17. Two sources are 7.2 cm apart and vibrate in phase at 7.0 Hz. A point on the third nodal line is 30.0 cm from one source and 37 cm from the other. a) Calculate the wavelength of the waves? [2 marks] b) Calculate the speed of the waves. [2 marks] 18. Two towers of a radio station are 400 m apart along an east-west line. The towers act as point sources radiating at a frequency of 1.0 x 106 Hz. Radio waves travel at a speed of 3.0 x 10 m/s. Determine the first angle at which the radio signal strength is at a maximum for listerners who are on a line 20.0 km north of the station (c = 3 x 10 m/s).

Answers

Answer 1

The speed of the waves is 0.336 m/s. the wavelength of a wave is 0.048 m The first angle at which the radio signal strength is at a maximum for listeners who are on a line 20.0 km north of the station is approximately 48.6 degrees.

a) To calculate the wavelength of the waves, we can use the formula:

λ = 2d / n

where λ is the wavelength, d is the distance between the two sources, and n is the number of nodal lines between the sources.

Given:

d = 7.2 cm = 0.072 m

n = 3 (since the point is on the third nodal line)

Calculating the wavelength:

λ = 2 * 0.072 m / 3

λ = 0.048 m

b) The speed of the waves can be calculated using the formula:

v = λf

where v is the speed of the waves, λ is the wavelength, and f is the frequency.

Given:

λ = 0.048 m

f = 7.0 Hz

Calculating the speed of the waves:

v = 0.048 m * 7.0 Hz

v = 0.336 m/s

The speed of the waves is 0.336 m/s.

To determine the angle at which the radio signal strength is at a maximum for listeners who are on a line 20.0 km north of the station, we can use the concept of diffraction. The maximum signal strength occurs when the path difference between the waves from the two towers is an integral multiple of the wavelength.

Given:

Towers are 400 m apart

Frequency of the radio waves is 1.0 x 10^6 Hz

Speed of radio waves is 3.0 x 10^8 m/s

Distance from the line of listeners to the towers is 20.0 km = 20,000 m

First, let's calculate the wavelength of the radio waves using the formula:

λ = v / f

λ = (3.0 x 10^8 m/s) / (1.0 x 10^6 Hz)

λ = 300 m

Now, we can calculate the path difference (Δx) between the waves from the two towers and the line of listeners:

Δx = 400 m * sinθ

To obtain the first angle at which the radio signal strength is at a maximum, we need to find the angle that satisfies the condition:

Δx = mλ, where m is an integer

Setting Δx = λ:

400 m * sinθ = 300 m

Solving for θ:

sinθ = 300 m / 400 m

sinθ = 0.75

θ = arcsin(0.75)

θ ≈ 48.6 degrees

Therefore, the first angle at which the radio signal strength is at a maximum for listeners who are on a line 20.0 km north of the station is approximately 48.6 degrees.

To learn more about wavelength click here

https://brainly.com/question/18651058

#SPJ11


Related Questions

10/1 Points DETAILS PREVIOUS ANSWERS SERCP11 22.4.P.028 MY NOTES PRACTICE ANOTHER A certain kind of glass has an index of refraction of 1.660 for blue light of wavelength 420 m and an index of 1.6.0 for red light of wavelength 60 am. Item contaring the too incident at an angle of 30.0" piece of this gass, what is the angle between the two beams inside the 2 048 X Yoir response differs from the correct answer by more than 10%

Answers

The angle between the two beams inside the glass for blue light is approximately 17.65°, and for red light is approximately 19.10°.

To determine the angle between the two beams inside the glass, we can use Snell's Law, which relates the angles of incidence and refraction to the indices of refraction of the two media:

n₁sinθ₁ = n₂sinθ₂

Where:

n₁ = index of refraction of the initial medium (air)

θ₁ = angle of incidence in the initial medium

n₂ = index of refraction of the final medium (glass)

θ₂ = angle of refraction in the final medium

n₁ = 1 (index of refraction of air)

n₂ (for blue light) = 1.660

n₂ (for red light) = 1.600

θ₁ = 30.0° (angle of incidence)

For blue light (wavelength = 420 nm):

n₁sinθ₁ = n₂sinθ₂

(1)(sin 30.0°) = (1.660)(sin θ₂)

Solving for θ₂, we find:

sin θ₂ = (sin 30.0°) / 1.660

θ₂ = arcsin[(sin 30.0°) / 1.660]

Using a calculator, we find:

θ₂ ≈ 17.65°

For red light (wavelength = 600 nm):

n₁sinθ₁ = n₂sinθ₂

(1)(sin 30.0°) = (1.600)(sin θ₂)

Solving for θ₂, we find:

sin θ₂ = (sin 30.0°) / 1.600

θ₂ = arcsin[(sin 30.0°) / 1.600]

Using a calculator, we find:

θ₂ ≈ 19.10°

Therefore, the angle between the two beams inside the glass for blue light is approximately 17.65°, and for red light is approximately 19.10°.

Read more about angle

brainly.com/question/13954458

#SPJ11

The mass of a sample is 1.26 u. What is its mass in
MeV/c2?

Answers

The mass of the sample, given as 1.26 u, can be converted to its equivalent mass in MeV/c² units. One atomic mass unit (u) is equal to 931.5 MeV/c². Therefore, the mass of the sample is approximately 1174.89 MeV/c².

To convert the mass from atomic mass units (u) to MeV/c², we can use the conversion factor of 931.5 MeV/c² per atomic mass unit (u). Multiplying the given mass of 1.26 u by the conversion factor, we obtain:

1.26 u * 931.5 MeV/c² per u = 1174.89 MeV/c².

Therefore, the mass of the sample is approximately 1174.89 MeV/c². This conversion is commonly used in nuclear physics and particle physics to express masses in units that are more convenient for those fields of study.

Learn more about atomic here:

brainly.com/question/30898688

#SPJ11

Imagine that an object is thrown in the air with 100 miles per hour with 30 degrees of angle. Calculate the size of the displacement associated with the object in the horizontal direction when it was done on a large size spherical star with the gravitational acceleration is 25 miles per hour

Answers

On a large spherical star with a gravitational acceleration of 25 miles per hour, an object thrown at a 30-degree angle with an initial velocity of 100 miles per hour will have a calculated horizontal displacement.

Resolve the initial velocity:

Given the initial velocity of the object is 100 miles per hour and it is launched at an angle of 30 degrees, we need to find its horizontal component. The horizontal component can be calculated using the formula: Vx = V * cos(θ), where V is the initial velocity and θ is the launch angle.

Vx = 100 * cos(30°) = 100 * √3/2 = 50√3 miles per hour.

Calculate the time of flight:

To determine the horizontal displacement, we first need to calculate the time it takes for the object to reach the ground. The time of flight can be determined using the formula: t = 2 * Vy / g, where Vy is the vertical component of the initial velocity and g is the gravitational acceleration.

Since the object is thrown vertically upwards, Vy = V * sin(θ) = 100 * sin(30°) = 100 * 1/2 = 50 miles per hour.

t = 2 * 50 / 25 = 4 hours.

Calculate the horizontal displacement:

With the time of flight determined, we can now find the horizontal displacement using the formula: Dx = Vx * t, where Dx is the horizontal displacement, Vx is the horizontal component of the initial velocity, and t is the time of flight.

Dx = 50√3 * 4 = 200√3 miles.

Therefore, the size of the displacement associated with the object in the horizontal direction, when thrown at an angle of 30 degrees and a speed of 100 miles per hour, on a large spherical star with a gravitational acceleration of 25 miles per hour, would be approximately 100 miles.

To learn more about velocity click here:

brainly.com/question/18084516

#SPJ11

(hrwc9p93) A body of mass 12.0 kg is traveling at 1.8 m/s along the positive x-axis with no external force acting. At a certain instant an internal explosion occurs, splitting the body into two chunks of 6.0 kg mass each. The explosion gives the chunks an additional 16 J of kinetic energy. Neither chunk leaves the line of original motion. Determine the speed and direction of motion of each of the chunks after the explosion. Enter the larger velocity. Submit Answer Tries 0/8 Enter the smaller velocity. Submit Answer Tries 0/7 Post Discussion Send Feedback

Answers

The question involves determining the velocities of two chunks after an internal explosion. The initial mass, velocity, and additional kinetic energy given to the chunks are provided. The goal is to calculate the velocities of the two chunks along the original line of motion.

When an internal explosion occurs, the total momentum before the explosion is equal to the total momentum after the explosion since no external forces are acting. Initially, the body has a mass of 12.0 kg and a velocity of 1.8 m/s along the positive x-axis. After the explosion, it splits into two chunks of equal mass, 6.0 kg each. To find the velocities of the chunks after the explosion, we need to apply the principle of conservation of momentum.

Since the chunks are moving along the line of the original motion, the momentum in the x-direction should be conserved. We can set up an equation to solve for the velocities of the chunks. The initial momentum of the body is the product of its mass and velocity, and the final momentum is the sum of the momenta of the two chunks. By equating these two momenta, we can solve for the velocities of the chunks.

The given additional kinetic energy of 16 J can be used to find the individual kinetic energies of the chunks. Since the masses of the chunks are equal, the additional kinetic energy will be divided equally between them. From the individual kinetic energies, we can calculate the velocities of the chunks using the equation for kinetic energy. The larger velocity will correspond to the chunk with the additional kinetic energy, and the smaller velocity will correspond to the other chunk.

Learn more about Velocity:

https://brainly.com/question/30559316

#SPJ11

A 41.1-kg block of ice at 0 °C is sliding on a horizontal surface. The initial speed of the ice is 6.79 m/s and the final speed is 3.10 m/s. Assume that the part of the block that melts has a very small mass and that all the heat generated by kinetic friction goes into the block of ice, and determine the mass of ice that melts into water at 0 °C.

Answers

Approximately 0.022 kg of ice melts into water at 0 °C. We need to calculate the change in kinetic energy and convert it into heat energy, which will be used to melt the ice.

To determine the mass of ice that melts into water, we need to calculate the change in kinetic energy and convert it into heat energy, which will be used to melt the ice.

The initial kinetic energy of the ice block is given by:

KE_initial = (1/2) * mass * velocity_initial^2

The final kinetic energy of the ice block is given by:

KE_final = (1/2) * mass * velocity_final^2

The change in kinetic energy is:

ΔKE = KE_final - KE_initial

Assuming all the heat generated by kinetic friction is used to melt the ice, the heat energy is given by:

Q = ΔKE

The heat energy required to melt a certain mass of ice into water is given by the heat of fusion (Q_fusion), which is the amount of heat required to change the state of a substance without changing its temperature. For ice, the heat of fusion is 334,000 J/kg.

So, we can equate the heat energy to the heat of fusion and solve for the mass of ice:

Q = Q_fusion * mass_melted

ΔKE = Q_fusion * mass_melted

Substituting the values, we have:

(1/2) * mass * velocity_final^2 - (1/2) * mass * velocity_initial^2 = 334,000 J/kg * mass_melted

Simplifying the equation:

(1/2) * mass * (velocity_final^2 - velocity_initial^2) = 334,000 J/kg * mass_melted

Now we can solve for the mass of ice melted:

mass_melted = (1/2) * mass * (velocity_final^2 - velocity_initial^2) / 334,000 J/kg

Substituting the given values:

mass_melted = (1/2) * 41.1 kg * (3.10 m/s)^2 - (6.79 m/s)^2) / 334,000 J/kg

Calculating the value, we get:

mass_melted ≈ 0.022 kg

Therefore, approximately 0.022 kg of ice melts into water at 0 °C.

To learn more about kinetic energy click here

https://brainly.com/question/999862

#SPJ11

What fraction of the earth’s 100 TW biological budget (all life on the planet) do you think is justifiable to use in the service of human energy needs? Explain your reasoning. What does this become in TW, and how does it compare to our 18 TW current appetite?

Answers

The fraction of the Earth's 100 TW biological budget justifiably used for human energy needs depends on ecological impact, sustainability, and ethical considerations. Renewable energy sources are generally considered more justifiable.

The biological budget of the Earth, which refers to the total amount of energy captured by photosynthesis and used by all living organisms on the planet, is estimated to be around 100 terawatts (TW) (Smil, 2002). However, it's important to note that this energy is not solely available for human use, as it also supports the survival and functioning of all other living organisms on the planet.

The fraction of the biological budget that can be justifiably used for human energy needs is a complex question that depends on various factors, including the ecological impact of human use, the sustainability of energy use practices, and the societal and ethical considerations involved.

In general, renewable energy sources such as solar, wind, hydro, and geothermal are considered to be more sustainable and environmentally friendly than non-renewable sources such as fossil fuels. Therefore, it may be more justifiable to use a larger fraction of the biological budget for renewable energy sources than for non-renewable sources.

Currently, human energy use is estimated to be around 18 TW (International Energy Agency, 2021), which is only a fraction of the total biological budget. However, as the global population and energy demand continue to grow, it's important to consider ways to reduce energy consumption and improve the efficiency of energy use to minimize the impact on the environment and ensure the sustainability of energy sources for future generations.

To know more about biological budget, visit:
brainly.com/question/28584322
#SPJ11

If we could measure the overall curvature of cosmic space and found it to be negative, then we would conclude that the universe ____.
A. will expand forever
B. is expanding faster than we thought
C. is neither expanding nor contracting now
D. is actually contracting now

Answers

The correct option for the following question is A. will expand forever. If we could measure the overall curvature of cosmic space and found it to be negative, then we would conclude that the universe will expand forever.

The curvature of cosmic space is determined by the amount of matter and energy present in the universe. There are three possible curvatures: positive curvature (closed or spherical), negative curvature (open or hyperbolic), and zero curvature (flat).

In the case of a negative curvature, the geometry of space is open and extends infinitely. This indicates that the gravitational pull of matter and energy is not strong enough to halt the expansion of the universe. Thus, the universe will continue to expand indefinitely. Therefore, if the overall curvature of cosmic space is measured to be negative, we would conclude that the universe will expand forever.

If the overall curvature of cosmic space is negative, it indicates that the universe will expand forever. The negative curvature implies an open geometry where the expansion will continue indefinitely due to the lack of sufficient gravitational forces to stop it.

Learn more about ” curvature” here:

brainly.com/question/29595940

#SPJ11

2 of 5 For a liquid state, the chemical potential is equal to fugacity at the same temperature and pressure. T True F False SUBMIT ANSWER

Answers

For a liquid state, the chemical potential is equal to fugacity at the same temperature and pressure, the given statement is false because a chemical potential is the partial molar Gibbs free energy of a constituent in a mixture.

It measures the potential energy of the constituent to move from one phase to another. In contrast, fugacity is the measure of the escaping tendency of molecules from a phase. In a liquid state, the chemical potential is related to the molar Gibbs free energy of the substance. It determines the driving force of chemical reactions. Fugacity is a thermodynamic property that approximates the actual pressure of an ideal gas mixture based on its ideal behavior.

It is related to the pressure and is used to determine the concentration of the substance. The relationship between chemical potential and fugacity varies for different phases. In conclusion, the statement "For a liquid state, the chemical potential is equal to fugacity at the same temperature and pressure" is not correct.

Learn more about fugacity at:

https://brainly.com/question/13352457

#SPJ11

A large gambling wheel turning
at a speed of 1.5 rev/s comes to rest in an agonizing time of 12s.
Find its deceleration in radians per second per second

Answers

The angular deceleration of the gambling wheel is -0.785 rad/s².

The initial angular velocity, ω₀ = 1.5 rev/s

The final angular velocity, ω = 0

Time taken, t = 12 s

The relation between angular velocity, angular acceleration and angular displacement is given by

ω = ω₀ + αt

Also, angular displacement, θ = ω₀t + ½αt²

If the wheel comes to rest, ω = 0

The first equation becomes α = -ω₀/t = -1.5/12 = -0.125 rev/s²

The value of α is negative because it is deceleration and opposes the initial direction of motion of the wheel (i.e. clockwise).

To find the angular deceleration in radians per second per second, we can convert the angular acceleration from rev/s² to rad/s².

1 rev = 2π rad

Thus, 1 rev/s² = 2π rad/s²

Therefore, the angular deceleration is

α = -0.125 rev/s² × 2π rad/rev = -0.785 rad/s² (to three significant figures)

Hence, the angular deceleration of the gambling wheel is -0.785 rad/s².

Learn more about angular deceleration :

https://brainly.com/question/12956978

#SPJ11

A moving, positively charge particle enters a region that contains a uniform magnetic field as shown in the diagram below. What will be the resultant path of the particle? В. v Vy Vz = 0 X O a. Helic

Answers

Force on a moving charge in a magnetic field is q( v × B ).Thus if the particle is moving along the magnetic field,  F=0.

Hence the particle continues to move along the incident direction, in a straight line.When the particle is moving perpendicular to the direction  of magnetic field, the force is perpendicular to both direction of velocity and the magnetic field.

Then the force tends to move the charged particle in a plane perpendicular to the direction of magnetic field, in a circle.

If the direction of velocity has both parallel and perpendicular components to the direction magnetic field, the perpendicular component tends to move it in a circle and parallel component tends to move it along the direction of magnetic field. Hence the trajectory is a helix.

To know more about Force, click here:

brainly.com/question/13191643

#SPJ11

Question 3 An average adult inhales a volume of 0.6 L of air with each breath. If the air is warmed from room temperature (20°C = 293 K) to body temperature (37°C = 310 K) while in the lungs, what is the volume of the air when exhaled? Provide the answer in 2 decimal places.

Answers

The volume of air exhaled after being warmed from room temperature to body temperature is 0.59 L.

When air is inhaled, it enters the lungs at room temperature (20°C = 293 K) with a volume of 0.6 L. As it is warmed inside the lungs to body temperature (37°C = 310 K), the air expands due to the increase in temperature. According to Charles's Law, the volume of a gas is directly proportional to its temperature, assuming constant pressure. Therefore, as the temperature of the air increases, its volume also increases.

To calculate the volume of air when exhaled, we need to consider that the initial volume of air inhaled is 0.6 L at room temperature. As it warms to body temperature, the volume expands proportionally. Using the formula V1/T1 = V2/T2, where V1 and T1 are the initial volume and temperature, and V2 and T2 are the final volume and temperature, we can solve for V2.

V1 = 0.6 L

T1 = 293 K

T2 = 310 K

0.6 L / 293 K = V2 / 310 K

Cross-multiplying and solving for V2, we get:

V2 = (0.6 L * 310 K) / 293 K

V2 = 0.636 L

Therefore, the volume of air when exhaled, after being warmed from room temperature to body temperature, is approximately 0.64 L.

Learn more about exhale:

brainly.com/question/31758301

#SPJ11

A 9 kg mass is attached to a spring with spring constant 225 N/m and set into simple harmonic motion with amplitude 20 cm.
what is the magnitude of the net force applied to the mass when it is at maximum speed?
a) 45 N
b) 0 N
c) 9 N
d) 5 N
e) None of these

Answers

The magnitude of the net force applied to the mass is 45N when it is at maximum speed

To find the magnitude of the net force applied to the mass when it is at maximum speed, we need to consider the restoring force exerted by the spring.

In simple harmonic motion, the restoring force exerted by a spring is given by Hooke's law:

F = -kx

where F is the force, k is the spring constant, and x is the displacement from the equilibrium position.

In this case, the mass is attached to the spring and undergoes simple harmonic motion with an amplitude of 20 cm, which corresponds to a maximum displacement from the equilibrium position.

At maximum speed, the mass is at the extreme points of its motion, where the displacement is maximum. Therefore, the force applied by the spring is at its maximum as well.

Substituting the given values into Hooke's law:

F = -(225 N/m)(0.20 m) = -45 N

Since the force is a vector quantity and the question asks for the magnitude of the net force, the answer is:

Magnitude of the net force = |F| = |-45 N| = 45 N

Therefore, the correct option is (a) 45 N.

To learn more about magnitude follow the given link

https://brainly.com/question/30337362

#SPJ11

Sphere A, with a charge of
+64 MC, is positioned at the origin. A second sphere, B, with a charge of -16 C is placed at
+1.00 m on the x-axis. a. Where must a third sphere, C, of charge 112 C
be placed so there is no net force on it? b. If the third sphere had a charge of 16 C, where
should it be placed?

Answers

A) To find the position where the third sphere, C, experiences no net force, we can use the concept of electric forces and Coulomb's law. The net force on sphere C will be zero when the electric forces from sphere A and sphere B cancel each other out.

The formula for the electric force between two charges is given by [tex]F = \frac{{k \cdot |q_1 \cdot q_2|}}{{r^2}}[/tex],

where F is the force, k is the Coulomb's constant, q1 and q2 are the charges, and r is the distance between the charges.

Since sphere A has a positive charge and sphere B has a negative charge, the forces from both spheres will have opposite directions. To cancel out the forces, sphere C should be placed at a position where the distance and the magnitudes of the forces are balanced.

B) If the third sphere, C, had a charge of 16 C, the position where it should be placed to experience no net force will be different. The forces from sphere A and sphere B will now be different due to the change in charge. To determine the position, we can use the same approach as in part A, considering the new charge on sphere C.

Note: The specific calculations and coordinates for the positions of sphere C cannot be determined without additional information such as the values of the charges, the distances, and the Coulomb's constant.

To know more about Sphere here: https://brainly.com/question/9617243

#SPJ11

A football player punts a football with an initial velocity of magnitude 28.3 m/s and at an angle of 47.8° to the horizontal. If the ball leaves the player’s foot 1.50 m above the ground and neglecting air resistance,a. Determine the maximum height above the ground reached by the ball.
b. Determine the velocity vector of the ball the instant before it lands. Note: This is not the initial velocity.

Answers

a. To determine the maximum height above the ground reached by the ball:At the highest point of the flight of the ball, the vertical component of its

velocity is zero

.

The initial vertical velocity of the ball is given by:v₀ = 28.3 × sin 47.8° = 19.09 m/sFrom the equation, v² = u² + 2as, where v is the final velocity, u is the initial velocity, a is the acceleration due to gravity, and s is the distance travelled, the maximum height can be calculated as follows:0² = (19.09)² + 2(-9.81)s2 × 9.81 × s = 19.09²s = 19.09²/(2 × 9.81) = 19.38 m

Therefore, the

maximum height

above the ground reached by the ball is 19.38 m.b. To determine the velocity vector of the ball the instant before it lands:

At the instant before the ball lands, it is at the same height as the point of launch, i.e., 1.50 m above the ground. This means that the time taken for the ball to reach this height from its maximum height must be equal to the time taken for it to reach the ground from this height. Let this time be t.

The time taken for the ball to reach its maximum height can be calculated as follows:v = u + at19.09 = 0 + (-9.81)t ⇒ t = 1.95 sTherefore, the time taken for the ball to reach the ground from 1.50 m above the ground is also 1.95 s.Using the same equation as before:v = u + atthe velocity vector of the ball the instant before it lands can be calculated as follows:v = 0 + 9.81 × 1.95 = 19.18 m/sThe angle that this

velocity vector

makes with the horizontal can be calculated as follows:θ = tan⁻¹(v_y/v_x)where v_y and v_x are the vertical and horizontal components of the velocity vector, respectively.

Since the

horizontal component

of the velocity vector is constant, having the same magnitude as the initial horizontal velocity, it is equal to 28.3 × cos 47.8° = 19.08 m/s. Therefore,θ = tan⁻¹(19.18/19.08) = 45.0°Therefore, the velocity vector of the ball the instant before it lands is 19.18 m/s at an angle of 45.0° to the horizontal.

to know more about

velocity is zero

pls visit-

https://brainly.com/question/30009866

#SPJ11

Fishermen can use echo sounders to locate schools of fish and to determine the depth of water beneath their vessels. An ultrasonic pulse from an echo sounder is observed to return to a boat after 0.200 s. What is the sea depth beneath the sounder? The speed of sound in water is 1.53 x 103 m s-1. (a) 612 m (b) 306 m (c) 153 m (d) 76.5 m

Answers

The speed of sound in water is 1.53 x 103 m s-1. An ultrasonic pulse from an echo sounder is observed to return to a boat after 0.200 s.

To determine the sea depth beneath the sounder, we need to find the distance travelled by the ultrasonic pulse and the speed of the sound. Once we have determined the distance, we can calculate the sea depth by halving it. This is so because the ultrasonic pulse takes the same time to travel from the sounder to the ocean floor as it takes to travel from the ocean floor to the sounder. We are provided with speed of sound in water which is 1.53 x 10³ m/s.We know that speed = distance / time.

Rearranging the formula for distance:distance = speed × time. Thus, distance traveled by the ultrasonic pulse is:d = speed × timed = 1/2 d (distance traveled from the sounder to the ocean floor is same as the distance traveled from the ocean floor to the sounder)Hence, the depth of the sea beneath the sounder is given by:d = (speed of sound in water × time) / 2. Substituting the given values:speed of sound in water = 1.53 x 103 m s-1, time taken = 0.200 s. Therefore,d = (1.53 × 10³ m/s × 0.200 s) / 2d = 153 m. Therefore, the sea depth beneath the sounder is 153 m.Option (c) is correct.

Learn more about ultrasonic pulse:

brainly.com/question/14019818

#SPJ11

Charging by Conduction involves bringing a charged object near an uncharged object and having electrons shift so they are attracted to each other touching a charged object to an uncharged object so they both end up with a charge bringing a charged object near an uncharged object and then grounding so the uncharged object now has a charge rubbing two objects so that one gains electrons and one loses

Answers

charging by conduction involves the transfer of electrons through various means like proximity, contact, and grounding, resulting in objects acquiring charges.

Charging by conduction is a process that involves the transfer of electrons between objects. When a charged object is brought near an uncharged object, electrons in the uncharged object can shift due to the electrostatic force between the charges. This causes the electrons to redistribute, leading to an attraction between the two objects. Eventually, if the objects come into direct contact, electrons can move from the charged object to the uncharged object until both objects reach an equilibrium in terms of charge.

Another method of charging by conduction involves touching a charged object to an uncharged object and then grounding it. When the charged object is connected to the ground, electrons can flow from the charged object to the ground, effectively neutralizing the charge on the charged object. Simultaneously, the uncharged object gains electrons, acquiring a charge. This process allows the transfer of electrons from one object to another through the grounding connection.

Rubbing two objects together is a different charging method called charging by friction. In this case, when two objects are rubbed together, one material tends to gain electrons while the other loses electrons. The transfer of electrons during the rubbing process leads to one object becoming positively charged (having lost electrons) and the other becoming negatively charged (having gained electrons).

Therefore, charging by conduction involves the transfer of electrons through various means like proximity, contact, and grounding, resulting in objects acquiring charges.

Learn more about electrons from the link

https://brainly.com/question/860094

#SPJ11

Given the following magnetic field equation for a plane wave traveling in free space H(z,t) = 0.133.cos(4.107.t-B.z)a, (A/m) Determine: a) The wavelength λ. b) The corresponding electric field E (z, t), for this use exclusively the Ampere-Maxwell law in the time domain

Answers

A. Wavelength λ = 1.453 * 10^8 / (4.107t - Bz)

B. E(z, t) = [0, 0, (0.133 / 4π × 10^-7)zcos(4.107t)]

Given the magnetic field equation for a plane wave traveling in free space, the task is to determine the wavelength λ and the corresponding electric field E(z, t) using the Ampere-Maxwell law in the time domain.

The magnetic field equation is:

H(z, t) = 0.133cos(4.107t - Bz)a (A/m)

To find the wavelength λ, we can use the relationship between wavelength, velocity, and frequency, given by:

λ = v / f

Since the wave is traveling in free space, its velocity (v) is equal to the speed of light:

v = 3 * 10^8 m/s

The frequency (f) can be obtained from the magnetic field equation:

ω = 4.107t - Bz

Also, ω = 2πf

Therefore:

4.107t - Bz = 2πf

Solving for f:

f = (4.107t - Bz) / (2π)

From this, we can calculate the wavelength as:

λ = v / f

λ = 3 * 10^8 / [(4.107t - Bz) / (2π)]

λ = 1.453 * 10^8 / (4.107t - Bz)

b) To determine the corresponding electric field E(z, t) using the Ampere-Maxwell law in the time domain, we start with the Ampere-Maxwell law:

∇ × E = - ∂B / ∂t

Using the provided magnetic field equation, B = μ0H, where μ0 is the permeability of free space, we can express ∂B / ∂t as ∂(μ0H) / ∂t. Substituting this into the Ampere-Maxwell law:

∇ × E = - μ0 ∂H / ∂t

Applying the curl operator to E, we have:

∇ × E = i(∂Ez / ∂y) - j(∂Ez / ∂x) + k(∂Ey / ∂x) - (∂Ex / ∂y)

Substituting this into the Ampere-Maxwell law and simplifying for a one-dimensional magnetic field equation, we get:

i(∂Ez / ∂y) - j(∂Ez / ∂x) = - μ0 ∂H / ∂t

The electric field component Ez can be obtained by integrating (∂H / ∂t) with respect to s:

Ez = (-1 / μ0) ∫(∂H / ∂t) ds

Substituting the magnetic field equation into this expression, we get:

Ez = (-1 / μ0) ∫(-B) ds

Ez = (B / μ0) s + constant

For this problem, we don't need the constant term. Therefore:

Ez = (B / μ0) s

By substituting the values for B and μ0 from the given magnetic field equation, we can express Ez as:

Ez = (0.133 / 4π × 10^-7)zcos(4.107t)

Thus, the corresponding electric field E(z, t) is given by:

E(z, t) = [0, 0, Ez]

E(z, t) = [0, 0, (0.133 / 4π × 10^-7)zcos(4.107t)]

To learn more about wavelength, refer below:

https://brainly.com/question/31143857

#SPJ11

Consider a rectangular bar composed of a conductive metal. l' = ? R' = ? R + V V 1. Is its resistance the same along its length as across its width? Explain.

Answers

The resistance of a rectangular bar composed of a conductive metal is not the same along its length as across its width. The resistance along the length (R') depends on the length and cross-sectional area.

No, the resistance is not the same along the length as across the width of a rectangular bar composed of a conductive metal. Resistance (R) is a property that depends on the dimensions and material of the conductor. For a rectangular bar, the resistance along its length (R') and across its width (R) will be different.

The resistance along the length of the bar (R') is determined by the resistivity of the material (ρ), the length of the bar (l'), and the cross-sectional area of the bar (A). It can be calculated using the formula:

R' = ρ * (l' / A).

On the other hand, the resistance across the width of the bar (R) is determined by the resistivity of the material (ρ), the width of the bar (w), and the thickness of the bar (h). It can be calculated using the formula:

R = ρ * (w / h).

Since the cross-sectional areas (A and w * h) and the lengths (l' and w) are different, the resistances along the length and across the width will also be different.

Learn more about ”resistance” here:

brainly.com/question/29427458

#SPJ11

Resistor in circuit is made of a length of 14awg iron wire. When
10 V is applied across the resistor wire of length 100m,
what is the reading on the ammeter? The thickness
of 14awg wire is 1.628mm.

Answers

The reading on the ammeter would be approximately 2.14 Amperes.

To calculate the reading on the ammeter, we need to determine the resistance of the 14 AWG iron wire. The resistance can be calculated using the formula

[tex]R = ρ * (L / A)[/tex]

where:

R is the resistance,

ρ is the resistivity of the material (in this case, iron),

L is the length of the wire, and

A is the cross-sectional area of the wire.

First, let's calculate the cross-sectional area of the 14 AWG wire. The diameter of the wire can be obtained from the wire gauge size. For 14 AWG, the diameter is approximately 1.628 mm.

The radius (r) can be calculated by dividing the diameter by 2:

r = 1.628 mm / 2 = 0.814 mm = 0.000814 m

The cross-sectional area (A) can be calculated using the formula:

[tex]R = ρ * (L / A)[/tex]

[tex]A = 3.14159 * (0.000814 m)^2 ≈ 2.07678 × 10^(-6) m^2[/tex]

Next, we need to find the resistivity of iron. The resistivity of iron (ρ) is approximately 9.71 × 10^(-8) Ω·m.

Now, we can calculate the resistance (R) using the formula mentioned earlier:

[tex]R = (9.71 × 10^(-8) Ω·m) * (100 m / 2.07678 × 10^(-6) m^2)[/tex]

[tex]R ≈ 4.675 Ω[/tex]

Therefore, with a 10 V potential difference across the 14 AWG iron wire resistor, the reading on the ammeter would be:

[tex]I = V / R[/tex]

[tex]I = 10 V / 4.675 Ω[/tex]

[tex]I ≈ 2.14 A[/tex]

So, the reading on the ammeter would be approximately 2.14 Amperes.

Learn more about ammeter from the given link

https://brainly.com/question/18634425

#SPJ11

A 1.0 kQ resistor is connected to a 1.5 V battery. The current
through the resistor is equal to a.1.5mA
b 1.5KA
d1.5A
c 1.5 μA

Answers

The correct answer is (d) 1.5 A.

The current through a resistor connected to a battery can be calculated using Ohm's Law, which states that the current  (I) flowing through a resistor is equal to the voltage (V) across the resistor divided by its resistance (R). Mathematically, it can be expressed as I = V/R.

In this case, the voltage across the resistor is given as 1.5 V, and the resistance is 1.0 kΩ (which is equivalent to 1000 Ω). Plugging these values into Ohm's Law, we get I = 1.5 V / 1000 Ω = 0.0015 A = 1.5 A.

Therefore, the current through the 1.0 kΩ resistor connected to the 1.5 V battery is 1.5 A.

To know more about resistor click here:  brainly.com/question/30672175

#SPJ11

Suppose you have two identical particles that attract each other with a certain gravitational force. Now you move them so they are one quarter as far apart as they were originally, but the force between them stays the same. What is one way in which the masses might change so the force could remain constant?

Answers

One way to keep the force between two particles constant while reducing their separation by a quarter is by increasing the mass of one particle while decreasing the mass of the other particle in the same proportion.

This adjustment in mass maintains the balance of gravitational forces and allows the force between the particles to remain constant.

According to the law of universal gravitation, the gravitational force between two particles is directly proportional to the product of their masses and inversely proportional to the square of their separation distance. If the separation distance is reduced by a quarter, the force between the particles would increase by a factor of four, assuming the masses remain the same.

To keep the force between the particles constant, the masses can be adjusted accordingly. One way to achieve this is by increasing the mass of one particle by a certain factor while decreasing the mass of the other particle by the same factor.

This adjustment ensures that the product of the masses remains the same, balancing out the increase in force caused by the reduced separation distance.

By carefully adjusting the masses, it is possible to maintain a constant gravitational force between the particles even when the separation distance changes.

Learn more about force from the given link:

https://brainly.com/question/30507236

#SPJ11

You are 10 km away from the town of Chernobyl having a picnic with your friends. You check your radiation detector and it says 900 counts. But, you’ve been told that 100 counts is the safe level (oh dear)!! How far away do you tell your friends you need to be to be safe?

Answers

You would need to be approximately 3.33 km away from Chernobyl to reach a safe radiation level. We can use the concept of inverse square law for radiation.

To determine the distance you need to be from Chernobyl to reach a safe radiation level, we can use the concept of inverse square law for radiation.

The inverse square law states that the intensity of radiation decreases with the square of the distance from the source. Mathematically, it can be expressed as:

I₁/I₂ = (d₂/d₁)²

where I₁ and I₂ are the radiation intensities at distances d₁ and d₂ from the source, respectively.

In this case, we can set up the following equation:

900/100 = (10/d)²

Simplifying the equation, we have:

9 = (10/d)²

Taking the square root of both sides, we get:

3 = 10/d

Cross-multiplying, we find:

3d = 10

Solving for d, we get:

d = 10/3

Therefore, you would need to be approximately 3.33 km away from Chernobyl to reach a safe radiation level.

To learn more about inverse square law click here

https://brainly.com/question/33029981

#SPJ11

The intensity of a sound in units of dB is given by I(dB) = 10 log – (I/I0) where I and Io are measured in units of W m2 and the value of I, is 10-12 W m2 The sound intensity on a busy road is 3 x 10-5 W m2. What is the value of this sound intensity expressed in dB? Give your answer to 2 significant figures.

Answers

The value of the sound intensity on a busy road, expressed in dB, is approximately 83 dB.

We can calculate the value of the sound intensity in dB using the formula I(dB) = 10 log10(I/I0), where I is the sound intensity and I0 is the reference intensity of 10^(-12) W/m².

Given that the sound intensity on a busy road is I = 3 x 10^(-5) W/m², we can substitute these values into the formula:

I(dB) = 10 log10((3 x 10^(-5)) / (10^(-12)))

Simplifying this, we have:

I(dB) = 10 log10(3 x 10^7)

Using the logarithmic property log10(a x b) = log10(a) + log10(b), we can further simplify:

I(dB) = 10 (log10(3) + log10(10^7))

Since log10(10^7) = 7, we have:

I(dB) = 10 (log10(3) + 7)

Using a calculator, we can evaluate log10(3) + 7 and then multiply it by 10 to obtain the final result:

I(dB) ≈ 83 dB

Therefore, the value of the sound intensity on a busy road, expressed in dB, is approximately 83 dB.

To learn more about sound intensity, click here: https://brainly.com/question/32194259

#SPJ11

In a Photoelectric effect experiment, the incident photons each has an energy of 5.162×10−19 J. The power of the incident light is 0.74 W. (power = energy/time) The work function of metal surface used is W0​ =2.71eV.1 electron volt (eV)=1.6×10−19 J. If needed, use h=6.626×10−34 J⋅s for Planck's constant and c=3.00×108 m/s for the speed of light in a vacuum. Part A - How many photons in the incident light hit the metal surface in 3.0 s Part B - What is the max kinetic energy of the photoelectrons? Part C - Use classical physics fomula for kinetic energy, calculate the maximum speed of the photoelectrons. The mass of an electron is 9.11×10−31 kg

Answers

The maximum speed of the photoelectrons is 1.355 × 10^6 m/s.

The formula for energy of a photon is given by,E = hf = hc/λ

where E is the energy of a photon, f is its frequency, h is Planck's constant, c is the speed of light, and λ is the wavelength. For this question,

h = 6.626 × 10^-34 J s and

c = 3.00 × 10^8 m/s .

Part A

The energy of each incident photon is 5.162×10−19 J

The power of the incident light is 0.74 W.

The total number of photons hitting the metal surface in 3.0 s is calculated as:

Energy of photons = Power × Time => Energy of 1 photon × Number of photons = Power × Time

So,

Number of photons = Power × Time/Energy of 1 photon

Therefore, Number of photons = 0.74 × 3.0 / 5.162 × 10^-19 = 4293.3 ≈ 4293.

Thus, 4293 photons in the incident light hit the metal surface in 3.0 s.

Part B

The energy required to remove an electron from the metal surface is known as the work function of the metal.

The work function W0 of the metal surface used is 2.71 eV = 2.71 × 1.6 × 10^-19 J = 4.336 × 10^-19 J.

Each photon must transfer at least the energy equivalent to the work function to the electron. The maximum kinetic energy of the photoelectrons is given by:

KE

max = Energy of photon - Work function KE

max = (5.162×10−19 J) - (2.71 × 1.6 × 10^-19 J) = 0.822 × 10^-18 J.

Thus, the max kinetic energy of the photoelectrons is 0.822 × 10^-18 J.

Part C

The maximum speed vmax of the photoelectrons is given by the classical physics formula for kinetic energy, which is:

KEmax = (1/2)mv^2

Where m is the mass of an electron, and v is the maximum speed of photoelectrons.The mass of an electron is 9.11×10−31 kg.

Thus, vmax = sqrt[(2 × KEmax) / m]`vmax = sqrt[(2 × 0.822 × 10^-18 J) / 9.11 × 10^-31 kg] = 1.355 × 10^6 m/s

Therefore, the maximum speed of the photoelectrons is 1.355 × 10^6 m/s.

Learn more about photoelectrons with the given link,

https://brainly.com/question/1359033

#SPJ11

"A boy throws a stone vertically upward. It takes 5 seconds for
the stone to reach the maximum height. What is the maximum
height?

Answers

The maximum height is 122.5 meters when a stone is thrown vertically upward.

Time is taken to reach the maximum height = 5 seconds

Acceleration due to gravity= -9.8 m/ second squared

After reaching the max height,  its final velocity is zero. It is written as:

v = u + a*t

Assuming the final velocity is Zero.

0 = u + a*t

u = -a*t

u = -([tex]-9.8 m/s^2[/tex]) * 5 seconds

u = 49 m/s

The displacement formula is used to calculate the maximum height:

s = ut + (1/2)*[tex]at^2[/tex]

s = 49 m/s * 5 seconds + [tex](1/2)(-9.8 m/s^2)*(5 seconds)^2[/tex]

s = 245 m - 122.5 m

s = 122.5 m

Therefore, we can conclude that the maximum height is 122.5 meters.

To learn more about the maximum height

https://brainly.com/question/29116483

#SPJ4

3. The electric field of an electromagnetic wave is given by Ē = 7.2 x 106 ) V/m. If the propagation speed is 3 x 108 k, calculate the magnetic field vector of the wave.

Answers

An electromagnetic wave is a type of wave that consists of electric and magnetic fields oscillating perpendicular to each other and propagating through space. They exhibit both wave-like and particle-like properties.

Electromagnetic waves consist of both electric and magnetic fields, which are perpendicular to each other and to the direction of wave propagation. The electric field oscillates in one plane, while the magnetic field oscillates in a plane perpendicular to the electric field. Therefore, electromagnetic waves are transverse waves.

Given, Electric field of an electromagnetic wave Ē = 7.2 x 106 V/m. Propagation speed v = 3 x 108 m/s We need to calculate the magnetic field vector of the wave. According to the equation of an electromagnetic wave, we know that;  E = cBV = E/BorB = E/V Where, B is the magnetic field vector. V is the propagation speed. E is the electric field vector. Substituting the given values in the above formula we get; B = Ē/v= (7.2 x 10⁶)/ (3 x 10⁸)= 0.024 V.s/m. The magnetic field vector of the wave is 0.024 V.s/m.

For similar problems on electromagnetic waves visit:

https://brainly.com/question/13106270

#SPJ11

A wire of length 20 cm is suspended by flex- ible leads above a long straight wire. Equal but opposite currents are established in the wires so that the 20 cm wire floats 2 mm above the long wire with no tension in its suspension leads. The acceleration due to gravity is 9.81 m/s. The permeability of free space is 4 x 10 Tm/A. If the mass of the 20 cm wire is 16 g, what is the current? Answer in units of A.

Answers

The current flowing through the wire is approximately 3531.97 A. The concept of magnetic forces between current-carrying wires. The force between two parallel conductors is given by the equation:

F = (μ₀ * I₁ * I₂ * L) / (2π * d),

where:

F is the force between the wires,

μ₀ is the permeability of free space (4π x 10^-7 Tm/A),

I₁ and I₂ are the currents in the wires,

L is the length of the wire,

d is the distance between the wires.

In this case, the force acting on the 20 cm wire is equal to its weight. Since it is floating with no tension in its suspension leads, the magnetic force must balance the gravitational force. Let's calculate the force due to gravity first.

Weight = mass * acceleration due to gravity

Weight = 0.016 kg * 9.81 m/s²

Weight = 0.15696 N

F = Weight

(μ₀ * I₁ * I₂ * L) / (2π * d) = Weight

μ₀ = 4π x 10^-7 Tm/A,

L = 0.2 m (20 cm),

d = 2 mm = 0.002 m,

Weight = 0.15696 N,

(4π x 10^-7 Tm/A) * I * (-I) * (0.2 m) / (2π * 0.002 m) = 0.15696 N

I² = (0.15696 N * 2 * 0.002 m) / (4π x 10^-7 Tm/A * 0.2 m)

I² = 0.15696 N * 0.01 / (4π x 10^-7 Tm/A)

I² = 0.015696 / (4π x 10^-7)

I² = 1.244 / 10^-7

I² = 1.244 x 10^7 A²

I = √(1.244 x 10^7 A²)

I ≈ 3531.97 A

Therefore, the current flowing through the wire is approximately 3531.97 A.

Learn more about magnetic forces here : brainly.com/question/10353944


#SPJ11

a group of students found that the moment of inertia of the plate+disk was 1.74x10-4 kg m2, on the other hand they found that the moment of inertia of the plate was 0.34x10-4 kg m2. What is the value of the moment of inertia of the disk?

Answers

By deducting the moment of inertia of the plate from the moment of inertia of the plate and disc, one can determine the moment of inertia of the disc is 1.4 * 10(-4) kg m^2

 

We can determine the moment of inertia of the disc by multiplying [tex]1.74*10(-4) kg m^2[/tex] by the moment of inertia of the plate, which is  [tex]0.34 * 10(-4) kg m^2[/tex].

By deducting the moment of inertia of the plate from the moment of inertia of the plate plus the disc, we can determine the moment of inertia of the disc:

Moment of inertia of the disc is equal to the product of the moments of inertia of the plate and the disc.

Moment of inertia of the disc is equal to

[tex]1.74 * 10-4 kg/m^2 - 0.34 * 10-4 kg/m^2.[/tex]

The disk's moment of inertia is  [tex]1.4 * 10(-4) kg m^2[/tex]

As a result, the disk's moment of inertia is equal to 1.4 * 10(-4) kg m^2 .

To learn more about moment of inertia:

https://brainly.com/question/21439277

What is the frequency of the emitted gamma photons (140-keV)?
(Note: Use Planck's constant h=6.6 x 10^-34 Js and the elemental
charge e=1.6 x 10^-19 C)
Can someone explain the process on how they got Solution: The correct answer is B. = A. The photon energy is 140 keV = 140 x 10^3 x 1.6 x 10-19 ) = 2.24 x 10-14 ]. This numerical value is inconsistent with the photon frequency derived as the ratio

Answers

The frequency of the emitted gamma photons with an energy of 140 keV is incorrect.

Step 1:

The frequency of the emitted gamma photons with an energy of 140 keV is incorrectly calculated.

Step 2:

To calculate the frequency of the emitted gamma photons, we can use the equation E = hf, where E is the energy of the photon, h is Planck's constant, and f is the frequency of the photon. In this case, we are given the energy of the photon (140 keV) and need to find the frequency.

First, we need to convert the energy from keV to joules. Since 1 keV is equal to 1.6 × 10⁻¹⁶ J, the energy of the photon can be calculated as follows:

140 keV = 140 × 10³ × 1.6 × 10⁻¹⁶ J = 2.24 × 10⁻¹⁴ J

Now we can rearrange the equation E = hf to solve for the frequency f:

f = E / h = (2.24 × 10⁻¹⁴ J) / (6.6 × 10⁻³⁴ Js) ≈ 3.39 × 10¹⁹ Hz

Therefore, the correct frequency of the emitted gamma photons with an energy of 140 keV is approximately 3.39 × 10¹⁹ Hz.

Planck's constant, denoted by h, is a fundamental constant in quantum mechanics that relates the energy of a photon to its frequency. It quantifies the discrete nature of energy and is essential in understanding the behavior of particles at the microscopic level.

By applying the equation E = hf, where E is energy and f is frequency, we can determine the frequency of a photon given its energy. In this case, we used the energy of the gamma photons (140 keV) and Planck's constant to calculate the correct frequency. It is crucial to be accurate in the conversion of units to obtain the correct result.

Learn more about frequency

brainly.com/question/29739263

#SPJ11

A young male adult takes in about 5.16 x 104 m³ of fresh air during a normal breath. Fresh air contains approximately 21% oxygen. Assuming that the pressure in the lungs is 0.967 x 105 Pa and air is an ideal gas at a temperature of 310 K, find the number of oxygen molecules in a normal breath.

Answers

Explanation:

To find the number of oxygen molecules in a normal breath, we can use the ideal gas law equation, which relates the pressure, volume, temperature, and number of molecules of a gas:

PV = nRT

Where:

P = Pressure (in Pa)

V = Volume (in m³)

n = Number of moles

R = Ideal gas constant (8.314 J/(mol·K))

T = Temperature (in K)

First, let's calculate the number of moles of air inhaled during a normal breath:

V = 5.16 x 10^4 m³ (Volume of air inhaled)

P = 0.967 x 10^5 Pa (Pressure in the lungs)

R = 8.314 J/(mol·K) (Ideal gas constant)

T = 310 K (Temperature)

Rearranging the equation, we get:

n = PV / RT

n = (0.967 x 10^5 Pa) * (5.16 x 10^4 m³) / (8.314 J/(mol·K) * 310 K)

n ≈ 16.84 mol

Next, let's find the number of oxygen molecules inhaled. Since fresh air contains approximately 21% oxygen, we can multiply the number of moles by the fraction of oxygen in the air:

Number of oxygen molecules = n * (0.21)

Number of oxygen molecules ≈ 16.84 mol * 0.21

Number of oxygen molecules ≈ 3.54 mol

Finally, we'll convert the number of moles of oxygen molecules to the actual number of molecules by using Avogadro's number, which is approximately 6.022 x 10^23 molecules/mol:

Number of oxygen molecules = 3.54 mol * (6.022 x 10^23 molecules/mol)

Number of oxygen molecules ≈ 2.13 x 10^24 molecules

Therefore, in a normal breath, there are approximately 2.13 x 10^24 oxygen molecules.

Other Questions
Question 44 (1.4286 points) 44) which of the following would not be included in the expenditures category called investment spending? a) A) spending on new houses Ob) B) a purchase of shares of Disney stock Oc) C) a purchase of a copy machine by kinkos d) D) the cars held in inventory on a local ford dealer's lot Question 45 (1.4286 points) 45) How much your money buys reflects and the face value of your money is a) A) comparative advantage; absolute advantage Ob) B) the nominal principle; the real principle Oc) C) the nominal principle; the real principle d) D) nominal GDP; real GDP e) E) none of the above are correct A Hello everyone! I need your help with these questions on Literary Studies :) Note: Your answers shouldn't be very long. 5. Give examples of text-oriented approaches to literature and explain in detail at least one of them6. Give examples of author-oriented approaches to literature and explain in detail at least one of them7. Give examples of reader-oriented approaches to literature and explain in detail at least one of them8. Give examples of context-oriented approaches to literature and explain in detail at least one of them9. Explain how we can analyse and interpret texts according to the theory of psychoanalysis.10. Explain how we can analyse and interpret texts according to the theory of hermeneutics.11. Explain how we can analyse and interpret texts according to the theory of post-colonialism.12. Explain how we can analyse and interpret texts according to the theory of new historicism.13. Explain how we can analyse and interpret texts according to the theory of feminism.14. Explain how we can analyse and interpret texts according to the theory of narratology. What number completes the sequence below? Enter your answer in the inputbox at the bottom.8-4 168241232? Write down the two inequalities that define the shaded region in the diagram 1. Pick a social movement not discussed in the chapter. Does the social movement illustrate the three stages of social movements? Why or why not? Be thorough and be sure to specifically define and explain each social movement stage to demonstrate your comprehension.2. Lastly, reflect on the course. Why social movement topic is important for sociology course? And why? According to your text, in some states in the US, over 20% of the black population cannot vote due to felon disenfranchisement. O True O False 2. Plug flow reactor with irreversible homogenous chemical reaction and solid boundaries (40/140 points] The compressible fluid of species B, which contains a molecular species A, flows into a rectangular slit chemical reactor. The inlet flow (2-0) is laminar with a constant velocity field of Vie, it is "plug flow"] and has a concentration cas. An reversible, first-order, temperature-independent homogeneous chemical reaction AB occurs within the slit at a rate of The walls of the reactor are solid and impermeable. Because the reactor walls are impermeable to species A, and the reactor is in plug flow, assume that CA varies only in the 2-direction and is independent of the radial coordinate. Thus, postulate c = calz). The reactor has a length of L. The reactor is "long" such that species A is completely consumed at the reactor exit. The objective of this problem is to solve for the concentration of species A in the reactor as a function of space (2). Assume steady state. Assume constant physical properties. Assume that the total velocity field is dominated by the fluid velocity (= v, forced convection limit, or equivalently, CA A gyroscope slows from an initial rate of 52.3rad/s at a rate of 0.766rad/s ^2. (a) How long does it take (in s) to come to rest? 5 (b) How many revolutions does it make before stopping? Directors may use callbacks for all of the following reasons EXCEPT:Group of answer choicesDoes the actor fit in the family.Will the actor agree to work for less?Can the actor take direction?Can the actor make adjustments? 18. (CAPM andexpected returns)a.Given the followingholding-period returns,MonthSugita Corp.Market12.2%1.8%20.83.030.0 A labour-intensive process of production employs: Multiple Choice more labour and more capital than other possible production processes less Iabour and less capital than other possible production processes an equal amount of labour, capital, and technology more capital and less labour than other possible production processes more labour ond less copital than other possible production processes (a) A teaching assistant is preparing for an in-class demonstration, using insulated copper wire and a power supply. She winds a single layer of the wire on a tube with diameter of - 10.0 cm. The resulting solenoid ist 65.0 cm long, and the wire has a diameter of dare - 0.100 em Assume the insulation is very thin, and adjacent turns of the wire are in contact What power (in W) must be delivered to the solenoid it is to produce a field of 9.60 T at its center? (The resistivity of copper is 1.70 x 100m) XW What 117 Assume the maximum current the copper wire can safely carry is 320A (b) What is the maximum magnetic field (in) in the solenoid? Enter the magnitude) (c) What is the maximum power in W) delivered to the solenoid? w When comparing a letter of credit and a banker's acceptance for financing international business transactions, a letter of credit] Steve currently has all of his wealth in Treasury bills. He is considering investing 85% of his funds in Airbus, whose beta is 1.98, with the remainder left in Treasury bills. Airbus has an expected return of 24.50% and Treasury bills have an expected return of 5%. What are Steve's portfolio beta and portfolio expected return?Portfolio beta = 1.833, and Portfolio expected return = 14.750%.Portfolio beta = 1.683, and Portfolio expected return = 21.575%.Portfolio beta = 1.683 and Portfolio expected return = 14.750%.Portfolio beta = 1.833, and Portfolio expected return = 21.575%. Do Areas of Rectangle programming assignment (The area of rectangle is the rectangle's length times its width. Write the program that asks for the length and width of two rectangles. The program should tell the user which rectangle has the greater area, or if the areas are the same). Submit the code and the screenshot of the output. Identify the three major types of bond risk; default,inflation and interest rate changes. As an intern at a Chemical Processing plant you are requested to proof designs of a segment of the new plant which consists of a steam generator (boiler: B) and a Spiral Heat Exchanger (HE) as seen in the figure below. Water at 65C is pumped into a boiler in which 338.455 MW of heat is added to the water to produce saturated steam. The steam continues to flow through an 22.5 cm (ID) stainless steel pipe with a thickness of 2.5 cm. The pipe is insulated with 3 cm of fibreglass and 2 cm of neoprene foam for a total length of 85 m before reaching the heat exchanger. The heat exchanger has a service fluid that is acetic acid at 32C and a flowrate of 0.0105 m/s. The pipe diameter contracts to 13 cm (ID) with a thickness of 1.5 cm as it spirals inside a heat exchanger for a length of 4.5 m before exiting. The pipe expands back to its original dimension for length of 55 m before reaching a CSTR where it flows through the reactor jacket. The second segment of pipe is insulated to with 3 cm of fibreglass and 2 cm of closed cell rubber. Given a flow rate of 13.5 kg/s of the water being pumped into the system determine the following 50 752 55 HE TR ( Oy 53-1 T = 32C 11 PBS 160) 1. Temperatures T.-T, as observed on the figure above. 2. Which choice of second coat of insulation (closed cell rubber or neoprene foam) is the better option and explain your choice. 1101 Take the external temperature of the surroundings as 24'C and use the following thermal conductivities: Material Stainless Steel Fiberglass Neoprene foam Closed cell rubber k (W/mk) 15.00 0.040 0.026 0.030 6. Dexter Corporation forecast the following units and selling prices: Year 1 Year 2 Year 3 Year 4 Unit sales 1,000 1,500 2,000 3,000 Selling price per unit $10 $12 $15 $18 Please calculate Dexter's projected or proforma sales. 7. Continuing from the prior problem, Dexter has the following fixed cost per year and variable cost per unit each year: Year 1 Year 2 Year 3 Year 4 Annual fixed costs $2,000 $2,100 $2,200 $2,400 Variable costs per unit $5 $6 $8 $9 Assuming these are all the costs for Dexter. Please calculate Dexter's projected or proforma profit. 8. Continuing from the prior two problems, if Dexter pays 20% of pretax income (not sales) in taxes to various government authorities, please calculate Dexter's after-tax net income Suppose Appalachia has 200 tons of coal to allocate between this period and next period. The marginal net benefit curve for coal this period is MNB-200-Q The marginal net benefit curve for coal next penod is MNB-200-20 Assume the discount rate for future benefits is 100%, Then, the dynamically efficient quantities are [a] for this period and [b] for next penod Hint Type integers. Specified Answer for: a Specified Answer for: b 2-a. Give a brief description on gelatin. 'Hygroscopic drugs are not suitable for filling into capsules dosage form'- Give your own opinion. b. Write a short note on hard gelatin capsules (HGC).