Answer:
Step-by-step explanation:
12x - y = -4 ----------------------(I)
4x - 3y = -6 ---------------------(II)
Multiply equation (I) by (-3)
(I)*(-3) -36x + 3y = 12
(II) 4x - 3y = - 6 {Add and y will be eliminated}
- 32x = 6
x = 6/-32
x = -3/16
Plugin the value of x in equation (I)
[tex]12*\frac{-3}{16} -y=-4\\\\3*\frac{-3}{4}-y=-4\\\\\frac{-9}{4}-y = -4\\\\-y=-4+\frac{9}{4}\\\\-y=\frac{-4*4}{1*4}+\frac{9}{4}\\\\-y=\frac{-16}{4}+\frac{9}{4}\\\\-y=\frac{-7}{4}\\\\y=\frac{7}{4}\\\\y=1\frac{3}{4}[/tex]
SOMEONE PLEASE HELP ME ASAP PLEASE!!!
Answer:
38 units
Step-by-step explanation:
We can find the perimeter of the shaded figure be finding out the number of unit lengths we have along the boundary of the given figure.
Thus, see attachment below for the number of units of each length of the figure that we have counted.
The perimeter of the figure = sum of all the lengths = 7 + 7 + 10 + 2 + 2 + 6 + 2 + 2 = 38
Perimeter of the shaded figure = 38 units
Find f(x) - g(x) when f(x) = 2x^2 - 4x g(x) = x^2 + 6x
3x^2
x^2 + 2x
x^2 - 10x
3x^2 + 2x
Answer:
x^2 - 10x
Step-by-step explanation:
2x^2 - 4x - x^2 +6x
You subtract x^2 from 2x^2 and you get x^2
Then you add 6x and 4x together and get 10x
So then you have x^2 - 10x
(plus I took the test and this was the correct answer.)
You are given an n×n board, where n is an even integer and 2≤n≤30. For how many such boards is it possible to cover the board with T-shaped tiles like the one shown? Each cell of the shape is congruent to one cell on the board.
Answer:
7
Step-by-step explanation:
The number of cells in a tile is 4. If colored alternately, there are 3 of one color and 1 of the alternate color. To balance the coloring, an even number of tiles is needed. Hence the board dimensions must be multiples of 4.
In the given range, there are 7 such boards:
4×4, 8×8, 12×12, 16×16, 20×20, 24×24, and 28×28
f(x)
9 - 4x
8x - 1
INVERSE??
Answer:
(x+9)/(8x+4)
Step-by-step explanation:
A ladder leans against the side of a house. The angle of elevation of the ladder is 66 degrees, and the top of the ladder is 15 ft above the ground. Find the distance from the bottom of the ladder to the side of the house. Round your answer to the nearest tenth.
Answer:
x ≈ 6.7 ft
Step-by-step explanation:
We are going to use tan∅ to find our answer:
tan66° = 15/x
xtan66° = 15
x = 15/tan66°
x = 6.67843 ft
Suppose that we want to generate the outcome of the flip of a fair coin, but that all we have at our disposal is a biased coin which lands on heads with some unknown probability p that need not be equal to1/2. Consider the following procedure for accomplishing our task:
1. Flip the coin.
2. Flip the coin again.
3. If both flips land on heads or both land on tails, return to step 1. 4. Let the result of the last flip be the result of the experiment.
(a) Show that the result is equally likely to be either heads or tails.
(b) Could we use a simpler procedure that continues to flip the coin until the last two flips are different and then lets the result be the outcome of the final flip?
Answer:
Step-by-step explanation:
Given that;
the following procedure for accomplishing our task are:
1. Flip the coin.
2. Flip the coin again.
From here will know that the coin is first flipped twice
3. If both flips land on heads or both land on tails, it implies that we return to step 1 to start again. this makes the flip to be insignificant since both flips land on heads or both land on tails
But if the outcomes of the two flip are different i.e they did not land on both heads or both did not land on tails , then we will consider such an outcome.
Let the probability of head = p
so P(head) = p
the probability of tail be = (1 - p)
This kind of probability follows a conditional distribution and the probability of getting heads is :
[tex]P( \{Tails, Heads\})|\{Tails, Heads,( Heads ,Tails)\})[/tex]
[tex]= \dfrac{P( \{Tails, Heads\}) \cap \{Tails, Heads,( Heads ,Tails)\})}{ {P( \{Tails, Heads,( Heads ,Tails)\}}}[/tex]
[tex]= \dfrac{P( \{Tails, Heads\}) }{ {P( \{Tails, Heads,( Heads ,Tails)\}}}[/tex]
[tex]= \dfrac{P( \{Tails, Heads\}) } { {P( Tails, Heads) +P( Heads ,Tails)}}[/tex]
[tex]=\dfrac{(1-p)*p}{(1-p)*p+p*(1-p)}[/tex]
[tex]=\dfrac{(1-p)*p}{2(1-p)*p}[/tex]
[tex]=\dfrac{1}{2}[/tex]
Thus; the probability of getting heads is [tex]\dfrac{1}{2}[/tex] which typically implies that the coin is fair
(b) Could we use a simpler procedure that continues to flip the coin until the last two flips are different and then lets the result be the outcome of the final flip?
For a fair coin (0<p<1) , it's certain that both heads and tails at the end of the flip.
The procedure that is talked about in (b) illustrates that the procedure gives head if and only if the first flip comes out tail with probability 1 - p.
Likewise , the procedure gives tail if and and only if the first flip comes out head with probability of p.
In essence, NO, procedure (b) does not give a fair coin flip outcome.
AC =
Round your answer to the nearest hundredth.
с
6
B
40°
А
Answer:
5.03
Step-by-step explanation:
Answer:
5.03 = AC
Step-by-step explanation:
Since this is a right triangle, we can use trig functions
tan theta = opp/ adj
tan 40 = AC /6
6 tan 40 = AC
5.034597787 = AC
To the nearest hundredth
5.03 = AC
A man wants to set up a 529 college savings account for his granddaughter. How much would he need to deposit each year into the account in order to have $50,000 saved up for when she goes to college in 17 years, assuming the account earns a 5% return?
Answer:
1937.98
Step-by-step explanation:
In the given question, to find the value to be added per year we will use the formula
P= A. r/n/ (1 +r/n)ⁿ - 1
Here A = 50,000
r (rate of interest) = 5 % or 0.05.
n = 1
t = 17
P = value deposit per year
therefore, P = (50,000 X 0.05)/ (1 +0.05)¹⁷ - 1
P = 2500 / 2.29- 1
= 1937.98 $.
therefore, person has to deposit 1937.98 $ per month.
Which of the following is the graph of y = negative StartRoot x EndRoot + 1?
Answer:
see below
Step-by-step explanation:
y = -sqrt(x) +1
We know that the domain is from 0 to infinity
The range is from 1 to negative infinity
Answer:
b
Step-by-step explanation:
e2020
Suppose the proportion X of surface area in a randomly selected quadrat that is covered by a certain plant has a standard beta distribution with α = 4 and β = 3.(a) Compute E(X) and V(X). (Round your answers to four decimal places.)E(X) = Correct: Your answer is correct.V(X) = Correct: Your answer is correct.(b) Compute P(X ≤ 0.5). (Round your answer to four decimal places.)
Answer:
(a) The value of E (X) is 4/7.
The value of V (X) is 3/98.
(b) The value of P (X ≤ 0.5) is 0.3438.
Step-by-step explanation:
The random variable X is defined as the proportion of surface area in a randomly selected quadrant that is covered by a certain plant.
The random variable X follows a standard beta distribution with parameters α = 4 and β = 3.
The probability density function of X is as follows:
[tex]f(x) = \frac{x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha,\beta)} ; \hspace{.3in}0 \le x \le 1;\ \alpha, \beta > 0[/tex]
Here, B (α, β) is:
[tex]B(\alpha,\beta)=\frac{(\alpha-1)!\cdot\ (\beta-1)!}{((\alpha+\beta)-1)!}[/tex]
[tex]=\frac{(4-1)!\cdot\ (3-1)!}{((4+3)-1)!}\\\\=\frac{6\times 2}{720}\\\\=\frac{1}{60}[/tex]
So, the pdf of X is:
[tex]f(x) = \frac{x^{4-1}(1-x)^{3-1}}{1/60}=60\cdot\ [x^{3}(1-x)^{2}];\ 0\leq x\leq 1[/tex]
(a)
Compute the value of E (X) as follows:
[tex]E (X)=\frac{\alpha }{\alpha +\beta }[/tex]
[tex]=\frac{4}{4+3}\\\\=\frac{4}{7}[/tex]
The value of E (X) is 4/7.
Compute the value of V (X) as follows:
[tex]V (X)=\frac{\alpha\ \cdot\ \beta}{(\alpha+\beta)^{2}\ \cdot\ (\alpha+\beta+1)}[/tex]
[tex]=\frac{4\cdot\ 3}{(4+3)^{2}\cdot\ (4+3+1)}\\\\=\frac{12}{49\times 8}\\\\=\frac{3}{98}[/tex]
The value of V (X) is 3/98.
(b)
Compute the value of P (X ≤ 0.5) as follows:
[tex]P(X\leq 0.50) = \int\limits^{0.50}_{0}{60\cdot\ [x^{3}(1-x)^{2}]} \, dx[/tex]
[tex]=60\int\limits^{0.50}_{0}{[x^{3}(1+x^{2}-2x)]} \, dx \\\\=60\int\limits^{0.50}_{0}{[x^{3}+x^{5}-2x^{4}]} \, dx \\\\=60\times [\dfrac{x^4}{4}+\dfrac{x^6}{6}-\dfrac{2x^5}{5}]\limits^{0.50}_{0}\\\\=60\times [\dfrac{x^4\left(10x^2-24x+15\right)}{60}]\limits^{0.50}_{0}\\\\=[x^4\left(10x^2-24x+15\right)]\limits^{0.50}_{0}\\\\=0.34375\\\\\approx 0.3438[/tex]
Thus, the value of P (X ≤ 0.5) is 0.3438.
Let the sample space be
S = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.
Suppose the outcomes are equally likely. Compute the probability of the event E = 1, 2.
Answer:
probability of the event E = 1/5
Step-by-step explanation:
We are given;
Sample space, S = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10},
Number of terms in sample S is;
n(S) = 10
We are given the event; E = {1, 2}
Thus, number of terms in event E is;
n(E) = 2
Now, Probability = favorable outcomes/total outcomes
Thus, the probability of the event E is;
P(E) = n(E)/n(S)
P(E) = 2/10
P(E) = 1/5
Can someone plz help me solved this problem I need help plz help me! Will mark you as brainiest!
Answer: a) base = 1 ft b) height = 4 ft
Step-by-step explanation:
Set this up as a right triangle where base = x, height = 2x + 2, and hypotenuse (length of the ladder) = 13
Use Pythagorean Theorem to create a quadratic equation, factor, then apply the Zero Product Property to solve for x.
(x)² + (2x + 2)² = 13²
x² + 4x² + 8x + 4 = 169
5x² + 8x - 165 = 0
(5x + 13) (x - 1) = 0
x = -13/5 x = 1
We know that distance cannot be negative so disregard x = -13/5.
The only valid answer is x = 1
base = x --> x = 1
height = 2x + 2 --> 2(1) + 2 = 4
If you were having a party and you expect each guest to eat 0.25 pounds of meat, how many pounds of meat should you buy if you expect 30 guest?
Answer:
7.5 pounds
Step-by-step explanation:
30/4=7.5 :)
Tasha wants to take money out of the ATM for a taxi fare. She wants to do a quick estimate to see if taking $120 out of her bank account will overdraw it. She knows she had $325 in the account this morning when she checked her balance. Today she bought lunch for $19, a dress for $76, a pair of shoes for $53, and a necklace for $23. She also saw a movie with a friend for $12. Rounding each of her expenses to the nearest tens place, estimate how much money Tasha has left in her account before she goes to the ATM. Do not include the $ in your answer.
Answer:145
Step-by-step explanation: $19=20 76=80 53=50 23=20 12=10 total = 180 325-180 =145
All the employees of ABC Company are assigned ID numbers. The ID number consists of the first letter of an employee's last name, followed by three numbers. (a) How many possible different ID numbers are there
Answer:
there will be 9 id no. which it contains
What are the domain and range of f(x) = 2|x – 4|?
Answer:
Domain: All real numbers or (negative infinity, positive infinity)
Range: [0, positive infinity)
Step-by-step explanation:
Domain; Since all values of x would work for this equation, simply any number could be plugged in. That means the domain would stretch to infinity because there are an infinite amount of inputs and outputs
Range; Even though we have an infinite amount of domain, when we plug in a negative x, anything inside the absolute value will turn positive. Therefore, no output (y) value will ever go below zero, and we have [0, positive infinity).
Write the Algebraic expression for each of the following.
1. Sum of 35 and 65
2. Take away 14 from y
3. Subtract 3 from the product of 6 and s
4. 10 times the sum of x and 8 5. Take away p from 6
Step-by-step explanation:
1. 35 + 65
2. y - 14
3. (6 x s) - 3
4. 10(x+8.5).. 6-p
In an office complex of 1110 employees, on any given day some are at work and the rest are absent. It is known that if an employee is at work today, there is an 77% chance that she will be at work tomorrow, and if the employee is absent today, there is a 54% chance that she will be absent tomorrow. Suppose that today there are 899 employees at work.
Required:
a. Find the transition matrix for this scenario.
b. Predict the number that will be at work five days from now.
c. Find the steady-state vector.
Answer:
B
Step-by-step explanation:
A door delivery florist wishes to estimate the proportion of people in his city that will purchase his flowers. Suppose the true proportion is 0.070.07. If 492492 are sampled, what is the probability that the sample proportion will differ from the population proportion by greater than 0.030.03?
Answer:
The probability that the sample proportion will differ from the population proportion by greater than 0.03 is 0.009.
Step-by-step explanation:
According to the Central limit theorem, if from an unknown population large samples of sizes n > 30, are selected and the sample proportion for each sample is computed then the sampling distribution of sample proportion follows a Normal distribution.
The mean of this sampling distribution of sample proportion is:
[tex]\mu_{\hat p}=p[/tex]
The standard deviation of this sampling distribution of sample proportion is:
[tex]\sigma_{\hat p}=\sqrt{\frac{p(1-p)}{n}}[/tex]
As the sample size is large, i.e. n = 492 > 30, the central limit theorem can be used to approximate the sampling distribution of sample proportion by the normal distribution.
The mean and standard deviation of the sampling distribution of sample proportion are:
[tex]\mu_{\hat p}=p=0.07\\\\\sigma_{\hat p}=\sqrt{\frac{p(1-p)}{n}}=\sqrt{\frac{0.07(1-0.07)}{492}}=0.012[/tex]
Compute the probability that the sample proportion will differ from the population proportion by greater than 0.03 as follows:
[tex]P(|\hat p-p|>0.03)=P(|\frac{\hat p-p}{\sigma_{\hat p}}|>\frac{0.03}{0.012})[/tex]
[tex]=P(|Z|>2.61)\\\\=1-P(|Z|\leq 2.61)\\\\=1-P(-2.61\leq Z\leq 2.61)\\\\=1-[P(Z\leq 2.61)-P(Z\leq -2.61)]\\\\=1-0.9955+0.0045\\\\=0.0090[/tex]
Thus, the probability that the sample proportion will differ from the population proportion by greater than 0.03 is 0.009.
Please help me find Jebel dhanna in UAE map.
Answer:
The full name of the place is the "Danat Jebel Dhanna". The Jebel Dhanna is currently located in the Abu Dhabi. It is said that it is one of the most best beach in the UAE, they also say that it is the biggest resort, of course, with a bunch of hotels.
hope this helps ;)
best regards,
`FL°°F~` (floof)
Write the expression in simplest form 3(5x) + 8(2x)
Answer:
31x[tex]solution \\ 3(5x) + 8(2x) \\ = 3 \times 5x + 8 \times 2x \\ = 15x + 16x \\ = 31x[/tex]
hope this helps...
Good luck on your assignment...
The expression [tex]3(5x) + 8(2x)[/tex] in simplest form is 31x.
To simplify the expression [tex]3(5x) + 8(2x)[/tex], we can apply the distributive property:
[tex]3(5x) + 8(2x)[/tex]
[tex]= 15x + 16x[/tex]
Combining like terms, we have:
[tex]15x + 16x = 31x[/tex]
Therefore, the expression [tex]3(5x) + 8(2x)[/tex] simplifies to [tex]31x.[/tex]
To learn more on Expressions click:
https://brainly.com/question/14083225
#SPJ6
A study conducted at a certain college shows that "53%" of the school's graduates find a job in their chosen field within a year after graduation. Find the probability that among 6 randomly selected graduates, at least one finds a job in his or her chosen field within a year of graduating. 0.989 0.978 0.927 0.167 0.530
Answer:
0.989
Step-by-step explanation:
For each graduate, there are only two possible outcomes. Either they find a job in their chosen field within a year after graduation, or they do not. The probability of a graduate finding a job is independent of other graduates. So we use the binomial probability distribution to solve this question.
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
In which [tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
And p is the probability of X happening.
A study conducted at a certain college shows that "53%" of the school's graduates find a job in their chosen field within a year after graduation.
This means that [tex]p = 0.53[/tex]
6 randomly selected graduates
This means that [tex]n = 6[/tex]
Probability that at least one finds a job in his or her chosen field within a year of graduating:
Either none find a job, or at least one does. The sum of the probabilities of these outcomes is 1. So
[tex]P(X = 0) + P(X \geq 1) = 1[/tex]
We want [tex]P(X \geq 1)[/tex]
So
[tex]P(X \geq 1) = 1 - P(X = 0)[/tex]
In which
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]P(X = 0) = C_{6,0}.(0.53)^{0}.(0.47)^{6} = 0.011[/tex]
So
[tex]P(X \geq 1) = 1 - P(X = 0) = 1 - 0.011 = 0.989[/tex]
Consider the equation below. (If an answer does not exist, enter DNE.) f(x) = x4 ln(x) (a) Find the interval on which f is increasing. (Enter your answer using interval notation.) Find the interval on which f is decreasing. (Enter your answer using interval notation.) (b) Find the local minimum and maximum values of f. local minimum value local maximum value (c) Find the inflection point. (x, y) = Find the interval on which f is concave up. (Enter your answer using interval notation.) Find the interval on which f is concave down. (Enter your answer using interval notation.)
Answer: (a) Interval where f is increasing: (0.78,+∞);
Interval where f is decreasing: (0,0.78);
(b) Local minimum: (0.78, - 0.09)
(c) Inflection point: (0.56,-0.06)
Interval concave up: (0.56,+∞)
Interval concave down: (0,0.56)
Step-by-step explanation:
(a) To determine the interval where function f is increasing or decreasing, first derive the function:
f'(x) = [tex]\frac{d}{dx}[/tex][[tex]x^{4}ln(x)[/tex]]
Using the product rule of derivative, which is: [u(x).v(x)]' = u'(x)v(x) + u(x).v'(x),
you have:
f'(x) = [tex]4x^{3}ln(x) + x_{4}.\frac{1}{x}[/tex]
f'(x) = [tex]4x^{3}ln(x) + x^{3}[/tex]
f'(x) = [tex]x^{3}[4ln(x) + 1][/tex]
Now, find the critical points: f'(x) = 0
[tex]x^{3}[4ln(x) + 1][/tex] = 0
[tex]x^{3} = 0[/tex]
x = 0
and
[tex]4ln(x) + 1 = 0[/tex]
[tex]ln(x) = \frac{-1}{4}[/tex]
x = [tex]e^{\frac{-1}{4} }[/tex]
x = 0.78
To determine the interval where f(x) is positive (increasing) or negative (decreasing), evaluate the function at each interval:
interval x-value f'(x) result
0<x<0.78 0.5 f'(0.5) = -0.22 decreasing
x>0.78 1 f'(1) = 1 increasing
With the table, it can be concluded that in the interval (0,0.78) the function is decreasing while in the interval (0.78, +∞), f is increasing.
Note: As it is a natural logarithm function, there are no negative x-values.
(b) A extremum point (maximum or minimum) is found where f is defined and f' changes signs. In this case:
Between 0 and 0.78, the function decreases and at point and it is defined at point 0.78;After 0.78, it increase (has a change of sign) and f is also defined;Then, x=0.78 is a point of minimum and its y-value is:
f(x) = [tex]x^{4}ln(x)[/tex]
f(0.78) = [tex]0.78^{4}ln(0.78)[/tex]
f(0.78) = - 0.092
The point of minimum is (0.78, - 0.092)
(c) To determine the inflection point (IP), calculate the second derivative of the function and solve for x:
f"(x) = [tex]\frac{d^{2}}{dx^{2}}[/tex] [[tex]x^{3}[4ln(x) + 1][/tex]]
f"(x) = [tex]3x^{2}[4ln(x) + 1] + 4x^{2}[/tex]
f"(x) = [tex]x^{2}[12ln(x) + 7][/tex]
[tex]x^{2}[12ln(x) + 7][/tex] = 0
[tex]x^{2} = 0\\x = 0[/tex]
and
[tex]12ln(x) + 7 = 0\\ln(x) = \frac{-7}{12} \\x = e^{\frac{-7}{12} }\\x = 0.56[/tex]
Substituing x in the function:
f(x) = [tex]x^{4}ln(x)[/tex]
f(0.56) = [tex]0.56^{4} ln(0.56)[/tex]
f(0.56) = - 0.06
The inflection point will be: (0.56, - 0.06)
In a function, the concave is down when f"(x) < 0 and up when f"(x) > 0, adn knowing that the critical points for that derivative are 0 and 0.56:
f"(x) = [tex]x^{2}[12ln(x) + 7][/tex]
f"(0.1) = [tex]0.1^{2}[12ln(0.1)+7][/tex]
f"(0.1) = - 0.21, i.e. Concave is DOWN.
f"(0.7) = [tex]0.7^{2}[12ln(0.7)+7][/tex]
f"(0.7) = + 1.33, i.e. Concave is UP.
What is the total surface area of the square pyramid 8in 5in
Answer:
A≈166.45 in^2
Step-by-step explanation:
A=a^2+2a√(a2/4+h^2)
a = base = 8 in
h = height = 5 in
A = 8^2+16√(8^2/4+5^2) = 166.449... in^2
224
Step-by-step explanation:
because my teacher said it was right
People were surveyed worldwide, being asked the question "How important is acquiring wealth to you?" of 1500 respondents in country A, 1185 said that it was of more than average importance. In country B, of 1302 respondents, 613 said it was of more than average importance.
1) (Round to three decimal places as needed):
a. The sample proportions for country A are: ___
b. The sample proportions for country B are: ___
2) What is the confidence interval for country A? Select the correct choice below and, if necessary, fill in the answer boxes within your choice.
a. The 90% confidence interval for country A is (__%, ___%) [Round to one decimal place as needed.]
b. The conditions for constructing a confidence interval are not satisfied.
3) Compare to the confidence interval for country B. Choose the correct answer below.
a. It is not possible to make a comparaison because the conditions for creating a confidence interval are not satisfied.
b. It appears that the proportion of adults who feel this way in country A is more than those in country B.
c. It appears that the proportion of adults who feel this way in country A is about the same as those in country B.
d. it appears that the proportion of adults who feel this way in country B is more than those in country A.
Answer:
1) A = 0.79
B = 0.4708
2) CI = (0.7728, 0.8072)
3) CI = (0.4481, 0.4935)
b. It appears that the proportion of adults who feel this way in country A is more than those in country B.
Step-by-step explanation:
1) Sample proportions for both Population A and B
For country A:
Sample size,n = 1500
Sample proportion = [tex] \frac{1185}{1500} = 0.79 [/tex]
For Country B:
Sample size,n = 1302
Sample proportion = [tex] \frac{613}{1302} = 0.4708 [/tex]
2) Confidence interval for country A:
Given:
Mean,x = 1185
Sample size = 1500
Sample proportion, p = 0.79
q = 1 - 0.79 = 0.21
Using z table,
90% confidence interval, [tex] Z _\alpha /2 = 1.64 [/tex]
Confidence interval, CI:
[tex] \frac{p +/- Z_\alpha_/2}{\sqrt{(p * q)/n}} [/tex]
[tex] = \frac{0.79 - 1.64}{\sqrt{(0.79 * 0.21)/1500}}, \frac{0.79 + 1.64}{\sqrt{(0.79 * 0.21)/1500}} [/tex]
[tex] CI = (0.7728, 0.8072) [/tex]
3) Confidence interval for country A:
Given:
Mean,x = 613
Sample size = 1302
Sample proportion, p = 0.4708
q = 1 - 0.4708 = 0.5292
Using z table,
90% confidence interval, [tex] Z _\alpha /2 = 1.64 [/tex]
Confidence interval, CI:
[tex] \frac{p +/- Z_\alpha_/2}{\sqrt{(p * q)/n}} [/tex]
[tex] = \frac{0.4708 - 1.64}{\sqrt{(0.4708 * 0.5292)/1302}}, \frac{0.4708 + 1.64}{\sqrt{(0.4708 * 0.5295)/1302}} [/tex]
[tex] CI = (0.4481, 0.4935) [/tex]
From both confidence interval, we could see that that the proportion of adults who feel this way in country A is more than those in country B.
Option B is correct.
UTGENT! I really need help, can anyone help me?
Answer:
x = 3.6
Step-by-step explanation:
By the Postulate of intersecting chords inside a circle.
[tex]x \times 5 = 3 \times 6 \\ 5x = 18 \\ x = \frac{18}{5} \\ x = 3.6 \\ [/tex]
Find the equation of the line.
Use exact numbers.
y=
Answer:
y = 2x+4
Step-by-step explanation:
First we need to find the slope using two points
(-2,0) and (0,4)
m = (y2-y1)/(x2-x1)
m = (4-0)/(0--2)
= 4/+2
= 2
we have the y intercept which is 4
Using the slope intercept form of the line
y = mx+b where m is the slope and b is the y intercept
y = 2x+4
Given a normal distribution with (mean) μ= 50 and (standard deviation) σ = 4, what is the probability that:__________.
a) x>43
b) x<42
c) x>57.5
d) 42
e) x<40 or x>55
f) 5% of the values are less than what X value?
g) 60% of the values are between what two X values (symmetrically distributed around the mean)?
h) 85% of the values will be above what X value?
Answer:
a) P(x > 43) = 0.9599
b) P(x < 42) = 0.0228
c) P(x > 57.5) = 0.03
d) P(x = 42) = 0.
e) P(x<40 or x>55) = 0.1118
f) 43.42
g) Between 46.64 and 53.36.
h) Above 45.852.
Step-by-step explanation:
When the distribution is normal, we use the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this question, we have that:
[tex]\mu = 50, \sigma = 4[/tex]
a) x>43
This is 1 subtracted by the pvalue of Z when X = 43. So
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{43 - 50}{4}[/tex]
[tex]Z = -1.75[/tex]
[tex]Z = -1.75[/tex] has a pvalue of 0.0401
1 - 0.0401 = 0.9599
P(x > 43) = 0.9599
b) x<42
This is the pvalue of Z when X = 42.
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{42 - 50}{4}[/tex]
[tex]Z = -2[/tex]
[tex]Z = -2[/tex] has a pvalue of 0.0228
P(x < 42) = 0.0228
c) x>57.5
This is 1 subtracted by the pvalue of Z when X = 57.5. So
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{57.5 - 50}{4}[/tex]
[tex]Z = 1.88[/tex]
[tex]Z = 1.88[/tex] has a pvalue of 0.97
1 - 0.97 = 0.03
P(x > 57.5) = 0.03
d) P(x = 42)
In the normal distribution, the probability of an exact value is 0. So
P(x = 42) = 0.
e) x<40 or x>55
x < 40 is the pvalue of Z when X = 40. So
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{40 - 50}{4}[/tex]
[tex]Z = -2.5[/tex]
[tex]Z = -2.5[/tex] has a pvalue of 0.0062
x > 55 is 1 subtracted by the pvalue of Z when X = 55. So
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{55 - 50}{4}[/tex]
[tex]Z = 1.25[/tex]
[tex]Z = 1.25[/tex] has a pvalue of 0.8944
1 - 0.8944 = 0.1056
0.0062 + 0.1056 = 0.1118
P(x<40 or x>55) = 0.1118
f) 5% of the values are less than what X value?
X is the 5th percentile, which is X when Z has a pvalue of 0.05, so X when Z = -1.645.
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]-1.645 = \frac{X - 50}{4}[/tex]
[tex]X - 50 = -1.645*4[/tex]
[tex]X = 43.42[/tex]
43.42 is the answer.
g) 60% of the values are between what two X values (symmetrically distributed around the mean)?
Between the 50 - (60/2) = 20th percentile and the 50 + (60/2) = 80th percentile.
20th percentile:
X when Z has a pvalue of 0.2. So X when Z = -0.84.
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]-0.84 = \frac{X - 50}{4}[/tex]
[tex]X - 50 = -0.84*4[/tex]
[tex]X = 46.64[/tex]
80th percentile:
X when Z has a pvalue of 0.8. So X when Z = 0.84.
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]0.84 = \frac{X - 50}{4}[/tex]
[tex]X - 50 = 0.84*4[/tex]
[tex]X = 53.36[/tex]
Between 46.64 and 53.36.
h) 85% of the values will be above what X value?
Above the 100 - 85 = 15th percentile, which is X when Z has a pvalue of 0.15. So X when Z = -1.037.
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]-1.037 = \frac{X - 50}{4}[/tex]
[tex]X - 50 = -1.037*4[/tex]
[tex]X = 45.852[/tex]
Above 45.852.
Two con terminal angles 3pi/4 negative and positive answer in radians
Answer:
Negative Coterminal: -5π/4
Positive Coterminal: 11π/4
Step-by-step explanation:
The easiest way to find specific (not infinite) coterminal values is to ±2π. When you subtract 2π, you will get a negative coterminal. When you add 2π, you will get a positive coterminal. Keep in mind though that a tan∅ or cot∅ only needs ±π, not ±2π.
SOMEONE PLEASE HELP ME ASAP PLEASE!!!
Answer:
C =81.64 cm
Step-by-step explanation:
The circumference is given by
C = 2* pi *r
The radius is 13
C = 2 * 3.14 * 13
C =81.64 cm
Answer:
[tex]= 81.64cm \\ [/tex]
Step-by-step explanation:
[tex]c = 2\pi \: r \\ = 2 \times 3.14 \times 13 \\ = 81.64cm[/tex]
hope this helps
brainliest appreciated
good luck! have a nice day!