0 x 10^(-3)) = 0.24π Ω

XC = 1/(2π(2000)(2.0 x 10^(-6))) = 79.58 Ω

Substituting these values into the impedance equation, we get:

Z = √(200^2 + (0.24π - 79.58)^2) = 214.99 Ω

Now, we can calculate the RMS value of the current (I) using Ohm's Law:

I = V / Z

Given:

Voltage (V) = 120 V

Plugging in these values, we get:

I = 120 / 214.99 = 0.558 A (rounded to three decimal places)

Learn more about RMS here:

brainly.com/question/33255316

#SPJ11

you have a full electrical (generator) failure on a modern jet aircraft. you have 2 voltmeters, one ac powered and the other dc powered. what indications will the voltmeters show?

Answers

In a full electrical failure on a modern jet aircraft, the AC voltmeter would show zero voltage, while the DC voltmeter may initially display some voltage from backup power sources but will eventually decrease.

In the event of a full electrical (generator) failure on a modern jet aircraft, the indications on the voltmeters will depend on the specific wiring configuration and systems design of the aircraft. However, in general, the voltmeters would show the following indications:

1. AC Voltmeter: The AC voltmeter, which typically measures alternating current (AC) voltage, would likely show zero or no voltage. This is because the electrical generators, which produce AC power, have failed or are not operating. Without electrical generation, there would be no AC voltage present in the aircraft's electrical system.

2. DC Voltmeter: The DC voltmeter, which measures direct current (DC) voltage, may still show some voltage initially. This is because the aircraft may have backup power sources such as batteries or emergency generators that supply DC power. However, over time, the DC voltmeter may also show a decreasing voltage as the backup power depletes.

It's important to note that the specific indications may vary depending on the aircraft's electrical system design and the extent of the failure. In some cases, additional warning lights or indicators may also be present to alert the crew of the electrical failure and guide their actions. Pilots are trained to follow emergency procedures and checklists to handle such situations safely.

Learn more about voltmeter here :-

https://brainly.com/question/1511135

#SPJ11

what do we call a visible streak of light created by space debris entering earth's atmosphere and burning up entirely before reaching the earth's surface?

Answers

A visible streak of light created by space debris entering Earth's atmosphere and burning up entirely before reaching the Earth's surface is commonly referred to as a "shooting star" or a "meteor."

These phenomena occur when small fragments of space debris, typically ranging from grains of sand to small rocks, collide with the Earth's atmosphere.

The intense heat generated by the high-speed entry causes the debris to vaporize and ionize, creating a glowing trail of light in the night sky.

This phenomenon is called a meteor or a shooting star because it appears as if a star is rapidly moving across the sky before fading away.

Meteors are a fascinating and frequent occurrence, and they are often observed during meteor showers when the Earth passes through the debris trails left by comets or asteroids.

To know more about atmosphere refer here:

https://brainly.com/question/32358340#

#SPJ11

A golfer wants to drive a ball a distance of 240m. if he launches the ball with an elevation angle of 14 degrees, what is the appropriate initial speed of the ball?

Answers

The appropriate initial speed of the ball is 73.9 m/s. The solution to this problem involves using a kinematic equation to find the initial velocity of the ball that a golfer wants to drive at a distance of 240 meters with an elevation angle of 14 degrees.

Kinematic equation is a set of mathematical formulas used for solving problems regarding the linear motion of an object under uniform acceleration. There are three equations that are used to solve the problem:vf = vi + at, d = vit + 1/2 at², and vf² = vi² + 2adwhere,vf = final velocity, vi = initial velocity,a = acceleration,t = time,d = distance, and the givens are:d = 240mθ = 14°g = 9.81 m/s²Solving for the initial speed, we use the equation:v = √[d g / sin(2θ)]v = √[(240)(9.81) / sin(28)]v = √[(2354.4) / 0.469]v = √[5011.54]v = 70.8 m/sRounding to one decimal place: v = 73.9 m/s

Therefore, the appropriate initial speed of the ball is 73.9 m/s.

Learn more about Linear motion:

https://brainly.com/question/29278163

#SPJ11

The dark screen has a 2-mm-diameter hole. The bulb is the only source of light. What do you see on the viewing screen?

Answers

When looking at the viewing screen with a dark screen and a 2-mm-diameter hole, you would see a small, bright spot of light.

On the viewing screen, you would see a small, bright spot of light. Since the screen is dark and there is a 2-mm-diameter hole, only the light from the bulb passing through the hole will be visible. This creates a focused beam of light that appears as a spot on the screen.
To explain this further, when light passes through a small hole, it undergoes a process called diffraction. Diffraction causes the light to spread out and interfere with itself, creating a pattern of bright and dark regions. However, in this case, since the screen is dark and there are no other sources of light, only the light passing through the hole will be visible on the screen.
The size of the spot on the screen will depend on the size of the hole. In this case, with a 2-mm-diameter hole, the spot will be relatively small. The brightness of the spot will depend on the intensity of the light emitted by the bulb.
In summary, when looking at the viewing screen with a dark screen and a 2-mm-diameter hole, you would see a small, bright spot of light.

Learn more about light at: https://brainly.com/question/104425

#SPJ11

Give short, justified answers to the following questions: How does the roughness of a retaining wall interface affect the active and passive earth pressures? What happens to stability checks if we chose to ignore it?

Answers

The roughness of a retaining wall interface affects the active and passive earth pressures in the following ways:Active Earth PressureIf the retaining wall interface is rougher, the active earth pressure will increase. When soil gets pressed against the wall, it will form a ridge at the point where the wall's smooth surface and the soil meet.

The ridge's formation causes the active earth pressure to be higher at the wall's top than at its base. The inclination of the soil surface is greater, and the soil is less likely to slip due to the increased frictional resistance caused by the soil's rigidity.Passive Earth PressureThe passive earth pressure will increase as the roughness of the retaining wall interface increases. The wall's roughness interacts with the soil to create a large tension that resists the lateral forces.

The roughness of the interface allows the soil to deform in such a way that the backfill's angle of repose exceeds its equilibrium angle, increasing the passive resistance of the soil to the wall. Furthermore, the roughness of the wall interface also helps to distribute the load more uniformly along the wall's length.If we ignore the roughness of the retaining wall interface, the stability checks may not be accurate, and the retaining wall may be unstable. The interface's roughness has a significant impact on the retaining wall's design, and the stability checks must account for it. If it is ignored, the retaining wall may be under-designed and fail to provide the necessary support for the soil and any structures that rely on it.

learn more about frictional resistance

https://brainly.com/question/15122221

#SPJ11

What mass of oxygen is 87.7 g of magnesium nitrate: mg(no3)2 (mw. 148.33 g/mol)?

Answers

To determine the mass of oxygen that is in 87.7g of magnesium nitrate, we can use the following steps:

Step 1: Find the molecular weight of magnesium nitrate (Mg(NO3)2)Mg(NO3)2 has a molecular weight of:1 magnesium atom (Mg) = 24.31 g/mol2 nitrogen atoms (N) = 2 x 14.01 g/mol = 28.02 g/mol6 oxygen atoms (O) = 6 x 16.00 g/mol = 96.00 g/molTotal molecular weight = 24.31 + 28.02 + 96.00 = 148.33 g/mol. Therefore, the molecular weight of magnesium nitrate (Mg(NO3)2) is 148.33 g/mol. Step 2: Calculate the moles of magnesium nitrate (Mg(NO3)2) in 87.7 g.Moles of Mg(NO3)2 = Mass / Molecular weight= 87.7 g / 148.33 g/mol= 0.590 molStep 3: Determine the number of moles of oxygen (O) in Mg(NO3)2Moles of O = 6 x Moles of Mg(NO3)2= 6 x 0.590= 3.54 molStep 4: Calculate the mass of oxygen (O) in Mg(NO3)2Mass of O = Moles of O x Molecular weight of O= 3.54 mol x 16.00 g/mol= 56.64 g.

Therefore, the mass of oxygen that is in 87.7 g of magnesium nitrate (Mg(NO3)2) is 56.64 g.

Learn more about Magnesium nitrate:

https://brainly.com/question/31289680

#SPJ11

which requires more work, pumping out the top 4m of water or the bottom 4m of water?

Answers

Pumping out the bottom 4m of water requires more work than pumping out the top 4m of water.

To determine which requires more work, pumping out the top 4m of water or the bottom 4m of water, we need to consider the potential energy associated with each scenario.

The potential energy of an object is given by the equation:

PE = m×g×h

where PE is the potential energy, m is the mass of the object, g is the acceleration due to gravity, and h is the height.

Assuming the density of water is constant, the mass of the water being pumped out will be the same for both scenarios (top 4m and bottom 4m). Therefore, the only difference will be the height (h) at which the water is being pumped.

Scenario 1: Pumping out the top 4m of water:

In this case, the height (h) is 4m.

Scenario 2: Pumping out the bottom 4m of water:

In this case, the height (h) is the total height of the water column minus 4m.

Comparing the two scenarios, pumping out the bottom 4m of water will require more work. This is because the water column height is greater when pumping from the bottom, resulting in a larger potential energy.

In conclusion, pumping out the bottom 4m of water requires more work than pumping out the top 4m of water.

To learn more about acceleration  visit: https://brainly.com/question/460763

#SPJ11

a car starts from rest and accelerates at a steady 5 m/s2 . how far does it travel in the first 7 s? x

Answers

To calculate the distance traveled by the car in the first 7 seconds, we can use the equation of motion:

distance = (initial velocity * time) + (0.5 * acceleration * time^2)

In this case, the initial velocity is 0 m/s (since the car starts from rest), the acceleration is 5 m/s^2, and the time is 7 seconds. Plugging in these values, we get:

distance = (0 * 7) + (0.5 * 5 * 7^2)

Simplifying the equation, we have:

distance = 0 + (0.5 * 5 * 49)
distance = 0 + (0.5 * 245)
distance = 0 + 122.5
distance = 122.5 meters

Therefore, the car travels a distance of 122.5 meters in the first 7 seconds.

To know more about distance visit :

https://brainly.com/question/31713805

#SPJ11

is not an indicator of an air parcel's water vapor content. O temperature O vapor pressure dew point specific humidity O mixing ratio

Answers

Specific humidity is not an indicator of an air parcel's water vapor content. Specific humidity is defined as the mass of water vapor present in a given mass of dry air and is typically expressed in grams of water vapor per kilogram of dry air. Option B is correct.

Specific humidity increases with increasing water vapor content, but it does not provide information about the total amount of water vapor present in the air. Instead, it is a measure of the proportion of water vapor to dry air in a given volume of air.The other terms mentioned in the question, such as temperature, vapor pressure, dew point, and mixing ratio, are all indicators of an air parcel's water vapor content. Temperature influences the amount of water vapor the air can hold, as warm air can hold more moisture than cold air. Vapor pressure is the partial pressure of water vapor in the air and increases with increasing water vapor content. Dew point is the temperature at which the air becomes saturated with water vapor and condensation begins to occur. Mixing ratio is the mass of water vapor present in a given mass of dry air and is typically expressed in grams of water vapor per kilogram of dry air. It is similar to specific humidity, but it provides information about the total amount of water vapor present in the air, rather than just the proportion of water vapor to dry air.

The correct answer is B

For more question Specific humidity

https://brainly.com/question/31630268

#SPJ8

what type of oil delivery system is recommended when the vacuum required for lifting the oil from the tank to the furnace is 16 in hg?

Answers

The type of oil delivery system that is recommended when the vacuum required for lifting the oil from the tank to the furnace is 16 in hg is a two-pipe system.

What is a vacuum

A vacuum is a space devoid of matter, as well as a negative pressure below atmospheric pressure. The vacuum is created by removing gas molecules from a sealed chamber or closed container using a vacuum pump.

Two-pipe system refers to a type of home heating oil delivery system that uses two pipes to transport oil from the storage tank to the furnace. One of these pipes carries the oil to the furnace, while the other pipe removes excess air and gases from the tank.

The second pipe provides a vacuum that enables the furnace to draw oil more easily from the tank. This vacuum, which typically ranges from 12 to 15 inches of mercury, is produced by the furnace's burner as it heats the oil and creates suction in the second pipe.

Learn more about vacuum piping system at

https://brainly.com/question/32456711

#SPJ11

Assume a copper wire is 75 meters long and has a radius of 37 mm. Calculate its Inductance in each of the following cases. a) The wire is made into a solenoid of length 18 cm, 300 turns, radius 2 cm. b) The wire is made into a coil of 300 turns, radius 7 cm. c) The wire is made into a toroid of 300 turns, inner radius 3 cm & outer radius 7 cm.

Answers

" (a) The inductance of the solenoid is 0.000443 H or 443 μH. (b)The inductance of the coil is 0.001652 H or 1652 μH. (c)The inductance of the toroid is 0.001164 H or 1164 μH." Inductance is a fundamental property of an electrical circuit or device that opposes changes in current flowing through it. It is the ability of a component, typically a coil or a conductor, to store and release energy in the form of a magnetic field when an electric current passes through it.

Inductance is measured in units called henries (H), named after Joseph Henry, an American physicist who made significant contributions to the study of electromagnetism. A henry represents the amount of inductance that generates one volt of electromotive force when the current through the inductor changes at a rate of one ampere per second.

Inductors are widely used in electrical and electronic circuits for various purposes, including energy storage, signal filtering, and the generation of magnetic fields. They are essential components in applications such as transformers, motors, generators, and inductance-based sensors. The inductance value of an inductor depends on factors such as the number of turns, the cross-sectional area, and the material properties of the coil or conductor.

To calculate the inductance in each of the given cases, we can use the formulas for the inductance of different types of coils.

a) Solenoid:

The formula for the inductance of a solenoid is given by:

L = (μ₀ * N² * A) / l

Where:

L is the inductance

μ₀ is the permeability of free space (4π × 10^-7 H/m)

N is the number of turns

A is the cross-sectional area of the solenoid

l is the length of the solenoid

From question:

N = 300 turns

l = 18 cm = 0.18 m

r = 2 cm = 0.02 m

First, we need to calculate the cross-sectional area (A) of the solenoid:

A = π * r²

A = π * (0.02 m)²

A = π * 0.0004 m²

A = 0.0012566 m²

Now, we can substitute the values into the formula:

L = (4π × 10⁻⁷ H/m * (300 turns)² * 0.0012566 m²) / 0.18 m

L = (4π × 10⁻⁷  H/m * 90000 * 0.0012566 m²) / 0.18 m

L = 0.000443 H or 443 μH

Therefore, the inductance of the solenoid is 0.000443 H or 443 μH.

b) Coil:

The formula for the inductance of a coil is given by:

L = (μ₀ * N² * A) / (2 * r)

Where:

L is the inductance

μ₀ is the permeability of free space (4π × 10⁻⁷ H/m)

N is the number of turns

A is the cross-sectional area of the coil

r is the radius of the coil

From question:

N = 300 turns

r = 7 cm = 0.07 m

First, we need to calculate the cross-sectional area (A) of the coil:

A = π * r²

A = π * (0.07 m)²

A = π * 0.0049 m²

A = 0.015389 m²

Now, we can substitute the values into the formula:

L = (4π × 10⁻⁷ H/m * (300 turns)² * 0.015389 m²) / (2 * 0.07 m)

L = (4π × 10⁻⁷ H/m * 90000 * 0.015389 m²) / 0.14 m

L = 0.001652 H or 1652 μH

Therefore, the inductance of the coil is 0.001652 H or 1652 μH.

c) Toroid:

The formula for the inductance of a toroid is given by:

L = (μ₀ * N² * A) / (2 * π * (r₂ - r₁))

Where:

L is the inductance

μ₀ is the permeability of free space (4π × 10^-7 H/m)

N is the number of turns

A is the cross-sectional area of the toroid

r₁ is the inner radius of the toroid

r₂ is the outer radius of the toroid

From question:

N = 300 turns

r₁ = 3 cm = 0.03 m

r₂ = 7 cm = 0.07 m

First, we need to calculate the cross-sectional area (A) of the toroid:

A = π * (r₂² - r₁²)

A = π * ((0.07 m)² - (0.03 m)²)

A = π * (0.0049 m² - 0.0009 m²)

A = π * 0.004 m²

A = 0.0125664 m²

Now, we can substitute the values into the formula:

L = (4π × 10⁻⁷ H/m * (300 turns)² * 0.0125664 m²) / (2 * π * (0.07 m - 0.03 m))

L = (4π × 10⁻⁷ H/m * 90000 * 0.0125664 m²) / (2 * π * 0.04 m)

L = (4π × 10⁻⁷ H/m * 90000 * 0.0125664 m²) / (2 * π * 0.04 m)

L = 0.001164 H or 1164 μH

Therefore, the inductance of the toroid is 0.001164 H or 1164 μH.

To know more about inductance visit:

https://brainly.com/question/4425414

#SPJ11

Two 11-cm-diameter electrodes 0.60 cm apart form a parallel-plate capacitor. The electrodes are attached by metal wires to the terminals of a 11 V battery. After a long time, the capacitor is disconnected from the battery but is not discharged. What is the charge on each electrode right after the battery is disconnected

Answers

The charge on each electrode right after the battery is disconnected can be determined using the formula for the capacitance of a parallel-plate capacitor and the voltage of the battery.

The capacitance of a parallel-plate capacitor is given by the formula C = ε₀A/d, where C is the capacitance, ε₀ is the permittivity of free space, A is the area of one electrode, and d is the separation between the electrodes.

In this case, the electrodes have a diameter of 11 cm, which means each electrode has a radius of 5.5 cm. Using the formula for the area of a circle, we can calculate the area of each electrode. The separation between the electrodes is given as 0.60 cm.

Next, we need to consider the voltage of the battery, which is 11 V. When the battery is connected to the capacitor, it charges the capacitor and establishes a potential difference across the electrodes. This potential difference is equal to the voltage of the battery.

After a long time, when the capacitor is disconnected from the battery, it retains the charge on its plates. The charge on each electrode can be calculated by multiplying the capacitance by the voltage.

Learn more about parallel-plate capacitor

#SPJ11.

brainly.com/question/33224145

he height of the waves decreases due to a decrease in both water depth and tsunami velocity. the height of the waves decreases due to a decrease in water depth and increase in tsunami velocity. the height of the waves increases due to a decrease in water depth and increase in tsunami velocity. the height of the waves increases due to a decrease in both water depth and tsunami velocity. the height of the waves increases due to a decrease in water depth and no change in tsunami velocity.

Answers

As sea depth and tsunami velocity both drop, so does the height of the waves. Wave height decreases when water depth drops because of increased wave energy dispersion. A simultaneous fall in tsunami velocity also leads to a reduction in the transmission of wave energy, which furthers the decline in wave height.

Water depth and tsunami velocity are just two of the many variables that affect tsunami wave height. In light of the correlation between these elements and wave height, the following conclusion can be drawn: Despite the tsunami's velocity being constant, the waves' height rises as the sea depth drops.

The sea depth gets shallower as a tsunami approaches it, like close to the coast. The tsunami waves undergo a phenomena called shoaling when the depth of the ocean decreases. When shoaling occurs, the wave energy is concentrated into a smaller area of water, increasing the height of the waves. In addition, if there is no change in the tsunami's velocity, the height of the waves will mostly depend on the change in sea depth. Wave height rises when the depth of the water decreases because there is less room for the waves' energy to disperse.

As a result, a drop in sea depth causes an increase in wave height while the tsunami's velocity remains same.

To know more about velocity

https://brainly.com/question/80295

#SPJ4

Determine teh de Broglie wavelength of a neutron (. = 1.67 x 10^-27kg) that has a speed of 5.0 m/s
A) 79 nm
B) 162 nm
C) 395 nm
D) 529 nm
E) 1980 nm

Answers

The de Broglie wavelength of the neutron with a speed of 5.0 m/s is approximately 79 nm (option A).

The Broglie wavelength (λ) of a particle can be calculated using the equation:

λ = h / p

where h is the Planck's constant (h ≈ 6.626 x 10^-34 J·s) and p is the momentum of the particle.

The momentum (p) of a particle can be calculated using the equation:

p = m * v

where m is the mass of the particle and v is its velocity.

Mass of the neutron (m) = 1.67 x 10^-27 kg

Speed of the neutron (v) = 5.0 m/s

First, we calculate the momentum (p):

p = (1.67 x 10^-27 kg) * (5.0 m/s)

p ≈ 8.35 x 10^-27 kg·m/s

Next, we calculate the de Broglie wavelength (λ):

λ = (6.626 x 10^-34 J·s) / (8.35 x 10^-27 kg·m/s)

λ ≈ 7.94 x 10^-8 m

λ ≈ 79 nm

Therefore, the de Broglie wavelength is approximately 79 nm (option A).

Learn more about Broglie wavelength here: https://brainly.com/question/30404168

#SPJ11

initially two electrons are fixed in place with a separation of 4.00 μm. how much work must we do to bring a third electron in from infinity to complete an equilateral triangle?

Answers

To complete an equilateral triangle with two fixed electrons initially separated by 4.00 μm, the work required to bring a third electron from infinity can be calculated as twice the potential energy between the fixed electrons, which is given by 2 * k * (q^2) / (4.00 μm), where k is the electrostatic constant and q represents the charge of the electrons.

To calculate the work required to bring a third electron in from infinity to complete an equilateral triangle with two fixed electrons, we can use the principle of conservation of energy.

Initially, the third electron is at infinity, so its potential energy is zero. As it is brought closer, work must be done against the repulsive force between the electrons.

The potential energy of a system of two charges can be given by the equation U = k * (q1 * q2) / r, where k is the electrostatic constant, q1 and q2 are the charges, and r is the separation between them.

In this case, since the electrons have the same charge (let's assume q), the potential energy between any two electrons is given by U = k * (q^2) / r.

Since the separation between the fixed electrons is 4.00 μm, the potential energy between them is U = k * (q^2) / (4.00 μm).

To complete the equilateral triangle, the third electron will also be separated by 4.00 μm from each of the fixed electrons.

Hence, the total potential energy of the system will be 2 times the potential energy between the fixed electrons.

Therefore, the work required to bring the third electron from infinity to complete the equilateral triangle is 2 * U = 2 * k * (q^2) / (4.00 μm).

Note: The value of the electrostatic constant, k, is approximately 8.99 x 10^9 N m^2/C^2.

To know more about equilateral triangle refer here:

https://brainly.com/question/30982055#

#SPJ11

At every instant the ratio of the magnitude of the electric to the magnetic field in an electromagnetic wave in vacuum is equal to
a) the speed of radio waves
b) the speed of light
c) the speed of gamma rays
d) all of the above
e) only (a) and (b) above

Answers

"The correct answer is e) only (a) and (b) above." The ratio of the magnitude of the electric field (E) to the magnitude of the magnetic field (B) in an electromagnetic wave is a fundamental property of the wave. It represents the relative strengths of the electric and magnetic components of the wave.

Mathematically, this ratio is given by:

E/B

In a vacuum, the ratio of the magnitude of the electric field (E) to the magnitude of the magnetic field (B) in an electromagnetic wave is always equal to the speed of light (c). This ratio is given by:

E/B = c

This relationship holds true for all electromagnetic waves, regardless of their frequency or wavelength. Therefore, option (b) - the speed of light, and option (a) - the speed of radio waves (which are a type of electromagnetic wave), are the correct choices. Option (c) - the speed of gamma rays, is not accurate, as the speed of gamma rays is not different from the speed of light. Hence, the correct answer is e) only (a) and (b) above.

This means that the magnitude of the electric field is equal to the magnitude of the magnetic field multiplied by the speed of light. The direction of the electric field is perpendicular to the direction of propagation of the wave, as is the magnetic field.

This relationship holds true for all electromagnetic waves, including radio waves, visible light, X-rays, and gamma rays. It is a fundamental property of electromagnetic waves and is a consequence of Maxwell's equations, which describe the behavior of electric and magnetic fields.

To know more about electric & magnetic fields visit:

https://brainly.com/question/29221751

#SPJ11

a buoy oscillates in simple harmonic motion as waves go past. the buoy moves a total of 14 feet from its high point to its low point, and it returns to its high point every 5 seconds. write and equation that describes the motion of the buoy, where the high point corresponds to the time t

Answers

The equation that describes the motion of the buoy in simple harmonic motion can be written as:

y(t) = A * cos(ωt + φ)

Where:

- y(t) is the displacement of the buoy from its equilibrium position at time t.

- A is the amplitude of the motion, which is half the total distance traveled by the buoy, so A = 14 feet / 2 = 7 feet.

- ω is the angular frequency of the motion, which is calculated as ω = 2π / T, where T is the period of the motion. In this case, the period is 5 seconds, so ω = 2π / 5.

- φ is the phase constant, which represents the initial phase of the motion. Since the high point corresponds to the time t = 0, we can set φ = 0.

Therefore, the equation that describes the motion of the buoy is:

y(t) = 7 * cos((2π/5)t)

For more such questions on Harmonic motion visit:

brainly.com/question/26114128

#SPJ11

the spectral, hemispherical absorptivity of an opaque surface and the spectral distribution of radiation incident on the surface are as shown. what is the total, hemispherical absorptivity of the surface? if it is assumed that e lamda

Answers

To determine the total, hemispherical absorptivity of the surface, we need to consider the spectral, hemispherical absorptivity and the spectral distribution of radiation incident on the surface.

The spectral, hemispherical absorptivity (αλ) represents the fraction of incident radiation at each wavelength (λ) that is absorbed by the surface. It varies with the wavelength of the incident radiation.

To calculate the total, hemispherical absorptivity (α), we need to integrate the product of the spectral, hemispherical absorptivity and the spectral distribution of the incident radiation over the relevant wavelength range.

The integral can be expressed as:

α = ∫ (αλ * I(λ)) dλ

where I(λ) represents the spectral distribution of radiation incident on the surface.

By performing this integration over the wavelength range of interest, such as 100 nm to 150 nm, we can determine the total, hemispherical absorptivity of the surface.

It's important to note that without specific numerical values for αλ and I(λ), it is not possible to provide an exact answer. The calculation requires detailed knowledge of the specific spectral properties and incident radiation distribution

Learn more hemispherical absorptivity about here

https://brainly.com/question/32304407

#SPJ11

A spring-mass system has a natural frequency of 10 Hz. When the spring constant is reduced by 800 N/m, the frequency is altered by 45%. Find the mass and spring constant of the original system.

Answers

The original mass and spring constant of the system is approximately 0.036 kg and 44 N/m, respectively.

We know that the natural frequency of a spring-mass system, f is given by f = 1/(2π) * sqrt(k/m)

where k is the spring constant and m is the mass of the system.

Let the mass of the system be m and the spring constant be k. Then, the natural frequency of the system is given by

f = 1/(2π) * sqrt(k/m) --- equation (1)

When the spring constant is reduced by 800 N/m, the new spring constant becomes (k - 800) N/m.Then, the new natural frequency of the system is given by

f' = 1/(2π) * sqrt((k - 800)/m) --- equation (2)

From equation (1), we can say that

f^2 = (k/m)/(2π)^2

Squaring both sides, we get

f^2 = k/m(2π)^2 --- equation (3)From equation (2), we can say that

f'^2 = (k - 800)/m(2π)^2

Squaring both sides, we get

f'^2 = (k - 800)/m(2π)^2 --- equation (4)

We are given that the new frequency f' is altered by 45%.

Hence,f' = (1 + 0.45)f= 1.45f

Substituting the value of f' in equation (4), we get

1.45^2f^2 = (k - 800)/m(2π)^2

Simplifying, we get

k/m = 1.45^2(2π)^2 + 800k/m = 1.45^2(2π)^2 + 800 --- equation (5)

From equation (3), we know that

k/m = f^2(2π)^2

Substituting this value in equation (5), we get

f^2(2π)^2 = 1.45^2(2π)^2 + 800

Simplifying, we get

f^2 = (1.45^2 + 800/(2π)^2)f = sqrt((1.45^2 + 800/(2π)^2)) = 11.11 Hz

Substituting the value of f in equation (3), we getk/m = (11.11)^2/(2π)^2k/m = 44 N/m

We can use the formula for the natural frequency of a spring-mass system, f = 1/(2π) * sqrt(k/m), where k is the spring constant and m is the mass of the system.

Using this formula, we can say that the natural frequency f of the original system is given by

f = 1/(2π) * sqrt(k/m) --- equation (1)

When the spring constant is reduced by 800 N/m, the new spring constant becomes (k - 800) N/m. Then, the new natural frequency f' of the system is given by

f' = 1/(2π) * sqrt((k - 800)/m) --- equation (2)

From equation (1), we can say that f^2 = (k/m)/(2π)^2

Squaring both sides of equation (1), we getf^2 = k/m(2π)^2 --- equation (3)

From equation (2), we can say that

f'^2 = (k - 800)/m(2π)^2

Squaring both sides of equation (2), we get

f'^2 = (k - 800)/m(2π)^2 --- equation (4)

We are given that the new frequency f' is altered by 45%. Hence,

f = (1 + 0.45)f= 1.45f

Substituting the value of f' in equation (4), we get1.45^2f^2 = (k - 800)/m(2π)^2

Simplifying, we get

k/m = 1.45^2(2π)^2 + 800k/m = 1.45^2(2π)^2 + 800 --- equation (5)

From equation (3), we know that k/m = f^2(2π)^2

Substituting this value in equation (5), we getf^2(2π)^2 = 1.45^2(2π)^2 + 800

Simplifying, we getf^2 = (1.45^2 + 800/(2π)^2)f = sqrt((1.45^2 + 800/(2π)^2)) = 11.11 Hz

Substituting the value of f in equation (3), we getk/m = (11.11)^2/(2π)^2k/m = 44 N/m

Hence, the mass of the system is given by m = k/f^2 = 0.036 kg (approx.)

Therefore, the original mass and spring constant of the system is approximately 0.036 kg and 44 N/m, respectively.

To know more about spring constant visit

brainly.com/question/29975736

#SPJ11

(b) How does the band-structure model enable you to understand the electrical properties of these materials better?

Answers

The band-structure model enables a better understanding of the electrical properties of materials by providing insights into the energy levels and allowed electron states within the material's electronic band structure.

The band-structure model is a theoretical framework used to describe the behavior of electrons in solids. It explains the electrical properties of materials based on the concept of energy bands, which represent the allowed energy levels for electrons in a solid.

In a material, the valence electrons occupy specific energy levels known as valence bands. The band structure reveals the distribution of these energy levels and the corresponding electron states. The model also considers the existence of higher energy levels called conduction bands, which can be partially or completely empty.

The band structure helps in understanding electrical properties by providing information about the energy states available for electrons to occupy and how they influence the flow of current. For example, materials with a large energy gap between the valence and conduction bands, such as insulators, have limited electron mobility and exhibit high resistance to the flow of electric current.

On the other hand, materials with partially filled or overlapping bands, such as semiconductors and metals, have greater electron mobility and conduct electricity more effectively. The band structure allows us to analyze the behavior of electrons in these materials, including their ability to absorb and emit light, transport charge, and exhibit other electrical phenomena.

By studying the band structure, researchers can predict and understand various electrical properties such as conductivity, resistivity, carrier mobility, and optical properties of materials. This information is essential for designing and optimizing electronic devices, such as transistors, diodes, and solar cells, where precise control over the electrical behavior is crucial.

In summary, the band-structure model provides a comprehensive understanding of the energy levels and electron states in materials, enabling a better grasp of their electrical properties. It allows us to differentiate between insulators, semiconductors, and metals based on their band gaps and mobility of electrons. This knowledge is invaluable for developing advanced electronic technologies and materials with tailored electrical characteristics.

Learn more about Electron

brainly.com/question/12001116?

#SPJ11

Mars is just barely in the habitable zone of the Sun. Why is Mars not currently habitable? It is too cold for water to exist as a liquid on its surface. It has too little gravity for water to exist as a liquid on its surface. It is too hot for water to exist as a liquid on its surface. It does not have the necessary energy source life needs. Question 6 1 pts Which of the following was the most important for maintaining the Earth's stable climate over the time it took for large organisms to evolve? plate tectonics the tides the cessation of the heavy bombardment phase underground sea vents

Answers

The correct answer for the first question is: It is too cold for water to exist as a liquid on its surface.

For the second question, the most important factor for maintaining Earth's stable climate over the time it took for large organisms to evolve is: plate tectonics.

Mars is not currently habitable because it is too cold for water to exist as a liquid on its surface. The average temperature on Mars is much colder compared to Earth, with an average surface temperature of about -80 degrees Fahrenheit (-62 degrees Celsius). Water is essential for life as we know it, and the low temperatures on Mars make it difficult for water to exist in liquid form, which is necessary for biological processes.

Plate tectonics played a crucial role in maintaining Earth's stable climate over the time it took for large organisms to evolve. Plate tectonics is the process by which Earth's lithosphere is divided into several large and small plates that constantly move and interact with each other. This movement of tectonic plates is responsible for various geological activities such as volcanic eruptions, mountain formation, and the recycling of Earth's crust.

Learn more about plate tectonics:

https://brainly.com/question/1162125

#SPJ11

what is the intensity i2 of the light after passing through both polarizers? express your answer in watts per square centimeter using three significant figures.

Answers

The intensity after passing through both polarizers is 0.15 times the initial intensity I1. To calculate the intensity of the light after passing through both polarizers, we need to consider the transmission axes of the polarizers and the initial intensity of the light.

Let's assume the initial intensity of the light before the first polarizer is I1. The first polarizer transmits light that is polarized along its transmission axis. Let's say the transmission axis of the first polarizer allows for a fraction of transmitted light represented by T1. The second polarizer is placed after the first polarizer, and its transmission axis is oriented perpendicular to the transmission axis of the first polarizer. Therefore, it blocks the light that is not aligned with its transmission axis. Since the second polarizer blocks light that is perpendicular to its transmission axis, the transmitted intensity after passing through both polarizers, I2, can be calculated as: I2 = I1 * T1 * T2 where T2 is the fraction of transmitted light through the second polarizer. If the first polarizer transmits 30% of the incident light (T1 = 0.30) and the second polarizer transmits 50% of the light transmitted by the first polarizer (T2 = 0.50), we can calculate the intensity after passing through both polarizers:

I2 = I1 * 0.30 * 0.50

I2 = 0.15 * I1

Therefore, the intensity after passing through both polarizers is 0.15 times the initial intensity I1.

To learn more about light, https://brainly.com/question/31064438

#SPJ11

use dimensional analysis to find how the speed v of a wave on a string of circular cross section depends on the tension in the string, t , the radius of the string, r , and its mass per volume, rho .

Answers

The dimensional analysis of speed v of a wave on a string of circular cross-section depends on the tension in the string, t, the radius of the string, r, and its mass per volume, ρ by the formula:

v = (t/ρ)^(1/2) / r^(1/2).

The speed v of a wave on a string of circular cross-section depends on the tension in the string, t, the radius of the string, r, and its mass per volume, ρ. We can use dimensional analysis to find the relation between these quantities.

Step 1:  Write down the formula for wave speed. On dimensional analysis, the formula for wave speed v on a string is:

v = (t/ρ)^(1/2) / r^(1/2)

Step 2: Write down the dimensions of each quantity t - tension, dimensions:

MLT^(-2)ρ - mass per volume, dimensions: ML^(-3)r - radius, dimensions: L

Step 3: Determine the units of each dimension

M: Mass, L: Length, T: Time

From the dimensions, we can see that the units of the numerator are:

(MLT^(-2))^1/2 = M^(1/2)L^(1/2)T^(-1)r^(1/2). The units of the denominator are:

L^(1/2)Therefore, the units of v are: M^(1/2)L^(1/2)T^(-1).

Thus, the speed v of a wave on a string of circular cross-section depends on the tension in the string, t, the radius of the string, r, and its mass per volume, ρ by the formula:

v = (t/ρ)^(1/2) / r^(1/2).

Learn more about dimensional analysis at https://brainly.com/question/18108995

#SPJ11

when properly supplied, both a selectable gallonage nozzle and a _____ will discharge a pre-determined gallonage a. automatic fog nozzle b. constant flow fog nozzle c. high-pressure fog nozzle d. selectable gallonage nozzle

Answers

When properly supplied, both a selectable gallonage nozzle and an a. automatic fog nozzle will discharge a pre-determined gallonage.

Correct answer is a. automatic fog nozzle

A selectable gallonage nozzle is a firefighting tool that allows firefighters to choose from several flow settings to suit various firefighting tasks. The operator can switch between a narrow, straight stream and different spray patterns, depending on the fire situation. This is accomplished by changing the baffle position inside the nozzle, which regulates the water flow rate.

Automatic fog nozzle: The Automatic fog nozzle is a special kind of nozzle that operates at a constant pressure and is used to spray water or other extinguishing agents. It creates a uniform, adjustable, and steady spray pattern that is ideal for extinguishing fires in enclosed spaces like buildings or rooms. It's called an automatic nozzle because it maintains a consistent flow rate as the pressure increases or decreases, without the need for an operator to adjust it.

Constant flow fog nozzle: A constant flow fog nozzle is a firefighting tool that combines the advantages of a constant flow nozzle with the benefits of a fog nozzle. A fixed orifice inside the nozzle limits the water flow rate, ensuring that it remains consistent regardless of the pressure. At the same time, the nozzle produces a cone-shaped mist that is ideal for extinguishing fires and cooling surfaces. It's particularly useful for combating high-temperature fires.

High-pressure fog nozzle: High-pressure fog nozzles are used in both firefighting and industrial applications where water consumption and visibility are important considerations. These nozzles operate at very high pressures, around 1,000 psi or higher, and use a special orifice design to atomize the water into tiny droplets. The mist produced is ideal for cooling and extinguishing fires without using a lot of water. It can also be used to suppress dust and reduce air pollution. However, this was not mentioned in the question.

When properly supplied, both a selectable gallonage nozzle and an automatic fog nozzle will discharge a pre-determined gallonage. Thus, the correct option is A. automatic fog nozzle.

Learn more about gallonage at

https://brainly.com/question/31785237

#SPJ11

What current is to be passed for 0. 25 sec. For deposition of certain weight of metal which is equal to its electrochemical equivalent?.

Answers

To determine the current required for the deposition of a certain weight of metal, we need to consider the concept of electrochemical equivalent. The electrochemical equivalent represents the amount of metal deposited or dissolved per unit charge passed through an electrolyte.

First, we need to know the electrochemical equivalent of the metal in question. This value is typically given in units of grams per coulomb (g/C). Let's assume the electrochemical equivalent of the metal is x g/C.

Next, we can calculate the total charge required for the deposition of the desired weight of metal. Let's say we want to deposit y grams of the metal. The formula to calculate the charge is:

Charge = y / x Coulombs

Now, we have the total charge required. To determine the current, we can divide the charge by the time. In this case, the time given is 0.25 seconds. The formula to calculate the current is:

Current = Charge / Time

Substituting the values, we have:

Current = (y / x) / 0.25 Amperes

To know more about current visit:

https://brainly.com/question/15141911

#SPJ11

enter your answer in the provided box. determine the change in entropy (δssys), for the expansion of 0.900 mole of an ideal gas from 2.00 l to 3.00 l at constant temperature. j/k

Answers

Therefore, the change in entropy of the system, δSSys, is 3.23 J/K.

Entropy (S) is the measure of the disorder or randomness of a system.

When a gas expands from a small volume to a large volume at constant temperature, the entropy of the gas system increases.

Therefore, we can use the formula

δSSys=nRln(V2/V1),

where n = 0.900 mole, R is the universal gas constant, V1 = 2.00 L, and V2 = 3.00 L.

We use R = 8.314 J/mol-K as the value for the universal gas constant.

δSSys=nRln(V2/V1)

δSSys=(0.900 mol)(8.314 J/mol-K) ln(3.00 L / 2.00 L)

δSSys= 0.900 mol x 8.314 J/mol-K x 0.4055

δSSys = 3.23 J/K

to know more about entropy visit:

https://brainly.com/question/20166134

#SPJ11

Two identical circuit one connected in series and the other in parallel both dispensing the same charge if the charge connected in parallel is q what is the charge connected in series is it 2q or 4q

Answers

When two identical circuits are connected in series and in parallel, the charge is distributed differently. In a series circuit, the same current flows through both circuits, while in a parallel circuit, the current splits between the circuits.

In the given scenario, if the charge connected in parallel is q, it means that each circuit in parallel receives a charge of q. Since the circuits are identical, each circuit in series will also receive a charge of q.

Therefore, the charge connected in series is also q. It is not 2q or 4q because in a series circuit, the charges add up to the same value.

To summarize:
- Charge connected in parallel: q
- Charge connected in series: q

Both circuits receive the same charge, regardless of whether they are connected in series or parallel.

I hope this helps! Let me know if you have any further questions.

To know mre about circuit visit:

https://brainly.com/question/12608516

#SPJ11

. Which one of the following statements concerning the range of a football is true if the football is kicked at an angle with an initial speed vo? a) The range is independent of initial speed vo. b) The range is only dependent on the initial speed vo. c) The range is independent of the angle 0. d) The range is only dependent on the angle 0. e) The range is dependent on both the initial speed vo and the angle 0.

Answers

The range is dependent on both the initial speed vo and the angle 0 In physics, the range of a projectile is defined as the total horizontal distance covered by the object during its flight in the air.

In case of a football that is kicked at an angle with an initial speed vo, the range of the football will depend on both the initial speed as well as the angle at which it is kicked.The formula to calculate the range of such a projectile is given as R = (Vo^2/g) × sin(2θ)Where R is the range, Vo is the initial speed of the projectile, g is the acceleration due to gravity and θ is the angle at which the object is launched.

As it is clearly evident from the above formula that both the initial speed of the projectile and the angle at which it is launched have an equal impact on the range of the projectile, hence the range of the football will depend on both the initial speed as well as the angle at which it is kicked.Therefore, the correct option among all the options that are given in the question is the last one which states that "The range is dependent on both the initial speed vo and the angle 0".

To know more about projectile visit:

https://brainly.com/question/21090110

#SPJ11

Other Questions
Why does Hb offload more O2 in tissues during exercise compared with resting? Select all appropriate a. Because the active tissues are warmer b. Because the PO2 is higher c. Because the PCO2 is higher d. Because the pH is lower For the periodic discrete-time signal x[] with a period x [n] =n.0Previous question to the reducing-balance method, calculate the annual rate of depreciation. 7.2 Bonang is granted a home loan of R650000 to be repaid over a period of 15 years. The bank charges interest at 11, 5\% per annum compounded monthly. She repays her loan by equal monthly installments starting one month after the loan was granted. 7.2.1 Calculate Bonang's monthly installment. If a process averages 4 arrivals per minute, what is the probability that the next arrival will occur in 0.45 minutes or more? 68% 19% 81% 32% Lance and darrell have an equal partnership. this year, after expenses, the partnership had a profit of $100,000. lance and darrell will each pay taxes on:____. one of max weber's most important contributions to sociology was the development of the idea that sociologists should approach the study of social behavior from the perspective of people being studied. this is referred to as . group of answer choices positivism antipositivism generalized others verstehen If 42% of the people surveyed said YES to a YES or NO question, how many people said NO if 9900 people were surveyed? (2 pts ) A type of mineral magnetite that aligns itself with the earth's magnetic field For any square matrix A, is the matrix A + A^T lower triangular, upper triangular, symmetric, skew-symmetric or none of these?B) For any square matrix A, is the matrix A - A^T lower triangular, upper triangular, symmetric, skew-symmetric or none of these? can someone summarize the Sapir-Whorf Hypothesis and provide anexample of how it can be applied to real life? what os component clears the interrupt when servicing the device The best sports dorm on campus, Lombardi House, has won a total of 12 games this semester. Some of these games were soccer games, and the others were football games. According to the rules of the university, each win in a soccer game earns the winning house 2 points, whereas each win in a football game earns the house 4 points. If the total number of points Lombardi House earned was 32, how many of each type of game did it win? soccer football games games A resistive load of 4 is matched to the collector impedance of an amplifier by means of a transformer having a turns ratio of 40:1. The amplifier uses a DC supply voltage of 12V in the absence of an input signal. When a signal is present at the base, the collector voltage swings between 22V and 2V while the collector current swings between 0.9A and 0.05A.Determine:a) Collector impedance RLb) Signal power outputc) DC power inputd) Collector efficiency Find the sorface area a) The band cut from paraboloid x 2+y 2 z=0 by plane z=2 and z=6 b) The upper portion of the cylinder x 2+z 2 =1 that lier between the plane x=1/2 and y=1/2 PLEASE HELP ME FIND ALL MEASURES give a bonding scheme using valence bond theory for the following molecules. brf5, ch2ch2 By a writing, an owner leased his home, Blackacre, to a tenant for a term of three years, ending December 31 of last year, at a rent of $1,000 per month. The lease provided that the tenant could sublet and assign. The tenant lived in Blackacre for one year and paid the rent promptly. After one year, the tenant leased Blackacre to a friend for one year at a rent of $1,000 per month. The friend took possession of Blackcare and lived there for six months but, because of her unemployment, paid no rent. After six months, on June 30 the friend abandoned Blackacre, which remained vacant for the balance of that year. The tenant again took possession of Blackacre at the beginning of the third and final year of the term but paid the owner no rent. At the end of the lease term, the owner brought an appropriate action against both the tenant and the friend to recover $24,000, the unpaid rent. In such action the owner is entitled to a judgment?A: against the tenant individually for $24,000, and no judgment against the friend.B: against the tenant individually for $18,000, and against the friend individually for $6,000.C: against the tenant for $12,000, and against the tenant and the friend jointly and severally for $12,000.D: against the tenant individually for $18,000, and against the tenant and the friend jointly and severally for $6,000. Simple explanation, please. Thanks.Explain how the electrical signal in the motor neuron transfers from the axon terminal to the muscle fiber membrane. what is the approximate average rate at which the area decreases, as the rectangle's length goes from 13\text{ cm}13 cm13, start text, space, c, m, end text to 16\text{ cm}16 cm16, start text, space, c, m, end text? In order to protect its local farmers, Japan has imposed a(n) _______ to limit the amount of rice that can be imported from other countries.