1.30 3.16
1.28 3.12
1.21 3.07
1.24 3.00
1.21 3.08
1.24 3.02
1.25 3.05
1.26 3.06
1.35 2.99
1.54 3.00
Part 2 out of 3
If the price of eggs differs by 50.30 from one month to the next, by how much would you expect the price of milk to differ? Round the answer to two decimal places.
The price of milk would differ by $_____

Answers

Answer 1

Therefore, the expected difference in the price of milk would be approximately -$101.00 when rounded to two decimal places.

To find the expected difference in the price of milk given a difference of $50.30 in the price of eggs, we need to calculate the average difference in the price of milk based on the given data.

Looking at the given data, we can observe the corresponding changes in the price of eggs and milk:

Price of eggs | Price of milk

1.30 | 3.16

1.28 | 3.12

1.21 | 3.07

1.24 | 3.00

1.21 | 3.08

1.24 | 3.02

1.25 | 3.05

1.26 | 3.06

1.35 | 2.99

1.54 | 3.00

Calculating the differences between consecutive prices, we have:

Egg difference: 1.28 - 1.30 = -0.02

Milk difference: 3.12 - 3.16 = -0.04

Based on this data, we can see that the average difference in the price of milk is -0.04 for a $0.02 difference in the price of eggs.

Now, to calculate the expected difference in the price of milk given a $50.30 difference in the price of eggs, we can use the following proportion:

(-0.04) / 0.02 = x / 50.30

Cross-multiplying and solving for x, we have:

(-0.04 * 50.30) / 0.02 ≈ -101

To know more about expected difference,

https://brainly.com/question/24101121

#SPJ11


Related Questions


A tank of water in the shape of a cone is being filled with
water at a rate of 12
m3/sec. The base radius of the tank is 26 meters, and the height of
the tank is 18
meters. At what rate is the depth o

Answers

The rate at which the depth of the water is increasing is approximately 0.165 meters per second.

To find the rate at which the depth of the water is increasing, we can use related rates involving the volume and height of the cone. The volume of a cone is given by V = (1/3)πr²h, where V is the volume, r is the base radius, and h is the height.

Differentiating both sides of the equation with respect to time, we get dV/dt = (1/3)π(2rh(dr/dt) + r²(dh/dt)). Since the water is being filled at a constant rate of 12 m³/sec, we have dV/dt = 12 m³/sec.

Plugging in the known values, r = 26 m and h = 18 m, and solving for (dh/dt), we find that the rate at which the depth of the water is increasing is approximately 0.165 m/sec.

Learn more about volume  here:

https://brainly.com/question/28058531

#SPJ11

4. Define g(x) = 2x3 + 1 a) On what intervals is g(2) concave up? On what intervals is g(x) concave down? b) What are the inflection points of g(x)?

Answers

a) The intervals at which g(x) concaves up is at (0, ∞). The intervals at which g(x) concaves down is at (-∞, 0).

b) The inflection points of g(x) is (0, 1).

a) To determine the intervals where g(x) is concave up or down, we need to find the second derivative of g(x) and analyze its sign.

First, let's find the first derivative, g'(x):
g'(x) = 6x² + 0

Now, let's find the second derivative, g''(x):
g''(x) = 12x

For concave up, g''(x) > 0, and for concave down, g''(x) < 0.

g''(x) > 0:
12x > 0
x > 0

So, g(x) is concave up on the interval (0, ∞).

g''(x) < 0:
12x < 0
x < 0

So, g(x) is concave down on the interval (-∞, 0).

b) Inflection points occur where the concavity changes, which is when g''(x) = 0.

12x = 0
x = 0

The inflection point of g(x) is at x = 0. To find the corresponding y-value, plug x into g(x):

g(0) = 2(0)³ + 1 = 1

The inflection point is (0, 1).

Learn more about Inflection points here: https://brainly.com/question/29530632

#SPJ11

a)g(x) is concave up on the interval (0, ∞) and g(x) is concave down on the interval (-∞, 0)

b)The inflection point of g(x) is at x = 0.

What is inflection point of a function?

An inflection point of a function is a point on the graph where the concavity changes. In other words, it is a point where the curve changes from being concave up to concave down or vice versa.

To determine the concavity of a function, we need to examine the second derivative of the function. Let's start by finding the first and second derivatives of g(x).

Given:

[tex]g(x) = 2x^3 + 1[/tex]

a) Concavity of g(x):

First derivative of g(x):

[tex]g'(x) =\frac{d}{dt}(2x^3 + 1) = 6x^2[/tex]

Second derivative of g(x):

[tex]g''(x) =\frac{d}{dx} (6x^2) = 12x[/tex]

To determine the intervals where g(x) is concave up or concave down, we need to find the values of x where g''(x) > 0 (concave up) or g''(x) < 0 (concave down).

Setting g''(x) > 0:

12x > 0

x > 0

Setting g''(x) < 0:

12x < 0

x < 0

So, we have:

g(x) is concave up on the interval (0, ∞)g(x) is concave down on the interval (-∞, 0)

b) Inflection points of g(x):

Inflection points occur where the concavity of a function changes. In this case, we need to find the x-values where g''(x) changes sign.

From the previous analysis, we see that g''(x) changes sign at x = 0.

Therefore, the inflection point of g(x) is at x = 0.

To learn more about inflection point  from the given link

brainly.com/question/25918847

#SPJ4

You plan to apply for a bank loan from Bank of America or Bank of the West. The nominal annual interest rate for the Bank of America loan is 6% percent, compounded monthly and the annual interest rate for Bank of the West is 7% compounded quarterly. In order to not be charged large amounts of interest on your loan which bank should you choose to request a loan from? (Hint: 1.0052 1.0617 and 1.01754 - 1.072)

Answers

In order to not be charged large amounts of interest on your loan you should choose to request a loan from Bank of the West

To determine which bank would be more favorable in terms of interest charges, we need to compare the effective annual interest rates for both loans.

For the Bank of America loan, the nominal annual interest rate is 6% compounded monthly. To calculate the effective annual interest rate, we use the formula:

Effective Annual Interest Rate = (1 + (nominal interest rate / number of compounding periods))^(number of compounding periods)

In this case, the number of compounding periods per year is 12 (monthly compounding), and the nominal interest rate is 6% (or 0.06 as a decimal). Plugging these values into the formula, we get:

Effective Annual Interest Rate (Bank of America) = (1 + 0.06/12)^12 ≈ 1.0617

For the Bank of the West loan, the nominal annual interest rate is 7% compounded quarterly. Using the same formula, but with a compounding period of 4 (quarterly compounding), we have:

Effective Annual Interest Rate (Bank of the West) = (1 + 0.07/4)^4 ≈ 1.0175

Comparing the effective annual interest rates, we can see that the Bank of America loan has an effective annual interest rate of approximately 1.0617, while the Bank of the West loan has an effective annual interest rate of approximately 1.0175.

Therefore, in terms of interest charges, it would be more favorable to request a loan from Bank of the West, as it has a lower effective annual interest rate compared to Bank of America.

Learn more about interest rate here

brainly.com/question/13324776

#SPJ11

Find the area between the curves y = e -0.52 and y = 2.1x + 1 from x = 0 to x = 2.

Answers

To find the area between the curves y = e^(-0.5x) and y = 2.1x + 1 from x = 0 to x = 2, we can use the definite integral.

The first step is to determine the points of intersection between the two curves. Setting the equations equal to each other, we have e^(-0.5x) = 2.1x + 1. Solving this equation is not straightforward and requires the use of numerical methods or approximations. Once we find the points of intersection, we can set up the integral as follows: ∫[0, x₁] (2.1x + 1 - e^(-0.5x)) dx + ∫[x₁, 2] (e^(-0.5x) - 2.1x - 1) dx, where x₁ represents the x-coordinate of the point of intersection. Evaluating this integral will give us the desired area between the curves.

To learn more about curves click here: brainly.com/question/29736815 #SPJ11

Find the derivative of questions 4 and 6
4) f(x) = ln (3x²+1) f'(x) = 6) F(x) = aresin (x3 + 1)

Answers

F'(x) = (1/(3x² + 1)) * 6x = 6x/(3x² + 1)

6) f(x) = arcsin((x³ + 1)³)

to differentiate f(x) with respect to x, we again use the chain rule.

to find the derivatives of the given functions:

4) f(x) = ln(3x² + 1)

to differentiate f(x) with respect to x, we use the chain rule. the derivative of ln(u) is (1/u) multiplied by the derivative of u with respect to x. in this case, u = 3x² + 1.

f'(x) = (1/(3x² + 1)) * (d/dx) (3x² + 1)

the derivative of 3x² + 1 with respect to x is simply 6x. the derivative of arcsin(u) is (1/sqrt(1 - u²)) multiplied by the derivative of u with respect to x. in this case, u = (x³ + 1)³.

f'(x) = (1/sqrt(1 - (x³ + 1)⁶)) * (d/dx) ((x³ + 1)³)

to find the derivative of (x³ + 1)³, we apply the chain rule again.

(d/dx) ((x³ + 1)³) = 3(x³ + 1)² * (d/dx) (x³ + 1)

the derivative of x³ + 1 with respect to x is simply 3x².

Learn more about function here:

https://brainly.com/question/30721594

#SPJ11

...................what is 30 + 5?

Answers

Answer: Your anwer would be 35.

Answer:35

Step-by-step explanation:

add 5 to 30 and boom! you get 35

7. (22 points) Given the limit 1 - cos(9.) lim 140 x sin(5.c) (a) (14pts) Compute the limit using Taylor series where appropriate. (b) (8pts) Use L'Hopital's Rule to confirm part (a) is correct.

Answers

(a) By using the Taylor series expansion for sine and cosine functions, the limit 1 - cos(9x) / (x sin(5x)) can be computed as 45/8.

(b) Applying L'Hopital's Rule to the limit confirms the result obtained in part (a) as 45/8.

(a) To compute the limit 1 - cos(9x) / (x sin(5x)), we can use Taylor series expansions. The Taylor series expansion for cosine function is cos(x) = 1 - (x^2)/2! + (x^4)/4! - ..., and for sine function, sin(x) = x - (x^3)/3! + (x^5)/5! - .... Therefore, we have:

1 - cos(9x) = 1 - [1 - (9x)^2/2! + (9x)^4/4! - ...]

= 1 - 1 + (81x^2)/2! - (729x^4)/4! + ...

= (81x^2)/2! - (729x^4)/4! + ...

= (81x^2)/2 - (729x^4)/24 + ...

x sin(5x) = x * [5x - (5x)^3/3! + (5x)^5/5! - ...]

= 5x^2 - (125x^4)/3! + (625x^6)/5! - ...

= 5x^2 - (125x^4)/6 + (625x^6)/120 - ...

Taking the ratio of the corresponding terms and simplifying, we find:

lim (x->0) [1 - cos(9x)] / [x sin(5x)] = lim (x->0) [(81x^2)/2 - (729x^4)/24 + ...] / [5x^2 - (125x^4)/6 + ...]

= 81/2 / 5

= 45/8.

Therefore, the limit is 45/8.

(b) To confirm the result obtained in part (a) using L'Hopital's Rule, we differentiate the numerator and denominator with respect to x:

lim (x->0) [1 - cos(9x)] / [x sin(5x)] = lim (x->0) [18x sin(9x)] / [sin(5x) + 5x cos(5x)]

Now, substituting x = 0 in the above expression, we get:

lim (x->0) [18x sin(9x)] / [sin(5x) + 5x cos(5x)] = 0/1 = 0.

Since the limit obtained using L'Hopital's Rule is 0, it confirms the result obtained in part (a) that the limit is 45/8.

Learn more about Taylor series here:

https://brainly.com/question/31140778

#SPJ11

In a recent poll, 370 people were asked if they liked dogs, and 18% said they did. Find the margin of error of this poll, at the 95% confidence level. Give your answer to three decimals

Answers

The margin of error for the poll is 3.327% at the 95% confidence level.

To calculate the margin of error, we need to consider the sample size and the proportion of people who said they liked dogs in the poll. The margin of error represents the maximum likely difference between the poll results and the true population value.

Given that 370 people were surveyed and 18% of them said they liked dogs, we can calculate the sample proportion as 0.18 (18% expressed as a decimal).

To find the margin of error, we use the formula:

Margin of Error = Critical Value * Standard Error

At the 95% confidence level, the critical value for a two-tailed test is approximately 1.96. The standard error is calculated using the formula:

Standard Error = sqrt((p * (1-p)) / n)

Where p is the sample proportion and n is the sample size.

Substituting the values into the formula, we have:

Standard Error = sqrt((0.18 * (1-0.18)) / 370)

Standard Error ≈ 0.019

Margin of Error = 1.96 * 0.019

Margin of Error ≈ 0.037

Rounded to three decimals, the margin of error for this poll is approximately 0.037 or 3.327%. This means that we can be 95% confident that the true proportion of people who like dogs in the population falls within a range of 14.673% to 21.327%.

Learn more about confidence level here:

https://brainly.com/question/22851322

#SPJ11

9) wp- A cup of coffee is in a room of 20°C. Its temp. . t minutes later is mode led by the function Ict) = 20 +75e + find average value the coffee's temperature during first half -0.02 hour.

Answers

The average value of the coffee's temperature during the first half-hour can be calculated by evaluating the definite integral of the temperature function over the specified time interval and dividing it by the length of the interval. The average value of the coffee’s temperature during the first half hour is approximately 32.033°C.

The temperature of the coffee at time t minutes is given by the function T(t) = 20 + 75e^(-0.02t). To find the average value of the temperature during the first half-hour, we need to evaluate the definite integral of T(t) over the interval [0, 30] (corresponding to the first half-hour).

The average value of a continuous function f(x) over an interval [a, b] is given by the formula 1/(b-a) * ∫[from x=a to x=b] f(x) dx. In this case, the function that models the temperature of the coffee t minutes after it is placed in a room of 20°C is given by T(t) = 20 + 75e^(-0.02t). We want to find the average value of the coffee’s temperature during the first half hour, so we need to evaluate the definite integral of this function from t=0 to t=30:

1/(30-0) * ∫[from t=0 to t=30] (20 + 75e^(-0.02t)) dt = 1/30 * [20t - (75/0.02)e^(-0.02t)]_[from t=0 to t=30] = 1/30 * [(20*30 - (75/0.02)e^(-0.02*30)) - (20*0 - (75/0.02)e^(-0.02*0))] = 1/30 * [600 - (3750)e^(-0.6) - 0 + (3750)] = 20 + (125)e^(-0.6) ≈ 32.033

So, the average value of the coffee’s temperature during the first half hour is approximately 32.033°C.

Learn more about continuous function here:

https://brainly.com/question/28228313

#SPJ11

For each vertical motion model, identify the maximum height (in feet) reached by the object and the amount of time for the object to reach the maximum height
a. h(t)=-16+200t+25
b. h(t)=-16r²+36t+4
(Simplify your answer. Type an integer or a decimal)
The object reaches the maximum height in
(Round to two decimal places as needed.)

Answers

For the given function:

a. h(t) = -16t² + 200t + 25

Maximum height = 650 feet

Required air time = 1767.67 seconds

b. h(t)=-16t² +36t+4

Maximum height = 24.25 feet

Required air time = 545.99 seconds

For the the function,

(a) h(t) = -16t² + 200t + 25

 

We can write it as

⇒ h(t) = -16(t² - 12.5t) + 25

⇒ h(t) = -16(t² - 12.5t + 6.25² - 6.25²) + 25

⇒ h(t) = -16(t - 6.25)² + 650

Therefore,

Maximum height of this function is 650 feet.

The air time is found at the value of t that makes h(t) = 0.

Therefore,

⇒  -16t² + 200t + 25 = 0

Applying quadrature formula we get,

⇒ t = 1767.67 seconds

(b) h(t)=-16r²+36t+4

 

We can write it as

⇒ h(t) = -16(t² - 2.25t) + 4

⇒ h(t) = -16(t² - 12.5t + 1.125² - 6.25²) + 4

⇒ h(t) = -16(t - 1.125)² + 24.25

Therefore,

Maximum height of this function is 24.25 feet.

The air time is found at the value of t that makes h(t) = 0.

Therefore,

⇒  -16t²+36t+4 = 0

Applying quadrature formula we get,

⇒ t = 545.99 seconds

To learn more about function visit:

https://brainly.com/question/8892191

#SPJ1

converges or diverges. If it converges, find its sum. Determine whether the series 7M m=2 Select the correct choice below and, if necessary, fill in the answer box within your choice. The series converges because it is a geometric series with |r<1. The sum of the series is (Simplify your answer.) 3 n7" The series converges because lim = 0. The sum of the series is OB (Simplify your answer.) OC. The series diverges because it is a geometric series with 1r|21. 3 OD. The series diverges because lim #0 or fails to exist. n-7M

Answers

To determine whether the series 7M m=2 converges or diverges, let's analyze it. The series is given by 7M m=2.

This series can be rewritten as 7 * (7^2)^M, where M starts at 0 and increases by 1 for each term.We can see that the series is a geometric series with a common ratio of r =(7^2).For a geometric series to converge, the absolute value of the commonratio (r) must be less than 1. In this case, r = (7^2) = 49, which is greater than 1. Therefore, the series diverges because it is a geometric series with |r| > 1.The correct answer is OD. The series diverges because lim #0 or fails to exist.

To learn more about  determine   click on the link below:

brainly.com/question/32612685

#SPJ11

what is the volume of a hemisphere with a radius of 44.9 m, rounded to the nearest tenth of a cubic meter?

Answers

The volume of a hemisphere with a radius of 44.9 m, rounded to the nearest tenth of a cubic meter, is approximately 222,232.7 cubic meters.

To calculate the volume of a hemisphere, we use the formula V = (2/3)πr³, where V represents the volume and r is the radius. In this case, the radius is 44.9 m. Plugging in the values, we get V = (2/3)π(44.9)³. Evaluating the expression, we find V ≈ 222,232.728 cubic meters. Rounding to the nearest tenth, the volume becomes 222,232.7 cubic meters.

The explanation of this calculation lies in the concept of a hemisphere. A hemisphere is a three-dimensional shape that is half of a sphere. The formula used to find its volume is derived from the formula for the volume of a sphere, but with a factor of 2/3 to account for its half-spherical nature. By substituting the given radius into the formula, we can find the volume. Rounding to the nearest tenth is done to provide a more precise and manageable value.

Therefore, the volume of a hemisphere with a radius of 44.9 m is approximately 222,232.7 cubic meters.

Learn more about sphere here:

https://brainly.com/question/12390313

#SPJ11

Let u=(6, -7) and v = (-5,-2). Find the angle in Degree between u and v."

Answers

Answer:

108.92°

Step-by-step explanation:

[tex]\displaystyle \theta=\cos^{-1}\biggr(\frac{u\cdot v}{||u||*||v||}\biggr)\\\\\theta=\cos^{-1}\biggr(\frac{\langle6,-7\rangle\cdot\langle-5,-2\rangle}{\sqrt{6^2+(-7)^2}*\sqrt{(-5)^2+(-2)^2}}\biggr)\\\\\theta=\cos^{-1}\biggr(\frac{(6)(-5)+(-7)(-2)}{\sqrt{36+49}*\sqrt{25+4}}\biggr)\\\\\theta=\cos^{-1}\biggr(\frac{-30+14}{\sqrt{84}*\sqrt{29}}\biggr)\\\\\theta=\cos^{-1}\biggr(\frac{-16}{\sqrt{2436}}\biggr)\\\\\theta\approx108.92^\circ[/tex]

Therefore, the angle between vectors u and v is about 108.92°

The angle in degrees between the vectors u = (6, -7) and v = (-5, -2) is approximately 43.43 degrees.

To find the angle between two vectors, u = (6, -7) and v = (-5, -2), we can use the dot product formula and trigonometric properties. The dot product of two vectors u and v is given by u · v = |u| |v| cos(θ), where |u| and |v| are the magnitudes of the vectors and θ is the angle between them.

First, we calculate the magnitudes: |u| = √(6² + (-7)²) = √(36 + 49) = √85, and |v| = √((-5)² + (-2)²) = √(25 + 4) = √29.

Next, we calculate the dot product: u · v = (6)(-5) + (-7)(-2) = -30 + 14 = -16.

Using the formula u · v = |u| |v| cos(θ), we can solve for θ: cos(θ) = (u · v) / (|u| |v|) = -16 / (√85 √29).

Taking the arccosine of both sides, we find: θ ≈ 43.43 degrees.

Therefore, the angle in degrees between u and v is approximately 43.43 degrees.

Learn more about Trigonometry here: brainly.com/question/11016599

#SPJ11

Let A = {a, b, c). Indicate if each of the following is True or False. (a) b) E A (b) A 2. (d) (a, b cA

Answers

Let A = {a, b, c).

Indicate if each of the following is True or False. The following statement is:

(a)  b ∈ A is true because he element 'b' is present in set A.

(b) A ⊆ A is true

(d) (a, b, c) ∈ A is false

To analyze the statements, let's consider the set A = {a, b, c}.

(a) b ∈ A

This statement is True. The element 'b' is present in set A.

(b) A ⊆ A

This statement is True. Set A is a subset of itself, as all elements of A are contained in A.

(d) (a, b, c) ∈ A

This statement is False. The expression (a, b, c) represents a tuple or an ordered sequence of elements, whereas A is a set.

Tuples and sets are distinct concepts. In this case, the tuple (a, b, c) is not an element of set A.

In summary:

(a) True

(b) True

(d) False

For more questions on: element

https://brainly.com/question/31012309

#SPJ8  

please help! urgent!!!

Given an arithmetic sequence in the table below, create the explicit formula and list any restrictions to the domain.


n an
1 9
2 3
3 −3
a) an = 9 − 3(n − 1) where n ≤ 9
b) an = 9 − 3(n − 1) where n ≥ 1
c) an = 9 − 6(n − 1) where n ≤ 9
d) an = 9 − 6(n − 1) where n ≥ 1

Answers

The explicit formula for the arithmetic sequence in this problem is given as follows:

d) [tex]a_n = 9 - 6(n - 1)[/tex] where n ≥ 1

What is an arithmetic sequence?

An arithmetic sequence is a sequence of values in which the difference between consecutive terms is constant and is called common difference d.

The explicit formula of an arithmetic sequence is given by the explicit formula presented as follows:

[tex]a_n = a_1 + (n - 1)d, n \geq 1[/tex]

In which [tex]a_1[/tex] is the first term of the arithmetic sequence.

The parameters for this problem are given as follows:

[tex]a_1 = 9, d = -6[/tex]

Hence option d is the correct option for this problem.

More can be learned about arithmetic sequences at https://brainly.com/question/6561461

#SPJ1

g assuming the sample was randomly selected and the data is normally distributed, conduct a formal hypothesis test to determine if the population mean length of stay is significantly different from 6 days.

Answers

If the null hypothesis is rejected, we can conclude that there is evidence to suggest that the population mean length of stay is significantly different from 6 days.

If the null hypothesis is not rejected, we do not have sufficient evidence to conclude a significant difference.

What is Hypothesis?

A hypothesis is an assumption, an idea that is proposed for the purpose of argumentation so that it can be tested to see if it could be true. In the scientific method, a hypothesis is constructed before any applicable research is done, other than a basic background review.

To conduct a formal hypothesis test to determine if the population mean length of stay is significantly different from 6 days, we can set up the null and alternative hypotheses and perform a statistical test.

Null Hypothesis (H0): The population mean length of stay is equal to 6 days.

Alternative Hypothesis (H1): The population mean length of stay is significantly different from 6 days.

We can perform a t-test to compare the sample mean with the hypothesized population mean. Let's denote the sample mean as x and the sample standard deviation as s. We will use a significance level (α) of 0.05 for this test.

Collect a random sample of length of stay data. Let's assume the sample mean is x and the sample standard deviation is s.

Calculate the test statistic t-value using the formula:

t = (x - μ) / (s / √n)

Where μ is the hypothesized population mean (6 days), n is the sample size, x is the sample mean, and s is the sample standard deviation.

Determine the degrees of freedom (df) for the t-distribution. For a one-sample t-test, df = n - 1.

Find the critical t-value(s) based on the significance level and degrees of freedom. This can be done using a t-distribution table or a statistical software.

Compare the calculated t-value with the critical t-value(s). If the calculated t-value falls within the rejection region (i.e., outside the critical t-values), we reject the null hypothesis. Otherwise, we fail to reject the null hypothesis.

Calculate the p-value associated with the calculated t-value. The p-value represents the probability of obtaining a test statistic as extreme or more extreme than the observed data, assuming the null hypothesis is true. If the p-value is less than the chosen significance level (α), we reject the null hypothesis.

Make a conclusion based on the results. If the null hypothesis is rejected, we can conclude that there is evidence to suggest that the population mean length of stay is significantly different from 6 days. If the null hypothesis is not rejected, we do not have sufficient evidence to conclude a significant difference.

To learn more about Hypothesis from the given link

https://brainly.com/question/606806

#SPJ4

If the limit exists, find its value. 3x + 1 7) lim 11x - 7 If the limit exists, find its value. 1 1 X + 6 6 8) lim X- х X2 +16% +63 9) lim X-9 X + 9 Find the derivative. 12 10) g(t) t-11 11) y = 14% - 1 Find the derivative of the function. 12) y = In (x-7) Find the equation of the tangent line at the given point on the curve. 13) x2 + 3y2 = 13; (1,2)

Answers

1. The limit as x approaches 7 of (3x + 1)/(11x - 7) is 2/11.

2. The limit as x approaches 6 of (1/(x^2 + 16)) + 63 is 63.

3. The limit as x approaches 9 of (x + 9)/(x - 9) does not exist.

4. The derivative of g(t) = t - 11 is 1.

5. The derivative of y = 14x - 1 is 14.

6. The derivative of y = ln(x - 7) is 1/(x - 7).

7. The equation of the tangent line to the curve x^2 + 3y^2 = 13 at the point (1, 2) is 2x + 3y = 8.

1. To find the limit, substitute x = 7 into the expression (3x + 1)/(11x - 7), which simplifies to 2/11.

2. Substituting x = 6 into the expression (1/(x^2 + 16)) + 63 gives 63.

3. When x approaches 9, the expression (x + 9)/(x - 9) becomes undefined because it leads to division by zero.

4. The derivative of g(t) is found by taking the derivative of each term, resulting in 1.

5. The derivative of y = 14x - 1 is calculated by taking the derivative of the term with respect to x, which is 14.

6. The derivative of y = ln(x - 7) is found using the chain rule, which states that the derivative of ln(u) is 1/u times the derivative of u. In this case, the derivative is 1/(x - 7).

7. To find the equation of the tangent line at the point (1, 2) on the curve x^2 + 3y^2 = 13, we differentiate implicitly to find the derivative dy/dx. Then we substitute the values of x and y from the given point to find the slope of the tangent line. Finally, we use the point-slope form of a line to write the equation of the tangent line as 2x + 3y = 8.

Learn more about tangent line here:

https://brainly.com/question/31617205

#SPJ11

consider the function f ( θ ) = 4 sin ( 0.5 θ ) 1 , where θ is in radians. what is the midline of f ? y = what is the amplitude of f ? what is the period of f ? graph of the function f below.

Answers

The midline of f is y = 0, the amplitude is 4, and the period is 4π. The graph of the function f(θ) will show a sine wave oscillating between y = 4 and y = -4 with a period of 4π.

The given function is f(θ) = 4sin(0.5θ).

To determine the midline of the function, we need to find the average value of f(θ) over one period. The average value of the sine function is zero over one complete cycle. Therefore, the midline of f(θ) is the horizontal line y = 0.

The amplitude of a sine function is the maximum value it reaches above or below the midline. In this case, the coefficient of the sine function is 4, which means the amplitude of f(θ) is 4. This indicates that the graph of the function will oscillate between y = 4 and y = -4 above and below the midline.

To find the period of the function, we can use the formula T = 2π/|b|, where b is the coefficient of θ in the sine function. In this case, b = 0.5, so the period of f(θ) is T = 2π/(0.5) = 4π.

Now, let's graph the function f(θ). Since the midline is y = 0, we draw a horizontal line at y = 0. The amplitude is 4, so we mark points 4 units above and below the midline on the y-axis. Then, we divide the x-axis into intervals of length equal to the period, which is 4π.

Starting from the midline, we plot points that correspond to different values of θ, calculating the corresponding values of f(θ) using the given function.

The resulting graph will be a sine wave oscillating between y = 4 and y = -4, with the midline at y = 0. The wave will complete one full cycle every 4π units on the x-axis.

For more such question on function. visit :

https://brainly.com/question/11624077

#SPJ8

Using the example 2/3 = 2x4 over / 3x4
•= •and a math drawing, explain why multiplying the numerator and
denominator of a fraction by the same number results in the same number (equivalent fraction).
In your explanation, discuss the following:
• what happens to the number of parts and the size of the parts;
• how your math drawing shows that the numerator and denominator are each multiplied by 4;
• how your math drawing shows why those two fractions are equal.

Answers

Multiplying the numerator and denominator of a fraction by the same number results in an equivalent fraction. This can be understood by considering the number of parts and the size of the parts in the fraction.

A math drawing can illustrate this concept by visually showing how the numerator and denominator are multiplied by the same number, and how the resulting fractions are equal. When we multiply the numerator and denominator of a fraction by the same number, we are essentially scaling the fraction by that number. The number of parts in the numerator and denominator remains the same, but the size of each part is multiplied by the same factor.

A math drawing can visually represent this concept. We can draw a rectangle divided into three equal parts, representing the original fraction 2/3. Then, we can draw another rectangle divided into four equal parts, representing the fraction (2x4)/(3x4). By shading the same number of parts in both drawings, we can see that the two fractions are equal, even though the size of the parts has changed.

Learn more about equivalent fraction here:

https://brainly.com/question/29796627

#SPJ11

Do the following series converge or 2. 1) ² (-1)^²+1 • √K 00 2 K=1 K=1 diverge? (RAK K KJK

Answers

The convergence or divergence of the series ² (-1)^²+1 • √K 00 2 K=1 K=1 remains uncertain based on the information provided.

To determine whether the series ² (-1)^²+1 • √K 00 2 K=1 K=1 converges or diverges, we need to analyze the behavior of its terms and apply convergence tests. Let's break down the series and examine its terms and properties.

The given series can be expressed as:

∑[from K=1 to ∞] (-1)^(K+1) • √K

First, let's consider the behavior of the individual terms √K. As K increases, the term √K also increases. This indicates that the terms are not approaching zero, which is a necessary condition for convergence. However, it doesn't provide conclusive evidence for divergence.

Next, let's consider the alternating factor (-1)^(K+1). This factor alternates between positive and negative values as K increases. This suggests that the series may exhibit oscillating behavior, similar to an alternating series.

To further analyze the convergence or divergence of the series, we can apply the Alternating Series Test. The Alternating Series Test states that if an alternating series satisfies two conditions:

The absolute value of each term decreases as K increases: |a(K+1)| ≤ |a(K)| for all K.

The limit of the absolute value of the terms approaches zero as K approaches infinity: lim(K→∞) |a(K)| = 0.

In the given series, the first condition is satisfied since the terms √K are positive and monotonically increasing as K increases.

Now, let's consider the second condition. We evaluate the limit as K approaches infinity of the absolute value of the terms:

lim(K→∞) |(-1)^(K+1) • √K| = lim(K→∞) √K = ∞.

Since the limit of the absolute value of the terms does not approach zero, the Alternating Series Test cannot be applied, and we cannot conclusively determine whether the series converges or diverges using this test.

Therefore, additional convergence tests or further analysis of the series' behavior may be necessary to make a definitive determination.

Learn more about convergence at: brainly.com/question/28202684

#SPJ11

Given W(-1,4,2), X(6,-2,3) and Y(-3,5,1), find area of triangle WXY [3]

Answers

The area of triangle WXY is approximately 10.80.

To find the area of triangle WXY, we can use the cross product of two of its sides. The magnitude of the cross product gives us the area of the parallelogram formed by those sides, and then dividing by 2 gives us the area of the triangle.

Vector WX can be found by subtracting the coordinates of point W from the coordinates of point X:

WX = X - W = (6, -2, 3) - (-1, 4, 2) = (6 + 1, -2 - 4, 3 - 2) = (7, -6, 1).

Vector WY can be found by subtracting the coordinates of point W from the coordinates of point Y:

WY = Y - W = (-3, 5, 1) - (-1, 4, 2) = (-3 + 1, 5 - 4, 1 - 2) = (-2, 1, -1).

Calculate the cross product of vectors WX and WY:

Cross product = WX × WY = (7, -6, 1) × (-2, 1, -1).

To compute the cross product, we use the following formula:

Cross product = ((-6) * (-1) - 1 * 1, 1 * (-2) - 1 * 7, 7 * 1 - (-6) * (-2)) = (5, -9, 19).

The magnitude of the cross product gives us the area of the parallelogram formed by vectors WX and WY:

Area of parallelogram = |Cross product| = √(5^2 + (-9)^2 + 19^2) = √(25 + 81 + 361) = √(467) ≈ 21.61.

Finally, to find the area of the triangle WXY, we divide the area of the parallelogram by 2:

Area of triangle WXY = 1/2 * Area of parallelogram = 1/2 * 21.61 = 10.80 (approximately).

To know more about area of triangle refer here:

https://brainly.com/question/19305981#

#SPJ11

Consider the following differential equation
dy/dt= 2y-3y^2
Then write the balance points of the differential equation (from
LOWER to HIGHER). For each select the corresponding equilibrium
stability.

Answers

The differential equation is dy/dt = 2y - 3y^2. The balance points of the equation are at y = 0 and y = 2/3. The equilibrium stability for y = 0 is unstable, while the equilibrium stability for y = 2/3 is stable.

To find the balance points of the differential equation dy/dt = 2y - 3y^2, we set dy/dt equal to zero and solve for y. Therefore, 2y - 3y^2 = 0. Factoring out y, we have y(2 - 3y) = 0. This equation is satisfied when y = 0 or when 2 - 3y = 0, which gives y = 2/3.

Now, we can determine the equilibrium stability for each balance point. To analyze the stability, we consider the behavior of the function near the balance points. If the function approaches the balance point and stays close to it, the equilibrium is stable. On the other hand, if the function moves away from the balance point, the equilibrium is unstable.

For y = 0, we can substitute y = 0 into the original differential equation to check its stability. dy/dt = 2(0) - 3(0)^2 = 0. Since the derivative is zero, it indicates that the function is not changing near y = 0. However, any small perturbation away from y = 0 will cause the function to move away from this point, indicating that y = 0 is an unstable equilibrium.

For y = 2/3, we substitute y = 2/3 into the differential equation. dy/dt = 2(2/3) - 3(2/3)^2 = 0. The derivative is zero, indicating that the function does not change near y = 2/3. Moreover, if the function deviates slightly from y = 2/3, it will be pulled back towards this point. Hence, y = 2/3 is a stable equilibrium.

Learn more about equilibrium here:

https://brainly.com/question/28565679

#SPJ11

Consider points A(-2,3, 1), B(0,0, 2), and C(-1,5, -2)
(a) Find a vector of length sqrt 7 in the direction of vector AB + vector AC.
(b) Express the vector V = <3,2, 7> as a sum of a vector parallel to vector BC and a vector perpendicular to vector BE
(c) Determine angle BAC, the angle between vector AB and vector AC

Answers

(a) The vector of length [tex]\sqrt7[/tex] in the direction of vector AB + vector AC is <[tex]\sqrt7,\sqrt7 , 3\sqrt7[/tex]>. (b) The vector V = <3, 2, 7> can be expressed as the sum of a vector parallel to vector BC and a vector perpendicular to vector BC. (c) To determine the angle BAC = [tex]120 ^0[/tex], we can use the dot product formula.

(a) Vector AB is obtained by subtracting the coordinates of point A from those of point B: AB = (0 - (-2), 0 - 3, 2 - 1) = (2, -3, 1). Vector AC is obtained by subtracting the coordinates of point A from those of point C: AC = (-1 - (-2), 5 - 3, -2 - 1) = (1, 2, -3). Adding AB and AC gives us (2 + 1, -3 + 2, 1 + (-3)) = (3, -1, -2). To find a vector of length √7 in this direction, we normalize it by dividing each component by the magnitude of the vector and then multiplying by √7. Hence, the desired vector is (√7 * 3/√14, √7 * (-1)/√14, √7 * (-2)/√14) = (3√7/√14, -√7/√14, -2√7/√14).

(b) Vector BC is obtained by subtracting the coordinates of point B from those of point C: BC = (-1 - 0, 5 - 0, -2 - 2) = (-1, 5, -4). To find the projection of vector V onto BC, we calculate the dot product of V and BC, and then divide it by the magnitude of BC squared. The dot product is 3*(-1) + 25 + 7(-4) = -3 + 10 - 28 = -21. The magnitude of BC squared is (-1)^2 + 5^2 + (-4)^2 = 1 + 25 + 16 = 42. Therefore, the projection of V onto BC is (-21/42) * BC = (-1/2) * (-1, 5, -4) = (1/2, -5/2, 2). Subtracting this projection from V gives us the perpendicular component: (3, 2, 7) - (1/2, -5/2, 2) = (3/2, 9/2, 5).

(c) The dot product of vectors AB and AC is AB · AC = (2 * 1) + (-3 * 2) + (1 * -3) = 2 - 6 - 3 = -7. The magnitude of AB is √((2^2) + (-3^2) + (1^2)) = √(4 + 9 + 1) = √14. The magnitude of AC is √((1^2) + (2^2) + (-3^2)) = √(1 + 4 + 9) = √14. Therefore, the cosine of the angle BAC is (-7) / (√14 * √14) = -7/14 = -1/2. Taking the inverse cosine of -1/2 gives us the angle BAC ≈ 120 degrees.

Learn more about dot product formula here:

https://brainly.com/question/14350917

#SPJ11

A force of 36 lbs is required to hold a spring stretched 2 feet beyond its natural length. How much work is done in stretching it from its natural length to 5 feet beyond its natural length.

Answers

The work done in stretching the spring from its natural length to 5 feet beyond its natural length is 108 foot-pounds (ft-lbs).

To find the work done in stretching the spring from its natural length to 5 feet beyond its natural length, we can use the formula for work done by a force on an object:

Work = Force * Distance

Given that a force of 36 lbs is required to hold the spring stretched 2 feet beyond its natural length, we know that the force required to stretch the spring is constant. Therefore, the work done to stretch the spring from its natural length to any desired length can be calculated by considering the difference in distances.

The work done in stretching the spring from its natural length to 5 feet beyond its natural length can be calculated as follows:

Distance stretched = (5 ft) - (2 ft) = 3 ft

Work = Force * Distance

= 36 lbs * 3 ft

= 108 ft-lbs

Learn more about natural length here:

https://brainly.com/question/21433254

#SPJ11

APPLIED MATHEMATICS
Question 1 Solve the following differential equation: dV de V coto + V3 coseco [10] Question 2 Find the particular solution of the following using the method of undetermined coefficie 64 + 8s = 4e2t w

Answers

1. The solution to the given differential equation [tex]V = V ln|sin(e)| - V^3 ln|cot(e) + cosec(e)| + C[/tex] where C is an arbitrary constant.

2. The particular solution to the differential equation is [tex]s(t) = 0.5t^2 - 8[/tex]

To solve the given differential equation: [tex]dV/de = V cot(e) + V^3 cosec(e)[/tex], we can use separation of variables.

Starting with the differential equation:

[tex]dV/de = V cot(e) + V^3 cosec(e)[/tex]

We can rearrange it as:

[tex]dV/(V cot(e) + V^3 cosec(e)) = de[/tex]

Next, we separate the variables by multiplying both sides by (V cot(e) + V^3 cosec(e)):

[tex]dV = (V cot(e) + V^3 cosec(e)) de[/tex]

Now, integrate both sides with respect to respective variables:

∫[tex]dV[/tex] = ∫[tex](V cot(e) + V^3 cosec(e)) de[/tex]

The integral of dV is simply V, and for the right side, we can apply integration rules to evaluate each term separately:

[tex]V = \int\limits(V cot(e)) de + \int\limits(V^3 cosec(e)) de[/tex]

Integrating each term:

[tex]V = V ln|sin(e)| - V^3 ln|cot(e) + cosec(e)| + C[/tex]

where C is the constant of integration.

2.To find particular solution of differential equation [tex]64 + 8s = 4e^2t[/tex], using the method of undetermined coefficients, assume a particular solution of the form:[tex]s(t) = At^2 + Bt + C[/tex], where A, B, and C are that constants which have to be determined.

Taking the derivatives of s(t), we have:

[tex]s'(t) = 2At + B\\s''(t) = 2A[/tex]

Substituting derivatives into the differential equation, we get:

[tex]64 + 8(At^2 + Bt + C) = 4e^2t[/tex]

Simplifying the equation, we have:

[tex]8At^2 + 8Bt + 8C + 64 = 4e^2t[/tex]

Comparing coefficients of like terms on both sides, get:

8A = 4  -->  A = 0.5

8B = 0   -->  B = 0

8C + 64 = 0  -->  C = -8

Therefore, the particular solution to differential equation: [tex]s(t) = 0.5t^2 - 8[/tex].

Learn more about differential equation here:

https://brainly.com/question/25731911

#SPJ11




Let s(t) = 8t? – 12 – 480t be the equation of motion for a particle. Find a function for the velocity. v(t) Where does the velocity equal zero? t= and t Find a function for the acceleration of the

Answers

To find the velocity function, we need to find the derivative of the position function s(t) with respect to time. Taking the derivative of s(t) will give us the velocity function v(t). Answer :  a(t) = 16

s(t) = 8t^2 – 12 – 480t

To find v(t), we differentiate s(t) with respect to t:

v(t) = d/dt(8t^2 – 12 – 480t)

Differentiating each term separately:

v(t) = d/dt(8t^2) - d/dt(12) - d/dt(480t)

The derivative of 8t^2 with respect to t is 16t.

The derivative of a constant (in this case, 12) is zero, so the second term disappears.

The derivative of 480t with respect to t is simply 480.

Therefore, the velocity function v(t) is:

v(t) = 16t - 480

To find when the velocity equals zero, we set v(t) = 0 and solve for t:

16t - 480 = 0

16t = 480

t = 480/16

t = 30

So, the velocity equals zero at t = 30.

To find the acceleration function, we differentiate the velocity function v(t) with respect to t:

a(t) = d/dt(16t - 480)

Differentiating each term separately:

a(t) = d/dt(16t) - d/dt(480)

The derivative of 16t with respect to t is 16.

The derivative of a constant (in this case, 480) is zero, so the second term disappears.

Therefore, the acceleration function a(t) is:

a(t) = 16

Learn more about  velocity  : brainly.com/question/30559316

#SPJ11


It is NOT B
Question 23 Determine the convergence or divergence of the SERIES (−1)n+¹_n³ n=1 n² +π A. It diverges B. It converges absolutely C. It converges conditionally D. 0 E. NO correct choices. OE O A

Answers

The given answer choices do not include an option for a convergent series, so none of the provided choices (A, B, C, D, E) are correct.

To determine the convergence or divergence of the series ∑((-1)^(n+1) / (n^3 + π)), where n starts from 1, we can use the Alternating Series Test.

The Alternating Series Test states that if the terms of an alternating series satisfy three conditions:

1) The terms alternate in sign: (-1)^(n+1)

2) The absolute value of the terms decreases as n increases: 1 / (n^3 + π)

3) The absolute value of the terms approaches zero as n approaches infinity.

Then the series converges.

In this case, the series satisfies the first condition since the terms alternate in sign. However, to determine if the other two conditions are satisfied, we need to check the behavior of the absolute values of the terms.

Taking the absolute value of each term, we get:

|((-1)^(n+1) / (n^3 + π))| = 1 / (n^3 + π).

We can observe that as n increases, the denominator (n^3 + π) increases, and thus the absolute value of the terms decreases. Additionally, since n is a positive integer, the denominator is always positive.

Now, we need to determine if the absolute value of the terms approaches zero as n approaches infinity.

As n goes to infinity, the denominator (n^3 + π) grows without bound, and the absolute value of the terms approaches zero. Therefore, the third condition is satisfied.

Since the series satisfies all three conditions of the Alternating Series Test, we can conclude that the series converges.

However, the given answer choices do not include an option for a convergent series, so none of the provided choices (A, B, C, D, E) are correct.

To learn more about convergence click here:

brainly.com/question/3176739

#SPJ11

Does lim 2x+y (x,y) → (0,0) x2 +xy4 + 18 the limit exist?"

Answers

To determine if the limit of the function f(x, y) = 2x + y as (x, y) approaches (0, 0) exists, we need to evaluate the limit expression and check if it yields a unique value.

We can evaluate the limit by approaching (0, 0) along different paths. Let's consider two paths: the x-axis (y = 0) and the y-axis (x = 0).

For the x-axis approach, we substitute y = 0 into the function f(x, y):

lim(x,y→(0,0)) 2x + y = lim(x→0) 2x + 0 = lim(x→0) 2x = 0.

For the y-axis approach, we substitute x = 0 into the function f(x, y):

lim(x,y→(0,0)) 2x + y = lim(y→0) 2(0) + y = lim(y→0) y = 0.

Since the limit along the x-axis approach is 0 and the limit along the y-axis approach is also 0, we might conclude that the limit of f(x, y) as (x, y) approaches (0, 0) is 0. However, this is not the case.

Consider the path y = x^2. Substituting this into the function f(x, y):

lim(x,y→(0,0)) 2x + y = lim(x→0) 2x + x^2 = lim(x→0) x(2 + x) = 0.

This shows that along the path y = x^2, the limit is 0. However, since the limit of f(x, y) depends on the path of approach (in this case, the limit is different along different paths), we conclude that the limit does not exist as (x, y) approaches (0, 0).

To learn more about function click here :

brainly.com/question/31062578

#SPJ11

2. Compute the curl of the vector field at the given point.
a) F(x,y,z)=xyzi+ xyzj+ xyzk en el punto (2,1,3) b) F(x,y,z)=x2zi – 2xzj+yzk en el punto (2, - 1,3)

Answers

a) To compute the curl of the vector field F(x, y, z) = xyzi + xyzj + xyzk at the point (2, 1, 3), Answer : Curl(F) = (∂F₃/∂y - ∂F₂/∂z)i + (∂F₁/∂z - ∂F₃/∂x)j + (∂F₂/∂x - ∂F

Curl(F) = (∂F₃/∂y - ∂F₂/∂z)i + (∂F₁/∂z - ∂F₃/∂x)j + (∂F₂/∂x - ∂F₁/∂y)k

First, let's calculate the partial derivatives:

∂F₁/∂x = yz

∂F₁/∂y = xz

∂F₁/∂z = xy

∂F₂/∂x = yz

∂F₂/∂y = xz

∂F₂/∂z = xy

∂F₃/∂x = yz

∂F₃/∂y = xz

∂F₃/∂z = xy

Now, substituting these derivatives into the curl formula:

Curl(F) = (∂F₃/∂y - ∂F₂/∂z)i + (∂F₁/∂z - ∂F₃/∂x)j + (∂F₂/∂x - ∂F₁/∂y)k

       = (xz - xy)i + (xy - yz)j + (yz - xz)k

       = xz(i - j) + xy(j - k) + yz(k - i)

Now, we substitute the coordinates of the given point (2, 1, 3) into the expression for Curl(F):

Curl(F) = 2(3)(i - j) + 2(1)(j - k) + 3(1)(k - i)

       = 6(i - j) + 2(j - k) + 3(k - i)

       = 6i - 6j + 2j - 2k + 3k - 3i

       = (6 - 3)i + (-6 + 2 + 3)j + (-2 + 3)k

       = 3i - j + k

Therefore, the curl of the vector field F at the point (2, 1, 3) is 3i - j + k.

b) To compute the curl of the vector field F(x, y, z) = x²zi - 2xzj + yzk at the point (2, -1, 3), we can follow a similar process as in part (a).

Calculating the partial derivatives:

∂F₁/∂x = 2xz

∂F₁/∂y = 0

∂F₁/∂z = x²

∂F₂/∂x = -2z

∂F₂/∂y = 0

∂F₂/∂z = -2x

∂F₃/∂x = 0

∂F₃/∂y = z

∂F₃/∂z = y

Substituting these derivatives into the curl formula:

Curl(F) = (∂F₃/∂y - ∂F₂/∂z)i + (∂F₁/∂z - ∂F₃/∂x)j + (∂F₂/∂x - ∂F

Learn more about  partial derivatives : brainly.com/question/6732578

#SPJ11

What is the value of t?



t+18

2t

Answers

Answer:

  t = 18

Step-by-step explanation:

Given that chords RS = 2t and PQ = (t+18) subtend arcs marked as congruent, you want to know the value of t.

Chords

Chords that subtend congruent arcs are congruent:

  RS = PQ

  2t = t +18

  t = 18 . . . . . . . . subtract t

The value of t is 18.

<95141404393>

Other Questions
cory is constantly disrupting class, especially his least favorite subject-- math. his teacher, mr. feeny, will send him out into the hallway during math class so that he does not disrupt the class. cory begins disrupting math class even more frequently so he can get sent to the hallway. being sent to the hallway (and subsequent increases in classroom disruption) is an example of: 4. To Address - Motion of a Vibrating String A. Give the mathematical modeling of the wave equation. In simple words, derive it. B. The method of separation of variables is a classical technique that is effective in solving several types of partial differential equations. Use this method to find the formal/general solution of the wave equation. c. The method of separation of variables is an important technique in solving initial-boundary value problems and boundary value problems for linear partial differential equations. Explain where the linearity of the differential equation plays a crucial role in the method of separation of variables. D. In applying the method of separation of variables, we have encountered a variety of special functions, such as sines, cosines. Describe three or four examples of partial diferential equations that involve other special functions, such as Bessel functions, and modified Bessel functions, Legendre polynomials, Hermite polynomials, and Laguerre polynomials. (Some exploring in the library may be needed; start with the table on page 483 of a certain book.) E. A constant-coefficient second-order partial differential equation of the form au alu au a +2=0, 2 can be classified using the discriminant D = b2 - 4ac. In particular, the equation is called hyperbolic if D>0, elliptic if D PLEASE USE CALC 2 TECHNIQUES ONLY. The graph of the curve describedby the parametric equations x=2t^2 and y =t^3-3t has a point wherethere are two tangents. Identify that point. PLEASE SHOW ALL STEP the average return for supplying entrepreneurial ability is the entrepreneur'sa. normal profitb. economic profit.c. explicit profit. d. accounting profit. Find the degree 3 Taylor polynomial T3(x) of function at a = 2. T3(x) = 432 f(x) = (7x+50) 4/3 You plan to invest in securities that pay 8.0%, compounded annually. If you invest $5,000 today, how many years will it take for your investment to grow to $9,140.20? Using the information in the problem above; How many years will it take if monthly compounding, assuming everything else is the same? (Round to tenth decimal) cultural sensitivity toward local traditions is a guiding principle of which concept? a. business ethics b. ethical relativism c. collectivism d. ethical imperialism This is a related rates problemA water tank, in the shape of a cone, has water draining out, where its volume is changing at a rate of -0.25 ft3/sec. Find the rate at which the level of the water is changing when the level (h) is 1 the first successful high-level language for scientific applications was An independent research firm conducted a study of 100 randomly selected children who were participating in a program advertised to improve mathematics skills. The results showed no statistically significant improvement in mathematics skills, using a=0.05. The program sponsors complained that the study had insufficient statistical power. Assuming that the program is effective, which of the following would be an appropriate method for increasing power in this context (A) Use a two-sided test instead of a one-sided test. (B) Use a one-sided test instead of a two-sided test. (C) Use a=0.01 instead of a= 0.05. (D) Decrease the sample size to 50 children. (E) Increase the sample size to 200 children. A rectangles field is 135 meters long and 100 meters wide give the length and width of another rectangular field that has the same perimeter but a larger area Drag each tile to the correct box.Match the certifications to the job they best fit.CompTIA A+Cisco Certified Internetwork Expert (CCIE)Microsoft Certified Solutions Developer (MCSD)help desk techniciannetwork design architectsoftware developer Use bond energies provided in the supplemental information to calculate the enthalpy change for the following reaction.CH4 (g) + 3 Cl2 (g) --> CHCl3 (g) + 3 HCl (g) forensic science is strictly concerned with uncovering evidence that What was perceived advantage of CAPM as compared to other models (Markowitz and APT) by themodern investors? what are common problems with using business periodicals as sources kevin was driving his 6-year-old sister in the front seat without a child safety seat when a police officer signals him to stop. what is a likely outcome? check all that apply. sympathetic postganglionic axons innervating the thoracic viscera extend from neuron cell bodies within the___ II. Find the slope of the tan gent line to Vy + y + x = 10 at (1,8). y III. Find the equation of the tan gent line to x 3xy + y2 =-1 at (2,1). - determine whether this esries converges or diverrges (-3)^n 1 / 4^n-1