13. which pair of elements is most likely to react to form a covalently bonded species?

Answers

Answer 1

The pair of elements that is most likely to react to form a covalently bonded species are nonmetals. Nonmetals have a tendency to gain electrons to form negative ions or share electrons to form covalent bonds. This is because nonmetals have a high electronegativity, which means they have a strong attraction for electrons.

Examples of nonmetals that commonly form covalent bonds include carbon, nitrogen, oxygen, and hydrogen. For instance, two hydrogen atoms can share electrons to form a covalent bond and create a molecule of hydrogen gas (H2). Similarly, carbon and oxygen atoms can share electrons to form a covalent bond and create a molecule of carbon dioxide (CO2).

In contrast, metals are less likely to form covalent bonds and instead tend to form ionic bonds by losing electrons to form positive ions. Therefore, if you are trying to predict which pair of elements is most likely to form a covalently bonded species, you should look for nonmetals.

Know more about Covalent Bonds here:

https://brainly.com/question/19382448

#SPJ11


Related Questions

given 12.01 gram of carbon (c) = 1 mole of c. how many grams are in 3 moles of carbon (c)?

Answers

A mole is the mass of a substance made up of the same number of fundamental components. Atoms in a 12 gram example are identical to 12C. Depending on the substance, the fundamental units may be molecules, atoms, or formula units.

A mole of any substance has an agadro number value of 6.023 x 10²³. It can be used to quantify the chemical reaction's byproducts. The symbol for the unit is mol.

The formula for the number of moles formula is expressed as

Number of Moles = Mass  / Molar Mass

Molar mass of 'C' = 12.01 g / mol

Mass = n × Molar Mass = 3 × 12.01 = 36.03 g

To know more about mole, visit;

https://brainly.com/question/30307377

#SPJ1

b. write the code using a for loop to output the sum of the even numbers from 1 through 100 in a textbox with the id of total. just write the javascript. (the sum is the only output – nothing else)

Answers

The code is given as for (let i = 1; i <= 100; i++)  if (i % 2 === 0) {sum += i;}

let sum = 0

The JavaScript code that uses a for loop to output the sum of the even numbers from 1 through 100 in a textbox with the id of total:

let sum = 0;

for (let i = 1; i <= 100; i++) if (i % 2 === 0) {sum += i;}

document.getElementById(""total"").value = sum;

This code initializes a variable called sum to 0 and then loops through the numbers from 1 to 100. For each number in the loop, it checks if it is even using the modulo operator (%). If the number is even, it adds it to the sum variable. After the loop is finished, the final value of sum is assigned to the value of a textbox with an id of total using the getElementById method.

Click the below link, to learn more about Javascript:

https://brainly.com/question/30031474

#SPJ11

Sodium hypochlorite (NaOCI) is the active ingredient in laundry bleach. Typically, bleach contains 5.0% of this salt by mass, which is a 0.67 M solution. Determine the concentrations of all species and compute the pH of laundry bleach.

Answers

The concentrations of the species is 2.0 x 10⁻⁴ M, and the pH of laundry bleach is approximately 10.3.

To determine the concentrations of all species and the pH of laundry bleach, we need to start by identifying the relevant chemical reactions.

Sodium hypochlorite (NaOCl) in water undergoes hydrolysis to produce hypochlorous acid (HOCl) and hydroxide ions (OH⁻);

NaOCl + H₂O ⇌ HOCl + Na⁺ + OH⁻

The equilibrium constant for this reaction, known as the base dissociation constant ([tex]K_{b}[/tex]), is;

[tex]K_{b}[/tex] = [HOCl][OH⁻] / [NaOCl]

We can assume that the concentration of sodium hydroxide is negligible compared to that of sodium hypochlorite and hypochlorous acid, so we can simplify the expression to;

[tex]K_{b}[/tex]= [HOCl][OH⁻] / [NaOCl] ≈ [HOCl][OH⁻] / 0.67 M

Since bleach contains 5.0% by mass of NaOCl, we can calculate its molarity as;

0.05 g NaOCl / 1 g bleach x 100 g bleach / 1 L bleach x 1 mol NaOCl / 74.44 g NaOCl = 0.067 M

So, the [tex]K_{b}[/tex] expression becomes;

[tex]K_{b}[/tex] = [HOCl][OH⁻] / 0.067 M

Now, to determine the concentrations of HOCl and OH⁻, we need to use the fact that the solution is in equilibrium;

[H₂O] = [HOCl] + [OH⁻]

where [H₂O] is the initial concentration of water (55.5 M). Solving for [OH⁻], we get;

[OH⁻] = (Kb [NaOCl] / [H₂O][tex])^{0.5}[/tex]

= (1.0 x 10⁻⁷ x 0.067 / 55.5[tex])^{0.5}[/tex] = 2.0 x 10⁻⁴ M

And since [HOCl] = [H₂O] - [OH⁻], we get:

[HOCl] = 55.5 M - 2.0 x 10⁻⁴ M = 55.5 M

So the concentrations of the species in laundry bleach are:

[NaOCl] = 0.067 M

[HOCl] = 55.5 M

[OH⁻] = 2.0 x 10⁻⁴M

To compute the pH of laundry bleach, we need to calculate the concentration of hydrogen ions (H⁺) using the equation;

Kw = [H⁺][OH⁻]

where Kw is the ion product constant of water (1.0 x 10⁻¹⁴). Solving for [H⁺], we get;

[H⁺] = Kw / [OH⁻] = 1.0 x 10⁻¹⁴ / 2.0 x 10⁻⁴ M

= 5.0 x 10⁻¹¹ M

Taking the negative logarithm of [H⁺], we get the pH;

pH = -log[H⁺] = -log(5.0 x 10⁻¹¹) = 10.3

Therefore, the pH of laundry bleach is approximately 10.3.

To know more about Sodium hypochlorite here

https://brainly.com/question/15312359

#SPJ4

a student titrated a 50.0 ml of 0.15 m glycolic acid with 0.50 m naoh. answer the following questions

Answers

Here are the answers to your questions:

1. What is the balanced chemical equation for this reaction? The balanced chemical equation for the reaction between glycolic acid (HA) and sodium hydroxide (NaOH) is: HA + NaOH → NaA + H2O where NaA is the sodium salt of glycolic acid (NaHA).

2. What is the initial number of moles of glycolic acid in the solution? To find the initial number of moles of glycolic acid in the solution, we need to use the formula: moles = concentration x volume where concentration is in units of moles per liter (M) and volume is in units of liters (L). Since the volume given in the problem is in milliliters (mL), we need to convert it to liters by dividing by 1000: volume = 50.0 mL / 1000 mL/L = 0.050 L Now we can plug in the values: moles of HA = concentration of HA x volume of HA moles of HA = 0.15 M x 0.050 L moles of HA = 0.0075 mol So the initial number of moles of glycolic acid in the solution is 0.0075 mol.

3. What is the volume of NaOH needed to reach the equivalence point? The equivalence point is the point at which all of the glycolic acid has reacted with the sodium hydroxide, so the moles of NaOH added must be equal to the moles of HA in the solution. We can use this fact to find the volume of NaOH needed to reach the equivalence point: moles of NaOH = moles of HA concentration of NaOH x volume of NaOH = moles of HA Solving for volume of NaOH: volume of NaOH = moles of HA / concentration of NaOH volume of NaOH = 0.0075 mol / 0.50 M volume of NaOH = 0.015 L or 15.0 mL So the volume of NaOH needed to reach the equivalence point is 15.0 mL. I hope that helps! Let me know if you have any other questions.

About sodium hydroxide

Sodium hydroxide, also known as lye and caustic soda or caustic soda, is an inorganic compound with the chemical formula NaOH. This compound is an ionic compound in the form of a white solid composed of the sodium cation Na⁺ and the hydroxide anion OH.

You can learn more about Sodium Hydroxide at https://brainly.com/question/30460434

#SPJ11

Will a precipitate form when an aqueous solutions of 0.0015 M Ni(NO3)2 is buffered to pH = 9.50?

Answers

No, a precipitate will not form when an aqueous solution of 0.0015 M Ni(NO₃)₂ is buffered to pH = 9.50.

The solubility of a salt is influenced by several factors, including pH, temperature, and the nature of the ions involved. In this case, we are interested in the effect of pH on the solubility of Ni(NO₃)₂.

At low pH, Ni(NO₃)₂ will dissolve in water to form hydrated nickel ions, Ni²⁺, and nitrate ions, NO₃⁻. As the pH increases, the concentration of hydroxide ions, OH⁻, also increases, and they can react with the nickel ions to form insoluble hydroxide precipitates.

However, in this case, the solution is buffered to pH = 9.50, which means that the pH is maintained at a relatively constant value even when an acid or base is added to the solution. The buffer system will resist changes in pH, and the concentration of hydroxide ions will not increase significantly. Therefore, the formation of a hydroxide precipitate is unlikely.

learn more about solubility here:

https://brainly.com/question/31493083

#SPJ11

4. calculate the overall theoretical yield for the sequence, p-anisaldehyde to the ethylene ketal.
Syn. 1: Aldol Condensation 1.00 g of p-anisaldehyde 10 mL of acetone Syn. 2: Michael Addition 0.800 g of dianisaldehyde (product 1) Syn. 3: Ethylene Ketal Preparation 0.700 g of Michael Addition product [dimethyl-2,6-bis(p-methoxyphenyl)-4-oxocyclohexane-1,1-dicarboxylate] 0.800 mL of dimethylmalonate Syn. 3 product dimethyl-2,6-bis(p-methoxyphenyl)-4,4-ethylenedioxocyclohexane-1,1- dicarboxylate

Answers

overall theoretical yield for the sequence is 0.539 g of ethylene ketal product.

To calculate the theoretical yield for the sequence from p-anisaldehyde to the ethylene ketal, we need to determine the limiting reagent in each step and calculate the yield for each reaction.

Syn. 1: Aldol Condensation

1.00 g of p-anisaldehyde is used in this step.

The molar mass of p-anisaldehyde is 136.15 g/mol.

The number of moles of p-anisaldehyde used in this step is:

1.00 g / 136.15 g/mol = 0.00734 mol

Assuming the reaction proceeds to completion, the theoretical yield of the aldol product is equal to the amount of p-anisaldehyde used. Therefore, the theoretical yield of the aldol product is 1.00 g.

Syn. 2: Michael Addition

0.800 g of dianisaldehyde (product 1) is used in this step.

The molar mass of dianisaldehyde is 212.26 g/mol.

The number of moles of dianisaldehyde used in this step is:

0.800 g / 212.26 g/mol = 0.00377 mol

Assuming the reaction proceeds to completion, the theoretical yield of the Michael addition product is equal to the amount of dianisaldehyde used. Therefore, the theoretical yield of the Michael addition product is 0.800 g.

Syn. 3: Ethylene Ketal Preparation

0.700 g of Michael addition product [dimethyl-2,6-bis(p-methoxyphenyl)-4-oxocyclohexane-1,1-dicarboxylate] is used in this step.

The molar mass of the Michael addition product is 452.53 g/mol.

The number of moles of the Michael addition product used in this step is:

0.700 g / 452.53 g/mol = 0.00155 mol

0.800 mL of dimethylmalonate is used in this step.

The density of dimethylmalonate is 1.09 g/mL.

The mass of dimethylmalonate used in this step is:

0.800 mL x 1.09 g/mL = 0.872 g

The molar mass of dimethylmalonate is 160.13 g/mol.

The number of moles of dimethylmalonate used in this step is:

0.872 g / 160.13 g/mol = 0.00545 mol

The Michael addition product and dimethylmalonate react in a 1:2 stoichiometric ratio to form the ethylene ketal product. Therefore, the limiting reagent in this step is the Michael addition product.

Assuming the reaction proceeds to completion, the theoretical yield of the ethylene ketal product is:

0.00155 mol (ethylene ketal product) / 0.00155 mol (Michael addition product) x 0.700 g (Michael addition product) = 0.539 g

To know more about  ethylene refer here

https://brainly.com/question/14797464#

#SPJ11

To calculate the overall theoretical yield for the sequence from p-anisaldehyde to the ethylene ketal, we need to consider the yields of each individual step and multiply them together.

Given:

Syn. 1: 1.00 g of p-anisaldehyde

Syn. 2: 0.800 g of dianisaldehyde (product 1)

Syn. 3: 0.700 g of Michael Addition product

Syn. 3 product: dimethyl-2,6-bis(p-methoxyphenyl)-4,4-ethylenedioxocyclohexane-1,1-dicarboxylate

1. In Syn. 1, we start with 1.00 g of p-anisaldehyde. Let's assume it has a 100% yield, so the product obtained from this step is also 1.00 g.

2. In Syn. 2, we start with 0.800 g of dianisaldehyde, which is the product obtained from Syn. 1. Again, assuming a 100% yield, the product obtained from this step is also 0.800 g.

3. In Syn. 3, we start with 0.700 g of the Michael Addition product. Assuming a 100% yield, the product obtained from this step is also 0.700 g.

4. The final product is dimethyl-2,6-bis(p-methoxyphenyl)-4,4-ethylenedioxocyclohexane-1,1-dicarboxylate. However, we don't have the yield for this specific compound. Without the yield for Syn. 3 product, we cannot calculate the overall theoretical yield accurately.

Therefore, without the yield information for the final product, it is not possible to calculate the overall theoretical yield for the sequence from p-anisaldehyde to the ethylene ketal.

To know more about anisaldehyde refer here

https://brainly.com/question/30452362#

#SPJ11

Oxygen gas is collected at a pressure of 123 atm in a container which has a volume of 10.0 l. what temperature must be maintained on 0.500 moles of this gas in order to maintain this pressure? express the temperature in degrees celsius.

Answers

To maintain a pressure of 123 atm in a 10.0 L container with 0.500 moles of oxygen gas, the required temperature in degrees Celsius needs to be determined.

Explanation: According to the ideal gas law, PV = nRT, where P is the pressure, V is the volume, n is the number of moles, R is the gas constant, and T is the temperature. Rearranging the equation, T = PV / nR, we can calculate the temperature.

Given that the pressure is 123 atm, the volume is 10.0 L, the number of moles is 0.500, and R is the ideal gas constant (0.0821 L·atm/mol·K), we can substitute the values into the equation. Thus, T = (123 atm) * (10.0 L) / (0.500 mol) * (0.0821 L·atm/mol·K). Solving this equation gives us the temperature in Kelvin. To convert it to degrees Celsius, subtract 273.15 from the Kelvin value.

Learn more about  ideal gas law here:

https://brainly.com/question/12624936

#SPJ11

using the volume you just calculated, determine the moles of edta that reacted with the calcium ions.

Answers

In order to determine the moles of edta that reacted with the calcium ions, we need to use the volume of the edta solution that was used in the reaction.

The volume of edta solution can be used to calculate the moles of edta that reacted with the calcium ions using the formula: moles of edta = (volume of edta solution) x (concentration of edta solution).

Once we have determined the moles of edta that were present in the solution, we can then calculate the moles of edta that reacted with the calcium ions.

This can be done by subtracting the moles of unreacted edta from the total moles of edta used in the reaction.

Read more about the Moles.

https://brainly.com/question/15209553

#SPJ11

Acrylonitrile, C3H3N, is the starting material for


the production of a kind of synthetic fiber


acrylics) and can be made from propylene,


C3H6, by reaction with nitric oxide, NO, as


follows:


4 C3H6 (g) + 6 NO (g) → 4 C3H3N (s) + 6 H2O


(1) + N2 (g)


What is the limiting reagent if 168. 36 g of


C3H6 reacts with 180. 06 g of NO?

Answers

Acrylonitrile, C3H3N, is the starting material for the production of a kind of synthetic fiber acrylics) and can be made from propylene,  the ratio of moles is less than the stoichiometric ratio of 4:6, [tex]C_3H_6[/tex] is the limiting reagent.

To determine the limiting reagent, we need to compare the moles of each reactant and identify which one is present in the smallest amount. The limiting reagent is the one that will be completely consumed in the reaction, thereby determining the maximum amount of product that can be formed.

First, let's calculate the moles of each reactant using their molar masses:

Molar mass of [tex]C_3H_6[/tex] (propylene): [tex]\(3 \times 12.01 + 6 \times 1.01 = 42.08 \, \text{g/mol}\)[/tex]

Moles of [tex]C3H6[/tex]  = [tex]\(\frac{{168.36 \, \text{g}}}{{42.08 \, \text{g/mol}}} = 4.00 \, \text{mol}\)[/tex]

Molar mass of NO (nitric oxide): \(14.01 + 16.00 = 30.01 \, \text{g/mol}\)

Moles of NO = [tex]\(\frac{{180.06 \, \text{g}}}{{30.01 \, \text{g/mol}}} = 6.00 \, \text{mol}\)[/tex]

According to the balanced chemical equation, the stoichiometric ratio between [tex]C_3H_6[/tex] and NO is 4:6. This means that for every 4 moles of [tex]C_3H_6[/tex] 6 moles of NO are required.

To determine the limiting reagent, we compare the ratio of moles present. We have 4.00 moles of [tex]C3H6[/tex]and 6.00 moles of NO. The ratio of moles for [tex]C3H6[/tex] :NO is 4:6 or simplified to 2:3.

Since the ratio of moles is less than the stoichiometric ratio of 4:6, [tex]C_3H_6[/tex] is the limiting reagent. This means that 4.00 moles of[tex]C_3H_6[/tex] will completely react with 6.00 moles of NO, producing the maximum amount of product possible.

[tex]\[4 \, \text{C}_3\text{H}_6(g) + 6 \, \text{NO}(g) \rightarrow 4 \, \text{C}_3\text{H}_3\text{N}(s) + 6 \, \text{H}_2\text{O}(l) + \text{N}_2(g)\][/tex]

Learn more about limiting reagent here:

https://brainly.com/question/31171741

#SPJ11

be sure to answer all parts. using data from the appendix, calculate δs o rxn and δssurr for each of the reactions and determine if each is spontaneous at 25°c. (a) 2 kclo4(s) → 2 kclo3(s) o2(g)

Answers

The balanced chemical equation for the given reaction is:

2KClO₄ (s) → 2KClO₃ (s) + O₂(g)

To calculate the standard enthalpy change of the reaction (ΔH°rxn) using standard enthalpies of formation, we can use the following equation:

ΔH°rxn = ΣnΔH°f(products) - ΣnΔH°f(reactants)

where ΔH°f is the standard enthalpy of formation and n is the stoichiometric coefficient.

Using the standard enthalpies of formation data from the appendix, we get:

ΔH°rxn = [2ΔH°f(KClO3) + ΔH°f(O2)] - [2ΔH°f(KClO4)]

= [2(-285.83) + 0] - [2(-391.61)]

= 211.56 kJ/mol

To calculate the standard entropy change of the reaction (ΔS°rxn) using standard entropies, we can use the following equation:

ΔS°rxn = ΣnΔS°(products) - ΣnΔS°(reactants)

Using the standard entropies data from the appendix, we get:

ΔS°rxn = [2ΔS°(KClO3) + ΔS°(O2)] - [2ΔS°(KClO4)]

= [2(143.95) + 205.03] - [2(123.15)]

= 346.63 J/(mol*K)

To calculate the standard Gibbs free energy change of the reaction (ΔG°rxn), we can use the following equation:

ΔG°rxn = ΔH°rxn - TΔS°rxn

where T is the temperature in Kelvin (25°C = 298 K).

ΔG°rxn = 211.56 kJ/mol - (298 K * 346.63 J/(mol*K))

= 211.56 kJ/mol - 101.54 kJ/mol

= 110.02 kJ/mol

The standard Gibbs free energy change for this reaction is positive, indicating that the reaction is non-spontaneous under standard conditions.

Get to know more about standard enthalpy and entropy visit:

https://brainly.com/question/13765848

#SPJ11

Oil is sometimes found trapped beneath a ‘cap’. Shale is good at reflecting sound waves underground. Why does this mean that geophysicists must scan the rocks with sound waves from different points?

Answers

Geophysicists use sound waves to scan rocks from different points because shale, which is good at reflecting sound waves underground, can create a barrier or "cap" that traps oil beneath it. By scanning the rocks from different angles and points, geophysicists can gather more comprehensive data and identify the location and extent of the trapped oil.

Shale is a type of sedimentary rock that has a high capacity for reflecting sound waves. When oil is present beneath the shale, it acts as a barrier or cap that prevents the oil from migrating further. To locate and assess the potential oil reservoir, geophysicists use a technique called seismic reflection, which involves sending sound waves into the ground and analyzing the reflected waves.

By scanning the rocks from different points or angles, geophysicists can obtain multiple sets of seismic data that provide a more complete picture of the subsurface structure. This allows them to analyze the reflections and variations in the sound waves, which can indicate the presence of oil traps or reservoirs. By combining the data from different points, geophysicists can create a three-dimensional model of the subsurface and make more accurate predictions about the location and extent of the oil reservoirs.

Learn more about Geophysicists here:

https://brainly.com/question/32469429

#SPJ11

Help! Find the volume of 200grams of CO2 at 280K and pressure 1. 2 Atm. Use R=. 0821 find moles of CO2 first. ​

Answers

To find the volume of 200 grams of [tex]CO_2[/tex] at 280K and 1.2 Atm pressure, we need to first calculate the number of moles of [tex]CO_2[/tex] using the ideal gas law equation and then use the molar volume to find the volume of the gas.

The ideal gas law equation is given by PV = nRT, where P is the pressure, V is the volume, n is the number of moles, R is the gas constant, and T is the temperature. We are given the values of pressure (1.2 Atm), temperature (280K), and the gas constant (R = 0.0821 L·atm/(mol·K)).

To find the number of moles, we rearrange the ideal gas law equation to solve for n:

n = PV / (RT)

Substituting the given values, we have:

n = (1.2 Atm) * V / [(0.0821 L·atm/(mol·K)) * (280K)]

Now we can calculate the number of moles. Once we have the number of moles, we can use the molar volume (which is the volume occupied by one mole of gas at a given temperature and pressure) to find the volume of 200 grams of [tex]CO_2[/tex].

The molar mass of [tex]CO_2[/tex] is 44.01 g/mol, so the number of moles can be converted to grams using the molar mass. Finally, we can use the molar volume (22.4 L/mol) to find the volume of 200 grams of [tex]CO_2[/tex].

Learn more about ideal gas law here:

https://brainly.com/question/6534096

#SPJ11

hydrogen-3 has a half-life of 12.3 years. how many years will it take for 570.7 mg 3h to decay to 0.56 mg 3h ? time to decay: years

Answers

The number of years it will take for 570.7 mg ³H to decay to 0.56 mg ³H is approximately 103.1 years.

To determine the time it takes for 570.7 mg of hydrogen-3 (³H) to decay to 0.56 mg, we'll use the half-life formula:

N = N₀ * (1/2)^(t/T)
where:
N = remaining amount of ³H (0.56 mg)
N₀ = initial amount of ³H (570.7 mg)
t = time in years (unknown)
T = half-life (12.3 years)

Rearrange the formula to solve for t:

t = T * (log(N/N₀) / log(1/2))

Plugging in the values:

t = 12.3 * (log(0.56/570.7) / log(1/2))
t ≈ 103.1 years

It will take approximately 103.1 years for 570.7 mg of hydrogen-3 to decay to 0.56 mg.

Learn more about half-life here: https://brainly.com/question/29599279

#SPJ11

calculate the pka values for the following acids. a) methanol (ka = 2.9 x 10-16) b) citric acid (ka = 7.2 x 10-4)

Answers

a) The pKa value for methanol can be calculated using the formula: pKa = -log(Ka).

pKa = -log(2.9 x 10^(-16)) = 15.54

b) The pKa value for citric acid can also be calculated using the formula: pKa = -log(Ka).

pKa = -log(7.2 x 10^(-4)) = 3.14

The pKa value represents the acidity of an acid. It is the negative logarithm of the acid dissociation constant (Ka), which indicates the extent to which the acid donates protons in a solution. Lower pKa values indicate stronger acids.

In the case of methanol, with a Ka value of 2.9 x 10^(-16), its pKa is 15.54. This value suggests that methanol is a very weak acid because it has a low tendency to donate protons in a solution.

On the other hand, citric acid has a Ka value of 7.2 x 10^(-4), resulting in a pKa of 3.14. This value indicates that citric acid is a relatively stronger acid compared to methanol, as it has a higher tendency to donate protons in a solution.

In summary, the pKa values for methanol and citric acid are 15.54 and 3.14, respectively, indicating their differing levels of acidity.

Learn more about pKa here:

https://brainly.com/question/30655117

#SPJ11

if 1.40 g g of water is enclosed in a 1.5 −l − l container, will any liquid be present? IF so, what mass of liquid?

Answers

Assuming that the container is completely filled with water, no liquid other than water will be present.

However, if the container is not completely filled, there may be some air or gas present. The mass of the liquid water in the container is 1.40 g, as stated in the question.
to determine if any liquid will be present in the 1.5 L container with 1.40 g of water, we need to calculate the volume occupied by the water and compare it to the container's volume.

1. First, find the volume of water by dividing its mass by its density. The density of water is approximately 1 g/mL or 1000 g/L.
Volume = mass / density = 1.40 g / (1000 g/L) = 0.0014 L

2. Compare the volume of water to the container's volume:
0.0014 L (water) < 1.5 L (container)

Since the volume of water is less than the container's volume, the liquid will be present. The mass of liquid present is 1.40 g.

To know more about density, visit:

https://brainly.com/question/29775886

#SPJ11

Suppose you are titrating 15.0 mL of a saturated calcium iodate solution using a 0.0550 M solution of sodium thiosulfate. In your first trial, you use 23.44 mL of thiosulfate solution to reach the endpoint of the titration. Calculate the iodate concentration, the molar solubility of calcium iodate in the saturated solution, and the Ksp.

Answers

The iodate concentration is 0.0226 M, the molar solubility of calcium iodate is 0.0165 M, and the Ksp is 4.75 x 10⁻⁷

We know that the molar solubility of calcium iodate (S) is equal to the concentration of calcium ions ([Ca²⁺]) and iodate ions ([IO₃⁻]):

S = [Ca²⁺] = [IO₃⁻]

Therefore, we can substitute S for [Ca²⁺] and [IO₃⁻] in the Ksp expression:

Ksp = S x S² = S³

Solving for S, we get:

S = [tex](Ksp)^(1/3)[/tex] = (4.75 x 10⁻⁷))[tex]^(1/3)[/tex] = 0.0165 M

Therefore, the iodate concentration is:

[IO₃⁻] = [Ca²⁺] = S = 0.0165 M

And the concentration of the calcium iodate solution is:

[Ca(IO₃)₂] = 0.0429 M

Finally, we can calculate the Ksp using the concentration of calcium and iodate ions:

Ksp = [Ca²⁺][IO₃⁻]² = (0.0165 M)³ = 4.75 x 10⁻⁷

To know more about calcium iodate refer here:

https://brainly.com/question/31041168#

#SPJ11

You and your friend decide to donate blood together one Friday afternoon. After your donation your friend suggests the two of you go for drinks at a nearby bar. Why might this be a bad idea? Alcohol is a vasodilator, meaning it will widen your capillaries and thus lower your blood pressure making you pass out. Alcohol is a vasodilator, meaning it will shrink your capillaries and thus lower your blood pressure making you pass out. Alcohol is a vasodilator, meaning it will widen your capillaries and thus increase your blood pressure making you pass out. Alcohol is a vasodilator, meaning it will shrink your capillaries and thus increase your blood pressure making you pass out. Trick question: it is recommended you drink after giving blood because it will thwart bacterial infection.

Answers

It is not recommended to consume alcohol after donating blood. This is because alcohol is a vasodilator, meaning it will widen your capillaries and lower your blood pressure, which can make you feel dizzy and pass out.

It is important to remember that donating blood is a selfless act that can save lives, and it is important to take care of yourself after the donation.
Alcohol consumption can also have a negative effect on the body's ability to clot, which can lead to prolonged bleeding or even complications during the donation process. Additionally, alcohol can dehydrate the body, which can be especially dangerous after losing a significant amount of fluids during blood donation.
While it may be tempting to celebrate a good deed with a drink, it is important to prioritize your health and well-being after donating blood. Instead, hydrate with water or other non-alcoholic beverages, and rest for a little while before engaging in any strenuous activities. It is recommended to wait at least 24 hours before consuming alcohol after donating blood, to allow your body to fully recover.

For more such question on vasodilator

https://brainly.com/question/31443188

#SPJ11

It is not recommended to consume alcohol after donating blood. This is because alcohol is a vasodilator, meaning it will widen your capillaries and lower your blood pressure, which can make you feel dizzy and pass out.

 It is important to remember that donating blood is a selfless act that can save lives, and it is important to take care of yourself after the donation. Alcohol consumption can also have a negative effect on the body's ability to clot, which can lead to prolonged bleeding or even complications during the donation process. Additionally, alcohol can dehydrate the body, which can be especially dangerous after losing a significant amount of fluids during blood donation. While it may be tempting to celebrate a good deed with a drink, it is important to prioritize your health and well-being after donating blood. Instead, hydrate with water or other non-alcoholic beverages, and rest for a little while before engaging in any strenuous activities. It is recommended to wait at least 24 hours before consuming alcohol after donating blood, to allow your body to fully recover.

Learn more about vasodilator here:

brainly.com/question/31443188

#SPJ11

Calculate ΔGrxn under these conditions: PH2S=1.94 atm ; PSO2=1.39 atm ; PH2O=0.0149 atm . Express your answer with the appropriate units. Is the reaction more or less spontaneous under these conditions than under standard conditions?

Answers

ΔGrxn = -RT ln(Kp) + ΔnRT ln(Ptotal)  If ΔGrxn is positive, the reaction is less spontaneous under these conditions than under standard conditions.

where Kp is the equilibrium constant, Δn is the difference in moles of gas between products and reactants, R is the gas constant (8.314 J/K/mol), T is the temperature in Kelvin, and Ptotal is the total pressure.

Using this equation, we can calculate ΔGrxn for the reaction:

2H2S(g) + O2(g) → 2SO2(g) + 2H2O(g)

At standard conditions (1 atm pressure for all gases), the equilibrium constant Kp is 1.12 x 10^-23, and ΔGrxn is +109.3 kJ/mol.

At the given conditions (PH2S=1.94 atm ; PSO2=1.39 atm ; PH2O=0.0149 atm), the total pressure is Ptotal = PH2S + PSO2 + PH2O = 3.35 atm. The difference in moles of gas is Δn = (2 + 0) - (2 + 2) = -2. Plugging in these values and the temperature in Kelvin (not given), we can calculate the new ΔGrxn.

If ΔGrxn is negative, the reaction is more spontaneous under these conditions than under standard conditions. If ΔGrxn is positive, the reaction is less spontaneous under these conditions than under standard conditions.

Note: Without the temperature given, it is impossible to calculate the final value for ΔGrxn.

learn more about reaction here:

https://brainly.com/question/28984750

#SPJ11

Use the data in Appendix B in the textbook to find standard enthalpies of reaction (in kilojoules) for the following processes.
Part A
C(s)+CO2(g)→2CO(g)
Express your answer using four significant figures.
Part B
2H2O2(aq)→2H2O(l)+O2(g)
Express your answer using four significant figures.
Part C
Fe2O3(s)+3CO(g)→2Fe(s)+3CO2(g)

Answers

Answer;Part A:

To find the standard enthalpy change for the reaction:

C(s) + CO2(g) → 2CO(g)

We need to use the standard enthalpies of formation for each of the compounds involved, which can be found in Appendix B of the textbook:

C(s): ΔH°f = 0 kJ/mol

CO2(g): ΔH°f = -393.5 kJ/mol

CO(g): ΔH°f = -110.5 kJ/mol

Using the equation:

ΔH°rxn = ΣΔH°f(products) - ΣΔH°f(reactants)

we can calculate the standard enthalpy change for the reaction:

ΔH°rxn = 2(ΔH°f[CO]) - ΔH°f[CO2] - ΔH°f[C]

ΔH°rxn = 2(-110.5 kJ/mol) - (-393.5 kJ/mol) - 0 kJ/mol

ΔH°rxn = -283.0 kJ/mol

Therefore, the standard enthalpy change for the reaction is -283.0 kJ/mol.

Part B:

To find the standard enthalpy change for the reaction:

2H2O2(aq) → 2H2O(l) + O2(g)

We can use the standard enthalpies of formation for each of the compounds involved, which can be found in Appendix B of the textbook:

H2O2(aq): ΔH°f = -187.8 kJ/mol

H2O(l): ΔH°f = -285.8 kJ/mol

O2(g): ΔH°f = 0 kJ/mol

Using the equation:

ΔH°rxn = ΣΔH°f(products) - ΣΔH°f(reactants)

we can calculate the standard enthalpy change for the reaction:

ΔH°rxn = 2(ΔH°f[H2O(l)]) + ΔH°f[O2(g)] - 2(ΔH°f[H2O2(aq)])

ΔH°rxn = 2(-285.8 kJ/mol) + 0 kJ/mol - 2(-187.8 kJ/mol)

ΔH°rxn = -196.4 kJ/mol

Therefore, the standard enthalpy change for the reaction is -196.4 kJ/mol.

Part C:

To find the standard enthalpy change for the reaction:

Fe2O3(s) + 3CO(g) → 2Fe(s) + 3CO2(g)

We can use the standard enthalpies of formation for each of the compounds involved, which can be found in Appendix B of the textbook:

Fe2O3(s): ΔH°f = -824.2 kJ/mol

CO(g): ΔH°f = -110.5 kJ/mol

Fe(s): ΔH°f = 0 kJ/mol

CO2(g): ΔH°f = -393.5 kJ/mol

Using the equation:

ΔH°rxn = ΣΔH°f(products) - ΣΔH°f(reactants)

we can calculate the standard enthalpy change for the reaction:

ΔH°rxn = 2(ΔH°f[Fe(s)]) + 3(ΔH°f[CO2(g)]) - (ΔH°f[Fe2O3(s)] + 3(ΔH°f[CO

learn more about  standard enthalpy change

https://brainly.com/question/28303513?referrer=searchResults

#SPJ11

Why a measured cell potential may be higher than the theoretical cell potential?

Answers

There are several reasons why a measured cell potential may be higher than the theoretical cell potential:

Concentration effects: The theoretical cell potential is calculated based on standard conditions, which assume that the concentrations of the reactants and products are 1 M and that the temperature is 25°C.

In real-world situations, the concentrations of the reactants and products can deviate from 1 M, which can lead to a change in the cell potential.

If the concentration of one of the reactants increases, the cell potential can shift in a direction that favors the production of the other reactant.

Impurities: If the reactants or the electrolyte contain impurities, these impurities can interfere with the electrochemical reaction and affect the cell potential.

For example, if there are other substances present that can react with one of the reactants, this can lead to a change in the cell potential.

Non-ideal behavior: The theoretical cell potential assumes that the behavior of the reactants and products is ideal, meaning that there are no interactions between the particles that deviate from what is expected based on their chemical properties.

In reality, the behavior of the reactants and products can deviate from ideal behavior, which can affect the cell potential.

Measurement errors: Finally, it is possible that errors can occur during the measurement of the cell potential, which can result in a higher measured value than the theoretical value.

For example, the electrodes may not be placed correctly, the voltmeter may not be calibrated correctly, or there may be electrical noise that interferes with the measurement.

In summary, there are several factors that can cause a measured cell potential to be higher than the theoretical cell potential, including concentration effects, impurities, non-ideal behavior, and measurement errors.

To know more about cell potential refer here

https://brainly.com/question/1313684#

#SPJ11

how many different signals will be present in the proton nmr for ethylpropanoate? (CH3CH2CO2CH2CH3) (Do not count TMS as one of the signal!)A. 2B. 3C. 4D. 5E. 6

Answers

Ethylpropanoate (CH3CH2CO2CH2CH3) will have 4 (option c) different signals in its proton NMR spectrum.

In the proton NMR spectrum of ethylpropanoate (CH3CH2CO2CH2CH3), there are four unique proton environments present.

These are the methyl group adjacent to the carbonyl group ([tex]CH_3CO[/tex]), the methylene group attached to the ester group ([tex]CH_2O[/tex]), the methylene group in the middle of the ethyl chain ([tex]CH_2[/tex]), and the terminal methyl group ([tex]CH_3[/tex]).

Each of these environments generates a distinct signal in the NMR spectrum. Therefore, the correct answer for the number of different signals in the proton NMR of ethylpropanoate is 4, which corresponds to option C.

For more such questions on proton, click on:

https://brainly.com/question/1481324

#SPJ11

D) There are 5 different signals present in the proton NMR for ethyl propanoate.

The molecule contains six unique proton environments: three methyl groups, two methylene groups, and one carbonyl group. The three methyl groups are equivalent, so they will appear as one signal. The two methylene groups are also equivalent, so they will appear as another signal. The carbonyl group will appear as a separate signal. In addition, the ethyl and propanoate groups are connected by a single bond, so there will be a coupling between the protons on these two groups, resulting in two additional signals. Thus, there will be a total of 5 signals in the proton NMR spectrum for ethyl propanoate.

learn more about NMR here:

https://brainly.com/question/31076123

#SPJ11

Find the volume of 14.5g of krypton pentasulfide (KrSs) at STP.

Answers

Krypton is a chemical element with the symbol Kr and atomic number 36. Its name derives from the Ancient Greek term kryptos, which means "the hidden one."

Thus, It is a rare noble gas that is tasteless, colourless, and odourless. It is used in fluorescent lighting frequently together with other rare gases. Chemically, krypton is unreactive.

Krypton is utilized in lighting and photography, just like the other noble gases. Krypton plasma is helpful in brilliant, powerful gas lasers (krypton ion and excimer lasers), each of which resonates and amplifies a single spectral line.

Krypton light has multiple spectral lines. Additionally, krypton fluoride is a practical laser medium.

Thus, Krypton is a chemical element with the symbol Kr and atomic number 36. Its name derives from the Ancient Greek term kryptos, which means "the hidden one."

Learn more about Krypton, refer to the link:

https://brainly.com/question/2364337

#SPJ1

When hydroxylapatite, Ca, (POA), OH, dissolves in aqueous acid, which resulting component will participate in multiple equilibria? Select the correct answer below: O Ca? + O PO O OH O none of the above

Answers

The resulting components that will participate in multiple equilibria when hydroxylapatite dissolves in aqueous acid are Ca2+ and HPO42-.

When hydroxylapatite dissolves in aqueous acid, it undergoes acid-base reactions that produce multiple species in solution. The dissolution can be represented by the following equation:

Ca10(PO4)6(OH)2(s) + 12H+ (aq) → 10Ca2+ (aq) + 6HPO42- (aq) + 2H2O(l)In this equation, the solid hydroxylapatite (Ca10(PO4)6(OH)2) reacts with 12 hydrogen ions (H+) from the aqueous acid to form 10 calcium ions (Ca2+), 6 hydrogen phosphate ions (HPO42-), and 2 water molecules (H2O).

To know more about hydroxylapatite visit:

https://brainly.com/question/14630752

#SPJ11

list the three states of matter in order of increasing molecular disorder. rank from the most ordered to the most disordered matter. to rank items as equivalent, overlap them.

Answers

The three states of matter, ranked from the most ordered to the most disordered, are: solid, liquid, and gas.

In a solid, particles are arranged in a fixed and orderly pattern, making it the most ordered state of matter. Liquids have more molecular disorder than solids, as particles are more randomly arranged and can flow past one another. Finally, gases are the most disordered state of matter, with particles moving freely and occupying any available space.

Solids have a definite shape and volume due to the strong intermolecular forces holding the particles in place. As energy is added and the temperature increases, these forces weaken, causing the particles to vibrate more rapidly and transition into the liquid state. Liquids have a definite volume but take the shape of their container, with particles being able to move past each other more freely. Further energy input causes the liquid to become a gas, in which the particles are widely spaced and can move rapidly in all directions. Gases have no fixed shape or volume and will expand to fill their container.

In summary, the order of increasing molecular disorder for the three states of matter is: solid (most ordered), liquid, and gas (most disordered).

Know more about Molecular Disorder here:

https://brainly.com/question/31475993

#SPJ11

1.


How many grams of Mno, are required to obtain 0. 028 moles?


2. How many mole are present in 5. 7 L of methane


(CH4) gas at STP?


3. How many molecules of lactose, C12,H22, O11,are present in 12 g of substance?


4. How many grams are required for 1. 5 x 102° molecules of Cl2 gas?


Please help

Answers

To obtain 0.028 moles of MnO, we need to know the molar mass of MnO which is 70.94 g/mol. Mass = moles x molar mass = 0.028 mol x 70.94 g/mol = 1.986 g MnO (rounded to 3 significant figures).

Therefore, we need 1.986 grams of MnO to obtain 0.028 moles.2. At STP, 1 mole of any gas occupies 22.4 L. Therefore, 5.7 L of methane (CH4) gas at STP would be: 5.7 L ÷ 22.4 L/mol = 0.255 mol of CH4.3.

Firstly, we need to know the molar mass of lactose.

The molar mass of C12,H22,O11 is (12 x 12.01 g/mol) + (22 x 1.01 g/mol) + (11 x 16.00 g/mol) = 342.34 g/mol.

Then, we can use the following formula to calculate the number of molecules: Number of molecules = (mass in grams ÷ molar mass) x Avogadro's number= (12 g ÷ 342.34 g/mol) x 6.02 x 1023 molecules/mol= 2.11 x 1023 molecules (rounded to 3 significant figures).

Therefore, there are 2.11 x 1023 molecules of lactose in 12 g of substance.

We need to know the molar mass of Cl2 which is 70.91 g/mol.

The number of molecules is given in the question: 1.5 x 1020 molecules.

Then, we can calculate the number of moles of Cl2 using the following formula: Number of moles = a number of molecules ÷ Avogadro's number= 1.5 x 1020 ÷ 6.02 x 1023 mol-1= 2.49 x 10-4 mol (rounded to 3 significant figures).

Finally, we can calculate the mass of Cl2:Mass = number of moles x molar mass= 2.49 x 10-4 mol x 70.91 g/mol= 0.0177 g (rounded to 3 significant figures).

Therefore, we need 0.0177 g of Cl2 gas to obtain 1.5 x 1020 molecules.

Learn more about moles here ;

https://brainly.com/question/15209553

#SPJ11

do sample problem 13.10 in the 8th ed of silberberg. a 0.943 g sample of magnesium chloride dissolves in 96 g of water in a flask. how many moles of cl ? enter to 4 decimal places.

Answers

There are approximately 0.0198 moles of chloride ions (Cl-) in the 0.943 g sample of magnesium chloride dissolved in 96 g of water, rounded to four decimal places.

To solve this problem, we need to determine the number of moles of chloride ions (Cl-⁻) in the 0.943 g sample of magnesium chloride (MgCl₂) dissolved in 96 g of water.

First, we must calculate the molar mass of MgCl₂.

The molar masses of Mg and Cl are 24.31 g/mol and 35.45 g/mol, respectively.

So, the molar mass of MgCl₂ = 24.31 + (2 * 35.45) = 95.21 g/mol.

Next, we will find the moles of MgCl₂ in the 0.943 g sample. Moles = mass / molar mass = 0.943 g / 95.21 g/mol ≈ 0.0099 mol of MgCl₂.

Now, since there are 2 moles of Cl⁻ for each mole of MgCl₂, the moles of Cl⁻ in the sample will be 2 * 0.0099 mol = 0.0198 mol.

Learn more about moles at

https://brainly.com/question/31108110

#SPJ11

How many liters of gas B must react to give 1 L of gas D at the same temperature and pressure? Express your answer as an integer and include the appropriate units.

Answers

One liter of gas D can be produced by reacting one liter of gas B at the same temperature and pressure.

What is the volume of gas B required to produce one liter of gas D at the same temperature and pressure?

To produce gas D from gas B, the reaction must be carried out in a 1:1 stoichiometric ratio. This means that one mole of gas D is produced for every mole of gas B consumed in the reaction. Since both gases are at the same temperature and pressure, the volume ratio can be directly equated to the mole ratio. Therefore, one liter of gas B must react to give one liter of gas D.

It is important to note that the above relationship only holds true for the specific reaction in question. If the reaction were to involve different gases or conditions, the stoichiometric ratio and volume relationship would differ.

Learn more about stoichiometric ratio

brainly.com/question/6907332

#SPJ11

A 0. 0733 L balloon contains 0. 00230 mol


of I2 vapor at a pressure of 0. 924 atm

Answers

A 0.0733 L balloon contains 0.00230 mol of I2 vapor at pressure of 0.924 atm. information allows us to analyze the behavior of the gas using the ideal gas law equation is PV = nRT

Where:

P = Pressure (in atm)

V = Volume (in liters)

n = Number of moles

R = Ideal gas constant (0.0821 L·atm/mol·K)

T = Temperature (in Kelvin)

We have the values for pressure (0.924 atm), volume (0.0733 L), and number of moles (0.00230 mol). To find the temperature, we rearrange the equation as follows:

T = PV / (nR)

Substituting the given values:

T = (0.924 atm) * (0.0733 L) / (0.00230 mol * 0.0821 L·atm/mol·K)

Calculating this expression gives us:

T = 35.1 K

Therefore, the temperature of the I2 vapor in the balloon is approximately 35.1 Kelvin.

Learn more about ideal gas law equation here

https://brainly.com/question/3778152

#SPJ11

a) A solution was prepared by dissolving 0.02 moles of acetic acid (HOAc; pKa= 4.8) in water to give 1 liter of solution. What is the pH?b) To this solution was then added 0.008 moles of concentrated sodium hydroxide (NaOH). What is the new pH? (In this problem, you may ignore changes in volume due to the addition of NaOH).c) An additional 0.012 moles of NaOH is then added. What is the pH?

Answers

A solution was prepared by dissolving 0.02 moles of acetic acid in water to give 1 liter of solution then the pH is 2.88.

Solution was then added 0.008 moles of concentrated sodium hydroxide (NaOH) then the new pH is 4.56.

When additional 0.012 moles of NaOH is then added then the pH is 12.3.

 

a) To find the pH of a solution of 0.02 moles of acetic acid in water, we need to use the acid dissociation constant (Ka) of acetic acid, which is 1.74 x 10⁻⁵. We can set up an equation for the dissociation of acetic acid in water:

HOAc + H₂O ⇌ H₃O⁺ + OAc⁻

Ka = [H₃O⁺][OAc-] / [HOAc]

At equilibrium, the concentration of HOAc that dissociates is x, so [H₃O⁺] = x and [OAc⁻] = x. The concentration of undissociated HOAc is (0.02 - x).

Substituting these values into the equilibrium expression and solving for x, we get:

Ka = x² / (0.02 - x) = 1.74 x 10⁻⁵

x = [H₃O⁺] = 1.32 x 10⁻³ M

pH = -㏒[H³O⁺] = 2.88

b) When 0.008 moles of NaOH is added, it reacts with acetic acid to form sodium acetate and water:

HOAc + NaOH ⇌ NaOAc + H₂O

The reaction consumes some of the acetic acid and increases the concentration of acetate ions. We can use the Henderson-Hasselbalch equation to calculate the new pH:

pH = pKa + ㏒([OAc⁻]/[HOAc])

At equilibrium, the concentration of acetate ions is:

[OAc⁻] = [NaOAc] = (0.008 mol) / (1 L) = 0.008 M

The concentration of undissociated HOAc is (0.02 - 0.008) = 0.012 M. Substituting these values into the Henderson-Hasselbalch equation, we get:

pH = 4.8 + ㏒(0.008/0.012) = 4.56

c) Adding an additional 0.012 moles of NaOH will cause all of the remaining HOAc to react with NaOH. The reaction will produce 0.012 moles of sodium acetate and water. The concentration of acetate ions will increase to:

[OAc⁻] = [NaOAc] / (1 L) = (0.008 + 0.012) M = 0.02 M

The concentration of H₃O⁺ ions can be calculated using the equation for the dissociation of water:

H₂O ⇌ H₃O⁺ + OH⁻

Kw = [H₃O⁺][OH⁻] = 1.0 x 10⁻¹⁴

[H₃O⁺] = Kw / [OH⁻] = 1.0 x 10⁻¹⁴ / 0.02 = 5.0 x 10⁻¹³ M

pH = -㏒[H₃O⁺] = 12.3

Therefore, the pH of the solution after the addition of 0.012 moles of NaOH is 12.3. This problem demonstrates how to calculate pH changes in an acid-base system due to the addition of a strong base.

To know more about the Solution, here

https://brainly.com/question/31811675

#SPJ4

define a relation t from to as follows. for all real numbers to as means that . is t a function? explain

Answers

Based on the given definition of relation t, we can see that each element in A is mapped to a unique element in B. Therefore, t is a function.

The relation t from set A to set B is defined as follows: for all real numbers in set A, t maps each element in A to a unique element in B such that the value of the element in B depends solely on the value of the element in A.
To determine whether t is a function, we need to check if each element in A has a unique mapping to an element in B. If every element in A is mapped to a unique element in B, then t is a function. However, if there exists at least one element in A that is mapped to more than one element in B, then t is not a function. so t is function.

An object that can be counted, measured, or given a name is a number. As an illustration, the numbers are 1, 2, 56, etc.

It follows that:

The value is 1/8.

The fact is,

Positive, negative, fractional, square-root, and whole numbers are all represented on the number line as real numbers.

Rational numbers are the quotients or fractions of two integers.

Irrational numbers are decimal numbers that never end (without repetition). They are not able to be stated as a fraction of two integers. 41, 97, and 15 are three examples of irrational numbers.

Learn more about numbers here

https://brainly.com/question/10547079

#SPJ11

Other Questions
find an equatin of the tangent line y(x) of r(t)=(t^9,t^5) Consider the basic frugal economy used in lecture where all you have is that C = cbar + cy and d = ibar The "paradox of thrift" applied to this economy implies that if suddenly cbar decreased O Y would increase. O equilibrium consumption would decrease. o equilibrium saving would increase. o equilibrium saving would decrease. O the average saving rate would decrease. calculate the pka values for the following acids. a) methanol (ka = 2.9 x 10-16) b) citric acid (ka = 7.2 x 10-4) Find the average power delivered by the ideal current source in the circuit in the figure if ig= 10cos5000t mA if 1.40 g g of water is enclosed in a 1.5 l l container, will any liquid be present? IF so, what mass of liquid? true/false. experiments can measure not only whether a compound is paramagnetic, but also the number of unpaired electrons Consider the following code segment. Assume that num3 > num2 > 0. int nul0; int num2 - " initial value not shown int num3 - / initial value not shown while (num2 < num3) /; ; numl num2; num2++; Which of the following best describes the contents of numl as a result of executing the code segment?(A) The product of num2 and num3(B) The product of num2 and num3 - 1(C) The sum of num2 and num3(D) The sum of all integers from num2 to num3, inclusive(E) The sum of all integers from num2 to num] - 1. inclusive Five reasons neolithic revolution is considered or described as age of revolution According to proponents of a balanced budget, who bears the cost of the budget deficit?a. Other nationsb. Current taxpayersc. The World Bankd. Future taxpayers What type of statistical process control (SPC) chart should you use to monitor the number of unsatisfied visitors to a museum among 50 visitors sampled daily?C-chartX-bar chartR-chartP-chart A particle of mass 5.0 kg has position vector at a particular instant of time when iA particle of mass 5.0 kg has position vector at a particular instant of time when its velocity is with respect to the origin. (a) What is the angular momentum of the particle?(b) If a force acts on the particle at this instant, what is the torque about the origin? let f be the function given by f(x)=1(2 x). what is the coefficient of x3 in the taylor series for f about x = 0 ? which nucleotide in sickle mutation dna is different from those of the normal dna? name the base and describe the location in the sequence. Greg has a credit card which requires a minimum monthly payment of 2. 06% of the total balance. His card has an APR of 11. 45%, compounded monthly. At the beginning of May, Greg had a balance of $318. 97 on his credit card. The following table shows his credit card purchases over the next few months. Month Cost ($) May 46. 96 May 33. 51 May 26. 99 June 97. 24 June 0112. 57 July 72. 45 July 41. 14 July 0101. 84 If Greg makes only the minimum monthly payment in May, June, and July, what will his total balance be after he makes the monthly payment for July? (Assume that interest is compounded before the monthly payment is made, and that the monthly payment is applied at the end of the month. Round all dollar values to the nearest cent. ) a. $812. 86 b. $830. 31 c. $864. 99 d. $1,039. 72. a process that was developed in the 1980s in part, to help dying aids patients pay their bills and was later extended to others, especially the elderly, is known as what are the spline basis functions for a cubic spline basis with 3 knots at values x1, x2, and x3? .1. What criteria would you use to determine how to award this money? 2. How would you divide up the $35,000? Provide explanation to support your answer. 3. Based on your allocation, what would be the potential positive and negative effects on their behavior and productivity, as individuals and as team members? How might it impact their future performance and cooperation with one another? 4. Would it be advisable to bring the team members into your decision-making process? Why/why not? If so, how would you do this? 5. How would you distribute the money (e.g. in their paycheck? to each person or group?) and why? would you recommend the securities and exchange commission require the use of sparklines on the face of the financial statements? why or why not? search the web for the term security best practices. compare your findings to the recommended practices outlined in the nist documents. Trina's mom bought a new washer and dryer. She also purchased a customerservice contract that has a one-time fee of $139. 95 and a $65. 00 charge foreach customer service call. How many times did Trina's mom call the servicecompany if she spent less than