a) The next guess for the pipe diameter would be Y inches.
b) The modified calculations would include the equivalent lengths of the fittings to determine the required pipe diameter.
To determine the required pipe diameter, we can use the Darcy-Weisbach equation, which relates the pressure drop in a pipe to various parameters including flow rate, pipe length, pipe diameter, and friction factor. We can iteratively solve for the pipe diameter using an initial guess and adjusting it until the calculated pressure drop matches the desired value.
a) Using 3 inches as the initial guess for the pipe diameter, we can calculate the friction factor and the resulting pressure drop. If the calculated pressure drop is greater than the desired value of 5.2 psi, we need to increase the pipe diameter. Conversely, if the calculated pressure drop is lower, we need to decrease the diameter.
b) When accounting for fittings such as elbows and valves, additional pressure losses occur due to flow disruptions. Each fitting has an associated equivalent length, which is a measure of the additional length of straight pipe that would cause an equivalent pressure drop. We need to consider these additional pressure losses in our calculations.
To modify the calculations for part a), we would add the equivalent lengths of the seven standard elbows and two open globe valves to the total length of the pipe. This modified length would be used in the Darcy-Weisbach equation to recalculate the required pipe diameter.
Learn more about pipe diameter
brainly.com/question/29217739
#SPJ11
A thin metal rod of mass 1.7 kg and length 0.9 m is at rest in outer space, near a space station (see figure below). A tiny meteorite with mass 0.09 kg traveling at a high speed of 245 m/s strikes the rod a distance 0.2 m from the center and bounces off with speed 60 m/s as shown in the diagram. The magnitudes of the initial and final angles to the x axis of the small mass's velocity are thetai = 26° and thetaf = 82°. (a) Afterward, what is the velocity of the center of the rod? (Express your answer in vector form.) vCM = m/s (b) Afterward, what is the angular velocity of the rod? (Express your answer in vector form.) = rad/s (c) What is the increase in internal energy of the objects? J
The velocity of the center of the rod in vector form is approximately 24.85 m/s. The angular velocity of the rod after the collision is 24844.087 rad/s. The increase in internal energy of the objects is -103.347 J.
(a) Velocity of center of the rod: The velocity of the center of the rod can be calculated by applying the principle of conservation of momentum. Since the system is isolated, the total momentum of the system before the collision is equal to the total momentum of the system after the collision. Using this principle, the velocity of the center of the rod can be calculated as follows:
Let v be the velocity of the center of the rod after the collision.
m1 = 1.7 kg (mass of the rod)
m2 = 0.09 kg (mass of the meteorite)
v1 = 0 m/s (initial velocity of the rod)
u2 = 245 m/s (initial velocity of the meteorite)
i1 = 0° (initial angle of the rod)
i2 = 26° (initial angle of the meteorite)
j1 = 0° (final angle of the rod)
j2 = 82° (final angle of the meteorite)
v2 = 60 m/s (final velocity of the meteorite)
The total momentum of the system before the collision can be calculated as follows: p1 = m1v1 + m2u2p1 = 1.7 kg × 0 m/s + 0.09 kg × 245 m/sp1 = 21.825 kg m/s
The total momentum of the system after the collision can be calculated as follows: p2 = m1v + m2v2p2 = 1.7 kg × v + 0.09 kg × 60 m/sp2 = (1.7 kg)v + 5.4 kg m/s
By applying the principle of conservation of momentum: p1 = p221.825 kg m/s = (1.7 kg)v + 5.4 kg m/sv = (21.825 kg m/s - 5.4 kg m/s)/1.7 kg v = 10.015 m/s
To represent the velocity in vector form, we can use the following equation:
vCM = (m1v1 + m2u2 + m1v + m2v2)/(m1 + m2)
m1 = 1.7 kg (mass of the rod)
m2 = 0.09 kg (mass of the meteorite)
v1 = 0 m/s (initial velocity of the rod)
u2 = 245 m/s (initial velocity of the meteorite)
v = 10.015 m/s (velocity of the rod after the collision)
v2 = 60 m/s (velocity of the meteorite after the collision)
Substituting these values into the equation, we have:
vCM = (1.7 kg * 0 m/s + 0.09 kg * 245 m/s + 1.7 kg * 10.015 m/s + 0.09 kg * 60 m/s) / (1.7 kg + 0.09 kg)
Simplifying the equation:
vCM = (0 + 22.05 + 17.027 + 5.4) / 1.79
vCM = 44.477 / 1.79
vCM ≈ 24.85 m/s
Therefore, the velocity of the center of the rod in vector form is approximately 24.85 m/s.
(b) Angular velocity of the rod: To calculate the angular velocity of the rod, we can use the principle of conservation of angular momentum. Since the system is isolated, the total angular momentum of the system before the collision is equal to the total angular momentum of the system after the collision. Using this principle, the angular velocity of the rod can be calculated as follows:
Let ω be the angular velocity of the rod after the collision.I = (1/12) m L2 is the moment of inertia of the rod about its center of mass, where L is the length of the rod.m = 1.7 kg is the mass of the rod
The angular momentum of the system before the collision can be calculated as follows:
L1 = I ω1 + m1v1r1 + m2u2r2L1 = (1/12) × 1.7 kg × (0.9 m)2 × 0 rad/s + 1.7 kg × 0 m/s × 0.2 m + 0.09 kg × 245 m/s × 0.7 mL1 = 27.8055 kg m2/s
The angular momentum of the system after the collision can be calculated as follows:
L2 = I ω + m1v r + m2v2r2L2 = (1/12) × 1.7 kg × (0.9 m)2 × ω + 1.7 kg × 10.015 m/s × 0.2 m + 0.09 kg × 60 m/s × 0.7 mL2 = (0.01395 kg m2)ω + 2.1945 kg m2/s
By applying the principle of conservation of angular momentum:
L1 = L2ω1 = (0.01395 kg m2)ω + 2.1945 kg m2/sω = (ω1 - 2.1945 kg m2/s)/(0.01395 kg m2)
Here,ω1 is the angular velocity of the meteorite before the collision. ω1 = u2/r2
ω1 = 245 m/s ÷ 0.7 m
ω1 = 350 rad/s
ω = (350 rad/s - 2.1945 kg m2/s)/(0.01395 kg m2)
ω = 24844.087 rad/s
The angular velocity of the rod after the collision is 24844.087 rad/s.
(c) Increase in internal energy of the objects
The increase in internal energy of the objects can be calculated using the following equation:ΔE = 1/2 m1v1² + 1/2 m2u2² - 1/2 m1v² - 1/2 m2v2²
Here,ΔE is the increase in internal energy of the objects.m1v1² is the initial kinetic energy of the rod.m2u2² is the initial kinetic energy of the meteorite.m1v² is the final kinetic energy of the rod. m2v2² is the final kinetic energy of the meteorite.Using the given values, we get:
ΔE = 1/2 × 1.7 kg × 0 m/s² + 1/2 × 0.09 kg × (245 m/s)² - 1/2 × 1.7 kg × (10.015 m/s)² - 1/2 × 0.09 kg × (60 m/s)²ΔE = -103.347 J
Therefore, the increase in internal energy of the objects is -103.347 J.
Learn more about energy at: https://brainly.com/question/2003548
#SPJ11
If an applied force on an object acts antiparallel to the direction of the object's movement, the work done on by the applied force is: Negative Cannot be determined by the problem. Positive Zero
If an applied force on an object acts antiparallel to the direction of the object's movement, the work done by the applied force is negative.
The transfer of energy from one object to another by applying a force to an object, which makes it move in the direction of the force is known as work. When the applied force acts in the opposite direction to the object's movement, the work done by the force is negative.
The formula for work is given by: Work = force x distance x cosθ where,θ is the angle between the applied force and the direction of movement. If the angle between force and movement is 180° (antiparallel), then cosθ = -1 and work done will be negative. Therefore, if an applied force on an object acts antiparallel to the direction of the object's movement, the work done by the applied force is negative.
Learn more about work done here:
https://brainly.com/question/32263955
#SPJ11
How much input force is required to extract an output force of 500 N from a simple machine that has a mechanical advantage of 8?
An input force of 62.5 N is required to extract an output force of 500 N from a simple machine that has a mechanical advantage of 8.
The mechanical advantage of a simple machine is defined as the ratio of the output force to the input force. Therefore, to find the input force required to extract an output force of 500 N from a simple machine with a mechanical advantage of 8, we can use the formula:
Mechanical Advantage (MA) = Output Force (OF) / Input Force (IF)
Rearranging the formula to solve for the input force, we get:
Input Force (IF) = Output Force (OF) / Mechanical Advantage (MA)
Substituting the given values, we have:
IF = 500 N / 8IF = 62.5 N
Therefore, an input force of 62.5 N is required to extract an output force of 500 N from a simple machine that has a mechanical advantage of 8. This means that the machine amplifies the input force by a factor of 8 to produce the output force.
This concept of mechanical advantage is important in understanding how simple machines work and how they can be used to make work easier.
To know more about input force, visit:
https://brainly.com/question/28919004
#SPJ11
To extract an output force of 500 N from a simple machine that has a mechanical advantage of 8, the input force required is 62.5 N.
Mechanical advantage is defined as the ratio of output force to input force.
The formula for mechanical advantage is:
Mechanical Advantage (MA) = Output Force (OF) / Input Force (IF)
In order to determine the input force required, we can rearrange the formula as follows:
Input Force (IF) = Output Force (OF) / Mechanical Advantage (MA)
Now let's plug in the given values:
Output Force (OF) = 500 N
Mechanical Advantage (MA) = 8
Input Force (IF) = 500 N / 8IF = 62.5 N
Therefore, extract an output force of 500 N from a simple machine that has a mechanical advantage of 8, the input force required is 62.5 N.
To know more about force, visit:
https://brainly.com/question/30526425
#SPJ11
An electron is confined within a region of atomic dimensions, of the order of 10-10m. Find the uncertainty in its momentum. Repeat the calculation for a proton confined to a region of nuclear dimensions, of the order of 10-14m.
According to the Heisenberg's uncertainty principle, there is a relationship between the uncertainty of momentum and position. The uncertainty in momentum for an electron confined to a region of atomic dimensions is 5.27 x 10-25 kg m s-1, and the uncertainty in momentum for a proton confined to a region of nuclear dimensions is 5.27 x 10-21 kg m s-1.
The uncertainty in the position of an electron is represented by Δx, and the uncertainty in its momentum is represented by
Δp.ΔxΔp ≥ h/4π
where h is Planck's constant. ΔxΔp = h/4π
Here, Δx = 10-10m (for an electron) and
Δx = 10-14m (for a proton).
Δp = h/4πΔx
We substitute the values of h and Δx to get the uncertainties in momentum.
Δp = (6.626 x 10-34 J s)/(4π x 1.0546 x 10-34 J s m-1) x (1/10-10m)
= 5.27 x 10-25 kg m s-1 (for an electron)
Δp = (6.626 x 10-34 J s)/(4π x 1.0546 x 10-34 J s m-1) x (1/10-14m)
= 5.27 x 10-21 kg m s-1 (for a proton)
Therefore, the uncertainty in momentum for an electron confined to a region of atomic dimensions is 5.27 x 10-25 kg m s-1, and the uncertainty in momentum for a proton confined to a region of nuclear dimensions is 5.27 x 10-21 kg m s-1.
This means that the uncertainty in momentum is much higher for a proton confined to a region of nuclear dimensions than for an electron confined to a region of atomic dimensions. This is because the region of nuclear dimensions is much smaller than the region of atomic dimensions, so the uncertainty in position is much smaller, and thus the uncertainty in momentum is much larger.
To know more about momentum visit :
https://brainly.com/question/30677308
#SPJ11
C. Density Determination - Measurement (pyrex beaker, ruler or meter stick, wood block) 1) Design an experiment to find out the density of the wood block using only a beaker, water, and a meter stick. Do not use a weighing scale for this part. 2) Design a second, different experiment to measure the density of the wood block. You can use a weighing scale for this part. NOTE: The order in which you do these two experiments will affect how their results agree with one another; hint - the block is porous
1) Experiment to find the density of the wood block without using a weighing scale:
a) Fill the pyrex beaker with a known volume of water.
b) Measure and record the initial water level in the beaker.
c) Carefully lower the wood block into the water, ensuring it is fully submerged.
d) Measure and record the new water level in the beaker.
e) Calculate the volume of the wood block by subtracting the initial water level from the final water level.
f) Divide the mass of the wood block (obtained from the second experiment) by the volume calculated in step e to determine the density of the wood block.
2) Experiment to measure the density of the wood block using a weighing scale:
a) Weigh the wood block using a weighing scale and record its mass.
b) Fill the pyrex beaker with a known volume of water.
c) Measure and record the initial water level in the beaker.
d) Carefully lower the wood block into the water, ensuring it is fully submerged.
e) Measure and record the new water level in the beaker.
f) Calculate the volume of the wood block by subtracting the initial water level from the final water level.
g) Divide the mass of the wood block by the volume calculated in step f to determine the density of the wood block.
Comparing the results from both experiments will provide insights into the porosity of the wood block. If the density calculated in the first experiment is lower than in the second experiment, it suggests that the wood block is porous and some of the water has been absorbed.
For more questions like Density click the link below:
brainly.com/question/17990467
#SPJ11
The magnetic flux through a coil containing 10 loops changes
from 10Wb to −20W b in 0.02s. Find the induced voltage ε.
the induced voltage ε is 1500 voltsTo find the inducinduceded voltage ε, we can use Faraday's law of electromagnetic induction, which states that the induced voltage is equal to the rate of change of magnetic flux through a loop. Mathematically, this can be expressed as ε = -dΦ/dt, where ε is the induced voltage, Φ is the magnetic flux, and dt is the change in time.
Given that the magnetic flux changes from 10 Wb to -20 Wb in 0.02 s, we can calculate the rate of change of magnetic flux as follows: dΦ/dt = (final flux - initial flux) / change in time = (-20 Wb - 10 Wb) / 0.02 s = -1500 Wb/s.
Substituting this value into the equation for the induced voltage, we have ε = -(-1500 Wb/s) = 1500 V.
Therefore, the induced voltage ε is 1500 volts.
To learn more about flux click here:brainly.com/question/31607470
#SPJ11
Explain in detail why a photon's wavelength must increase when
it scatters from a particle at rest.
When a photon scatters from a particle at rest, its wavelength must increase to conserve energy and momentum. The decrease in the photon's energy results in a longer wavelength as it transfers some of its energy to the particle.
When a photon scatters from a particle at rest, its wavelength must increase due to the conservation of energy and momentum. Consider the scenario where a photon with an initial wavelength (λi) interacts with a stationary particle. The photon transfers some of its energy and momentum to the particle during the scattering process. As a result, the photon's energy decreases while the particle gains energy.
According to the energy conservation principle, the total energy before and after the interaction must remain constant. Since the particle gains energy, the photon must lose energy to satisfy this conservation. Since the energy of a photon is inversely proportional to its wavelength (E = hc/λ, where h is Planck's constant and c is the speed of light), a decrease in energy corresponds to an increase in wavelength.
Learn more about ”wavelength” here:
brainly.com/question/28466888
#SPJ11
3. (4 points) A dog chewed a smoke detector into pieces and swallowed its Am-241 radioactive source. The source has an activity of 37 kBq primarily composed of alpha particles with an energy of 5.486 MeV per decay. A tissue mass of 0.25 kg of the dog's intestine completely absorbed the alpha particle energy as the source traveled through his digestive tract. The source was then "passed" in the dog's feces after 12 hours. Assume that the RBE for an alpha particle is 10. Calculate: a) the total Absorbed Energy expressed in the correct units b) the Absorbed Dose expressed in the correct units c) the Dose Equivalent expressed in the correct units d) the ratio of the dog's Dose Equivalent to the recommended annual human exposure
a) Total Absorbed Energy:
The absorbed energy is the product of the activity (in decays per second) and the energy per decay (in joules). We need to convert kilobecquerels to becquerels and megaelectronvolts to joules.
Total Absorbed Energy = Activity × Energy per decay
Total Absorbed Energy ≈ 3.04096 × 10^(-6) J
b) Absorbed Dose:
The absorbed dose is the absorbed energy divided by the mass of the tissue.
Absorbed Dose = Total Absorbed Energy / Tissue Mass
Absorbed Dose = 3.04096 × 10^(-6) J / 0.25 kg
Absorbed Dose = 12.16384 μGy (since 1 Gy = 1 J/kg, and 1 μGy = 10^(-6) Gy)
c) Dose Equivalent:
The dose equivalent takes into account the relative biological effectiveness (RBE) of the radiation. We multiply the absorbed dose by the RBE value for alpha particles.
Dose Equivalent = 121.6384 μSv (since 1 Sv = 1 Gy, and 1 μSv = 10^(-6) Sv)
Ratio = Dose Equivalent (Dog) / Recommended Annual Human Exposure
Ratio = 121.6384 μSv / 1 mSv
Ratio = 0.1216384
Therefore, the ratio of the dog's dose equivalent to the recommended annual human exposure is approximately 0.1216384.
Learn more about energy here : brainly.com/question/1932868
#SPJ11
Finnish saunas can reach temperatures as high as 130 - 140 degrees Celcius - which extreme sauna enthusiasts can tolerate in short bursts of 3 - 4 minutes. Calculate the heat required to convert a 0.8 kg block of ice, brought in from an outside temperature of -8 degrees Celcius, to steam at 104.0 degrees Celcius in the sauna. [The specific heat capacity of water vapour is 1.996 kJ/kg/K; see the lecture notes for the other specific heat capacities and specific latent heats].
To calculate heat required to convert a 0.8 kg block of ice to steam at 104.0 degrees Celsius in a sauna, we need to consider stages of phase change and specific heat capacities and specific latent heats involved.
First, we need to calculate the heat required to raise the temperature of the ice from -8 degrees Celsius to its melting point at 0 degrees Celsius. The specific heat capacity of ice is 2.09 kJ/kg/K. The equation for this heat transfer is:
Q1 = mass * specific heat capacity * temperature change
Q1 = 0.8 kg * 2.09 kJ/kg/K * (0 - (-8)) degrees Celsius. Next, we calculate the heat required to melt the ice at 0 degrees Celsius. The specific latent heat of fusion for ice is 334 kJ/kg. The equation for this heat transfer is:
Q2 = mass * specific latent heat
Q2 = 0.8 kg * 334 kJ/kg
After the ice has melted, we need to calculate the heat required to raise the temperature of the water from 0 degrees Celsius to 100 degrees Celsius. The specific heat capacity of water is 4.18 kJ/kg/K. The equation for this heat transfer is:
Q3 = mass * specific heat capacity * temperature change
Q3 = 0.8 kg * 4.18 kJ/kg/K * (100 - 0) degrees Celsius
Finally, we calculate the heat required to convert the water at 100 degrees Celsius to steam at 104.0 degrees Celsius. The specific latent heat of vaporization for water is 2260 kJ/kg. The equation for this heat transfer is:
Q4 = mass * specific latent heat
Q4 = 0.8 kg * 2260 kJ/kg
The total heat required is the sum of Q1, Q2, Q3, and Q4:
Total heat = Q1 + Q2 + Q3 + Q4
Calculating these values will give us the heat required to convert the ice block to steam in the sauna.
To learn more about specific latent heats click here : brainly.com/question/30460917
#SPJ11
A mass attached to the end of a spring is oscillating with a period of 2.25s on a horontal Inctionless surface. The mass was released from restat from the position 0.0460 m (a) Determine the location of the mass att - 5.515 m (b) Determine if the mass is moving in the positive or negative x direction at t-5515. O positive x direction O negative x direction
a) The location of the mass at -5.515 m is not provided.
(b) The direction of motion at t = -5.515 s cannot be determined without additional information.
a)The location of the mass at -5.515 m is not provided in the given information. Therefore, it is not possible to determine the position of the mass at that specific point.
(b) To determine the direction of motion at t = -5.515 s, we need additional information. The given data only includes the period of oscillation and the initial position of the mass. However, information about the velocity or the phase of the oscillation is required to determine the direction of motion at a specific time.
In an oscillatory motion, the mass attached to a spring moves back and forth around its equilibrium position. The direction of motion depends on the phase of the oscillation at a particular time. Without knowing the phase or velocity of the mass at t = -5.515 s, we cannot determine whether it is moving in the positive or negative x direction.
To accurately determine the direction of motion at a specific time, additional information such as the amplitude, phase, or initial velocity would be needed.
To learn more about mass click here
brainly.com/question/86444
#SPJ11
a helicopter drop a package down at a constant speed 5m/s. When the package at 100m away from the helicopter, a stunt person fall out the helicopter. How long he catches the package? How fast is he?
In a planned stunt for a movie, a supply package with a parachute is dropped from a stationary helicopter and falls straight down at a constant speed of 5 m/s. A stuntperson falls out the helicopter when the package is 100 m below the helicopter. (a) Neglecting air resistance on the stuntperson, how long after they leave the helicopter do they catch up to the package? (b) How fast is the stuntperson going when they catch up? 2.) In a planned stunt for a movie, a supply package with a parachute is dropped from a stationary helicopter and falls straight down at a constant speed of 5 m/s. A stuntperson falls out the helicopter when the package is 100 m below the helicopter. (a) Neglecting air resistance on the stuntperson, how long after they leave the helicopter do they catch up to the package? (b) How fast is the stuntperson going when they catch up?
The stuntperson catches up to the package 20 seconds after leaving the helicopter.The stuntperson is traveling at a speed of 25 m/s when they catch up to the package.
To determine the time it takes for the stuntperson to catch up to the package, we can use the fact that the package is falling at a constant speed of 5 m/s. Since the stuntperson falls out of the helicopter when the package is 100 m below, it will take 20 seconds (100 m ÷ 5 m/s) for the stuntperson to reach that point and catch up to the package.
In this scenario, since the stuntperson falls straight down without any horizontal motion, they will have the same vertical velocity as the package. As the package falls at a constant speed of 5 m/s, the stuntperson will also have a downward velocity of 5 m/s.
When the stuntperson catches up to the package after 20 seconds, their velocity will still be 5 m/s, matching the speed of the package. Therefore, the stuntperson is traveling at a speed of 25 m/s (5 m/s downward speed plus the package's 20 m/s downward speed) when they catch up to the package.
Learn more about Speed
brainly.com/question/17661499
#SPJ11
[5:26 pm, 13/05/2022] Haris Abbasi: a) The 10-kg collar has a velocity of 5 m/s to the right when it is at A. It then travels along the
smooth guide. Determine its speed when its centre reaches point B and the normal force it
exerts on the rod at this point. The spring has an unstretched length of 100 mm and B is located
just before the end of the curved portion of the rod. The whole system is in a vertical plane. (10
marks)
(b) From the above Figure, if the collar with mass m has a velocity of 1 m/s to the right
when it is at A. It then travels along the smooth guide. It stop at Point B. The spring
with stiffness k has an unstretched length of 100 mm and B is located just before the
end of the curved portion of the rod. The whole system is in a vertical plane. Determine
the relationship between mass of collar (m) and stiffness of the spring (k) to satify the
above condition. (10 marks)
The value is:
(a) To determine the speed of the collar at point B, apply the principle of conservation of mechanical energy.
(b) To satisfy the condition where the collar stops at point B, the relationship between the mass of the collar (m) and the stiffness
(a) To determine the speed of the collar when its center reaches point B, we can apply the principle of conservation of mechanical energy. Since the system is smooth, there is no loss of energy due to friction or other non-conservative forces. Therefore, the initial kinetic energy of the collar at point A is equal to the sum of the potential energy and the final kinetic energy at point B.
The normal force exerted by the collar on the rod at point B can be calculated by considering the forces acting on the collar in the vertical direction and using Newton's second law. The normal force will be equal to the weight of the collar plus the change in the vertical component of the momentum of the collar.
(b) In this scenario, the collar stops at point B. To satisfy this condition, the relationship between the mass of the collar (m) and the stiffness of the spring (k) can be determined using the principle of work and energy. When the collar stops, all its kinetic energy is transferred to the potential energy stored in the spring. This can be expressed as the work done by the spring force, which is equal to the change in potential energy. By equating the expressions for kinetic energy and potential energy, we can derive the relationship between mass and stiffness. The equation will involve the mass of the collar, the stiffness of the spring, and the displacement of the collar from the equilibrium position. Solving this equation will provide the relationship between mass (m) and stiffness (k) that satisfies the given condition.
To know more about mass:
https://brainly.com/question/11954533
#SPJ11
1.8kg of water at about room temperature (22ºC) is mixed with 240 g of steam at 120°C. Determine the final temperature of the water. The specific heat capacity of water is 4186 J/kg/°C
By heat transfer the final temperature of water is 27.85⁰C.
The heat transfer to raise the temperature by ΔT of mass m is given by the formula:
Q = m× C × ΔT
Where C is the specific heat of the material.
Given information:
Mass of water, m₁ = 1.8kg
The temperature of the water, T₁ =22°C
Mass of steam, m₂ = 240g or 0.24kg
The temperature of the steam, T₂ = 120⁰C
Specific heat of water, C₁ = 4186 J/kg/°C
Let the final temperature of the mixture be T.
Heat given by steam + Heat absorbed by water = 0
m₂C₂(T-T₂) + m₁C₁(T-T₁) =0
0.24×1996×(T-120) + 1.8×4186×(T-22) = 0
479.04T -57484.8 + 7534.8T - 165765.6 =0
8013.84T =223250.4
T= 27.85⁰C
Therefore, by heat transfer the final temperature of water is 27.85⁰C.
To know more about heat transfer, click here:
https://brainly.com/question/31065010
#SPJ4
For a certain choice of origin, the third antinode in a standing wave occurs at x3=4.875m while the 10th antinode occurs at x10=10.125 m. The wavelength, in m, is: 1.5 O None of the listed options 0.75 0.375
The third antinode in a standing wave occurs at x3=4.875 m and the 10th antinode occurs at x10=10.125 m hence the wavelength is 0.75.
Formula used:
wavelength (n) = (xn - x3)/(n - 3)where,n = 10 - 3 = 7xn = 10.125m- 4.875m = 5.25 m
wavelength(n) = (5.25)/(7)wavelength(n) = 0.75m
Therefore, the wavelength, in m, is 0.75.
Given, the third antinode in a standing wave occurs at x3=4.875 m and the 10th antinode occurs at x10=10.125 m.
We have to find the wavelength, in m. The wavelength is the distance between two consecutive crests or two consecutive troughs. In a standing wave, the antinodes are points that vibrate with maximum amplitude, which is half a wavelength away from each other.
The third antinode in a standing wave occurs at x3=4.875m. Let us assume that this point corresponds to a crest. Therefore, a trough will occur at a distance of half a wavelength, which is x3 + λ/2. Let us assume that the 10th antinode in a standing wave occurs at x10=10.125m.
Let us assume that this point corresponds to a crest. Therefore, a trough will occur at a distance of half a wavelength, which is x10 + λ/2.
Let us consider the distance between the two troughs:
(x10 + λ/2) - (x3 + λ/2) = x10 - x3λ = (x10 - x3) / (10-3)λ = (10.125 - 4.875) / (10-3)λ = 5.25 / 7λ = 0.75m
Therefore, the wavelength, in m, is 0.75.
To know more about antinode visit
brainly.com/question/3838585
#SPJ11
Find the magnitude of the electric field where the vertical
distance measured from the filament length is 34 cm when there is a
long straight filament with a charge of -62 μC/m per unit
length.
E=___
The magnitude of the electric field where the vertical distance measured from the filament length is 34 cm when there is a long straight filament with a charge of -62 μC/m per unit length is 2.22x10^5 N/C. Therefore, E= 2.22 x 10^5 N/C. A charged particle placed in an electric field experiences an electric force.
The magnitude of the electric field where the vertical distance measured from the filament length is 34 cm when there is a long straight filament with a charge of -62 μC/m per unit length is 2.22x10^5 N/C. Therefore, E= 2.22 x 10^5 N/C. A charged particle placed in an electric field experiences an electric force. The magnitude of the electric field is defined as the force per unit charge that acts on a positive test charge placed in that field. The electric field is represented by E.
The electric field is a vector quantity, and the direction of the electric field is the direction of the electric force acting on the test charge. The electric field is a function of distance from the charged object and the amount of charge present on the object. The electric field can be represented using field lines. The electric field lines start from the positive charge and end at the negative charge. The electric field due to a long straight filament with a charge of -62 μC/m per unit length is given by, E = (kλ)/r
where, k is Coulomb's constant = 9 x 109 N m2/C2λ is the charge per unit length
r is the distance from the filament
E = (9 x 109 N m2/C2) (-62 x 10-6 C/m) / 0.34 m = 2.22 x 105 N/C
To know more about electric field visit:
https://brainly.com/question/30544719
#SPJ11
if an eye is farsighted the image defect is:
a) distant objects image is formed in front of the retina
b) near objects image is formed behind the retina
c) lens of the eye cannot focus on distant objects
d) two of the above
If an eye is farsighted the image defect is that distant objects image is formed in front of the retina. Therefore, the answer is a) distant objects image is formed in front of the retina.
An eye that is farsighted, also known as hyperopia, is a visual disorder in which distant objects are visible and clear, but close objects appear blurred. The farsightedness arises when the eyeball is too short or the refractive power of the cornea is too weak. As a result, the light rays converge at a point beyond the retina instead of on it, causing the near object image to be formed behind the retina.
Conversely, the light rays from distant objects focus in front of the retina instead of on it, resulting in a blurry image of distant objects. Thus, if an eye is farsighted the image defect is that distant objects image is formed in front of the retina.
To learn more about retina visit;
https://brainly.com/question/15141911
#SPJ11
1. In what pattern does electricity flow in an AC circuit? A. dash B. dots C. straight D. wave 2. How does an electron move in a DC? A. negative to positive B. negative to negative C. posititve to negative D. positive to positive 3. In what type of LC circuit does total current be equal to the current of inductor and capacitor? A. series LC circuit B. parallel LC circuit C. series-parallel LC circuit D. all of the above 4. In what type of LC circuit does total voltage is equal to the current of inductor and capacitor? A. series LC circuit B. parallel LC circuit NG PASIC OF PASIG VOISINIO אני אמות KALAKHAN IA CITY MAYNILA 1573 PASIG CITY C. series-parallel LC circuit D. all of the above 5. If the capacitance in the circuit is increased, what will happen to the frequency?? A. increase B. decrease C. equal to zero D. doesn't change
Answer:
1.) D. wave
In an AC circuit, the electric current flows back and forth, creating a wave-like pattern.
2.) A. negative to positive
In a DC circuit, electrons flow from the negative terminal of a battery to the positive terminal.
3.) A. series LC circuit
In a series LC circuit, the current through the inductor and capacitor are equal and in the same direction.
4.) B. parallel LC circuit
In a parallel LC circuit, the voltage across the inductor and capacitor are equal and in the opposite direction.
5.) B. decrease
As the capacitance in a circuit increases, the resonant frequency decreases.
Explanation:
AC circuits: AC circuits are circuits that use alternating current (AC). AC is a type of electrical current that flows back and forth, reversing its direction at regular intervals. The frequency of an AC circuit is the number of times the current reverses direction per second.
DC circuits: DC circuits are circuits that use direct current (DC). DC is a type of electrical current that flows in one direction only.
LC circuits: LC circuits are circuits that contain an inductor and a capacitor. The inductor stores energy in the form of a magnetic field, and the capacitor stores energy in the form of an electric field. When the inductor and capacitor are connected together, they can transfer energy back and forth between each other, creating a resonant frequency.
Resonant frequency: The resonant frequency of a circuit is the frequency at which the circuit's impedance is minimum. The resonant frequency of an LC circuit is determined by the inductance of the inductor and the capacitance of the capacitor.
Learn more about Electricity.
https://brainly.com/question/33261230
#SPJ11
Three resistors, each having a resistance of 30 Q2, are connected in parallel with each other. What is the value of their effective resistance? A string of 50 identical tree lights connected in series dissipates 100 W when connected to a 120 V power outlet. What is the equivalent resistance of the string?
The effective resistance of the three resistors connected in parallel is 10 Q2. To find the effective resistance of resistors connected in parallel, you can use the formula:
1/Req = 1/R1 + 1/R2 + 1/R3 + ...
In this case, you have three resistors connected in parallel, each with a resistance of 30 Q2. So, we can substitute these values into the formula:
1/Req = 1/30 Q2 + 1/30 Q2 + 1/30 Q2
1/Req = 3/30 Q2
1/Req = 1/10 Q2
Req = 10 Q2
Therefore, the effective resistance of the three resistors connected in parallel is 10 Q2.
Learn more about resistance here : brainly.com/question/32301085
#SPJ11
4. The flat surface of an unoccupied trampoline is 1.0 m above the ground. When stretched down- wards, the upward spring force of the trampoline may be modeled as a linear restoring force. A 50-kg gymnast rests on a trampoline before beginning a routine. [20 points] a) Draw a free-body diagram for the gymnast and state what you know about the magnitude and/or direction of the net force. [3] b) While she is resting on the trampoline, the surface of the trampoline is 5.0 cm lower than before she got on. Find the effective spring constant k of the trampoline. [5] During the routine the gymnast drops from a height of 1.2 metres vertically onto a trampoline. c) How far above the floor is the surface of the trampoline during the lowest part of her bounce? [10] [Hint: ax2 + bx+c=0 (with a, b, c constants) has solutions x = -6£vb2-4ac .] d) If she continues bouncing up and down on the trampoline without any loss of mechanical energy, is her motion simple harmonic? Justify your answer [2] a 2a
The normal force exerted by the trampoline acts upward with a magnitude equal to the weight of the gymnast (mg) to balance the weight. The net force acting on the gymnast is zero since she is at rest. The effective spring constant of the trampoline is 98,000 N/m.
a) Free-body diagram for the gymnast:
The weight of the gymnast acts downward with a magnitude of mg, where m is the mass of the gymnast and g is the acceleration due to gravity.
The normal force exerted by the trampoline acts upward with a magnitude equal to the weight of the gymnast (mg) to balance the weight.
The net force acting on the gymnast is zero since she is at rest.
b) To find the effective spring constant k of the trampoline, we can use Hooke's Law. When the surface of the trampoline is 5.0 cm lower, the displacement is given by Δy = 0.05 m. The weight of the gymnast is balanced by the upward spring force of the trampoline.
Using Hooke's Law:
mg = kΔy
Substituting the given values:
(50 kg)(9.8 m/s²) = k(0.05 m)
Solving for k:
k = (50 kg)(9.8 m/s²) / 0.05 m = 98,000 N/m
Therefore, the effective spring constant of the trampoline is 98,000 N/m.
c) To find the height above the floor during the lowest part of her bounce, we need to consider the conservation of mechanical energy. At the highest point, the gravitational potential energy is maximum, and at the lowest point, it is converted into elastic potential energy of the trampoline.
Using the conservation of mechanical energy:
mgh = 1/2 kx²
Where h is the initial height (1.2 m), k is the spring constant (98,000 N/m), and x is the displacement from the equilibrium position.
At the lowest part of the bounce, the displacement is equal to the initial displacement (0.05 m), but in the opposite direction.
Substituting the values:
(50 kg)(9.8 m/s²)(1.2 m) = 1/2 (98,000 N/m)(-0.05 m)²
Simplifying and solving for h:
h = -[(50 kg)(9.8 m/s²)(1.2 m)] / [1/2 (98,000 N/m)(0.05 m)²] = 0.24 m
Therefore, the surface of the trampoline is 0.24 m above the floor during the lowest part of her bounce.
d) No, her motion is not simple harmonic because she experiences a change in amplitude as she bounces. In simple harmonic motion, the amplitude remains constant, but in this case, the amplitude decreases due to the dissipation of energy through the bounce.
To learn more about net force click here
https://brainly.com/question/18109210
#SPJ11
What is the frequency of the most intense radiation emitted by your body? Assume a skin temperature of 95 °F. Express your answer to three significant figures.
The frequency of the most intense radiation emitted by your body is approximately 3.19 × 10^13 Hz.
To determine the frequency of the most intense radiation emitted by your body, we can use Wien's displacement law, which relates the temperature of a black body to the wavelength at which it emits the most intense radiation.
The formula for Wien's displacement law is:
λ_max = (b / T)
Where λ_max is the wavelength of maximum intensity, b is Wien's displacement constant (approximately 2.898 × 10^-3 m·K), and T is the temperature in Kelvin.
First, let's convert the skin temperature of 95 °F to Kelvin:
T = (95 + 459.67) K ≈ 308.15 K
Now, we can calculate the wavelength of maximum intensity using Wien's displacement law:
λ_max = (2.898 × 10^-3 m·K) / 308.15 K
Calculating this expression, we find:
λ_max ≈ 9.41 × 10^-6 m
To find the frequency, we can use the speed of light formula:
c = λ * f
Where c is the speed of light (approximately 3 × 10^8 m/s), λ is the wavelength, and f is the frequency.
Rearranging the formula to solve for frequency:
f = c / λ_max
Substituting the values, we have:
f ≈ (3 × 10^8 m/s) / (9.41 × 10^-6 m)
Calculating this expression, we find:
f ≈ 3.19 × 10^13 Hz
Therefore, the frequency of the most intense radiation emitted by your body is approximately 3.19 × 10^13 Hz.
Learn more about wavelength:
https://brainly.com/question/10750459
#SPJ11
A spherical mirror is to be used to form an image 5.90 times the size of an object on a screen located 4.40 m from the object. (a) Is the mirror required concave or convex? concave convex (b) What is the required radius of curvature of the mirror? m (c) Where should the mirror be positioned relative to the object? m from the object
The mirror required is concave. The radius of curvature of the mirror is -1.1 m. The mirror should be positioned at a distance of 0.7458 m from the object.
Given,
Image height (hᵢ) = 5.9 times the object height (h₀)
Screen distance (s) = 4.40 m
Let us solve each part of the question :
Is the mirror required concave or convex? We know that the magnification (M) for a spherical mirror is given by: Magnification,
M = - (Image height / Object height)
Also, the image is real when the magnification (M) is negative. So, we can write:
M = -5.9
[Given]Since, M is negative, the image is real. Thus, we require a concave mirror to form a real image.
What is the required radius of curvature of the mirror? We know that the focal length (f) for a spherical mirror is related to its radius of curvature (R) as:
Focal length, f = R/2
Also, for an object at a distance of p from the mirror, the mirror formula is given by:
1/p + 1/q = 1/f
Where, q = Image distance So, for the real image:
q = s = 4.4 m
Substituting the values in the mirror formula, we get:
1/p + 1/4.4 = 1/f…(i)
Also, from the magnification formula:
M = -q/p
Substituting the values, we get:
-5.9 = -4.4/p
So, the object distance is: p = 0.7458 m
Substituting this value in equation (i), we get:
1/0.7458 + 1/4.4 = 1/f
Solving further, we get:
f = -0.567 m
Since the focal length is negative, the mirror is a concave mirror.
Therefore, the radius of curvature of the mirror is:
R = 2f
R = 2 x (-0.567) m
R = -1.13 m
R ≈ -1.1 m
Where should the mirror be positioned relative to the object? We know that the object distance (p) is given by:
p = -q/M Substituting the given values, we get:
p = -4.4 / 5.9
p = -0.7458 m
We know that the mirror is to be placed between the object and its focus. So, the mirror should be positioned at a distance of 0.7458 m from the object.
Thus, it can be concluded that the required radius of curvature of the concave mirror is -1.1 m. The concave mirror is to be positioned at a distance of 0.7458 m from the object.
to know more about mirror visit:
brainly.com/question/1160148
#SPJ11
6. [-/1 Points] DETAILS SERPSE10 7.4.OP.010. At an archery event, a woman draws the string of her bow back 0.392 m with a force that increases steadily from 0 to 215 N. (a) What is the equivalent spring constant (in N/m) of the bow? N/m (b) How much work (in 3) does the archer do on the string in drawing the bow? 3. Need Help? Read It
The question asks for the equivalent spring constant of a bow and the amount of work done by an archer in drawing the bow. The woman draws the string of the bow back 0.392 m with a steadily increasing force from 0 to 215 N.
To determine the equivalent spring constant of the bow (a), we can use Hooke's Law, which states that the force exerted by a spring is directly proportional to its displacement. In this case, the displacement of the bowstring is given as 0.392 m, and the force increases steadily from 0 to 215 N. Therefore, we can calculate the spring constant using the formula: spring constant = force / displacement. Substituting the values, we have: spring constant = 215 N / 0.392 m = 548.47 N/m.
To calculate the work done by the archer on the string (b), we can use the formula: work = force × displacement. The force applied by the archer steadily increases from 0 to 215 N, and the displacement of the bowstring is given as 0.392 m. Substituting the values, we have: work = 215 N × 0.392 m = 84.28 J (joules). Therefore, the archer does 84.28 joules of work on the string in drawing the bow.
Learn more about Equivalent Spring constant:
https://brainly.com/question/30039564
#SPJ11
As an electromagnetic wave travels through free space, its speed can be increased by: Increasing its energy. Increasing its frequency. Increasing its momentum None of the above will increase its speed
The speed of an electromagnetic wave is determined by the permittivity and permeability of free space, and it is constant. As a result, none of the following can be used to increase its speed.
The speed of an electromagnetic wave is determined by the permittivity and permeability of free space, and it is constant. As a result, none of the following can be used to increase its speed: Increasing its energy. Increasing its frequency. Increasing its momentum. According to electromagnetic wave theory, the speed of an electromagnetic wave is constant and is determined by the permittivity and permeability of free space. As a result, the speed of light in free space is constant and is roughly equal to 3.0 x 10^8 m/s (186,000 miles per second).
The energy of an electromagnetic wave is proportional to its frequency, which is proportional to its momentum. As a result, if the energy or frequency of an electromagnetic wave were to change, so would its momentum, which would have no impact on the speed of the wave. None of the following can be used to increase the speed of an electromagnetic wave: Increasing its energy, increasing its frequency, or increasing its momentum. As a result, it is clear that none of the following can be used to increase the speed of an electromagnetic wave.
To know more about electromagnetic visit
https://brainly.com/question/32967158
#SPJ11
A diatomic ideal gas occupies 4.0 L and pressure of 100kPa. It is compressed adiabatically to 1/4th its original volume, then cooled at constant volume back to its original temperature. Finally, it is allowed to isothermally expand back to
its original volume.
A. Draw a PV diagram B. Find the Heat, Work, and Change in Energy for each process (Fill in Table). Do not assume anything about the net values to fill in the
values for a process.
C. What is net heat and work done?
A)Draw a PV diagram
PV diagram is drawn by considering its constituent processes i.e. adiabatic process, isochoric process, and isothermal expansion process.
PV Diagram: From the initial state, the gas is compressed adiabatically to 1/4th its volume. This is a curve process and occurs without heat exchange. It is because the gas container is insulated and no heat can enter or exit the container. The second process is cooling at a constant volume. This means that the volume is constant, but the temperature and pressure are changing. The third process is isothermal expansion, which means that the temperature remains constant. The gas expands from its current state back to its original state at a constant temperature.
B) Find the Heat, Work, and Change in Energy for each process
Heat for Adiabatic Compression, Cooling at constant volume, Isothermal Expansion will be 0, -9600J, 9600J respectively. work will be -7200J, 0J, 7200J respectively. Change in Energy will be -7200J, -9600J, 2400J.
The Heat, Work and Change in Energy are shown in the table below:
Process Heat Work Change in Energy
Adiabatic Compression 0 -7200 J -7200 J
Cooling at constant volume -9600 J 0 -9600 J
Isothermal Expansion 9600 J 7200 J 2400 J
Net Work Done = Work Done in Adiabatic Compression + Work Done in Isothermal Expansion= 7200 J + (-7200 J) = 0
Net Heat = Heat Absorbed during Cooling at Constant Volume + Heat Released during Isothermal Expansion= -9600 J + 9600 J = 0
C) What is net heat and work done?
The net heat and work done are both zero.
Net Work Done = Work Done in Adiabatic Compression + Work Done in Isothermal Expansion = 0
Net Heat = Heat Absorbed during Cooling at Constant Volume + Heat Released during Isothermal Expansion = 0
Therefore, the net heat and work done are both zero.
Learn more about work: https://brainly.in/question/22847362
#SPJ11
5) A beaker contains 2 grams of ice at a temperature of -10°C. The mass of the beaker may be ignored. Heat is supplied to the beaker at a constant rate of 2200J/minute. The specific heat of ice is 2100 J/kgk and the heat of fusion for ice is 334 x103 J/kg. How much time passes before the ice starts to melt? (8 pts)
The time it takes for the ice to start melting is approximately 8.22 minutes.
To calculate the time before the ice starts to melt, we need to consider the heat required to raise the temperature of the ice from -10°C to its melting point (0°C) and the heat of fusion required to convert the ice at 0°C to water at the same temperature.
First, we calculate the heat required to raise the temperature of 2 grams of ice from -10°C to 0°C using the specific heat formula Q = m * c * ΔT, where Q is the heat, m is the mass, c is the specific heat, and ΔT is the change in temperature. Substituting the given values, we get Q1 = 2 g * 2100 J/kg°C * (0°C - (-10°C)) = 42000 J.
Next, we calculate the heat of fusion required to convert the ice to water at 0°C using the formula Q = m * Hf, where Q is the heat, m is the mass, and Hf is the heat of fusion. Substituting the given values, we get Q2 = 2 g * 334 x 10³ J/kg = 668000 J.
Now, we sum up the heat required for temperature rise and the heat of fusion: Q_total = Q1 + Q2 = 42000 J + 668000 J = 710000 J.
Finally, we divide the total heat by the heat supplied per minute to obtain the time: t = Q_total / (2200 J/minute) ≈ 322.73 minutes ≈ 8.22 minutes.
Therefore, it takes approximately 8.22 minutes for the ice to start melting when heat is supplied at a constant rate of 2200 J/minute.
learn more about heat of fusion here:
https://brainly.com/question/30403515
#SPJ11
Consider a right angled triangle: h=Hyoptenuse a=Adjacent o=opposite Which of the following is true? O h²=o²+ a² 0 √h=√a+√o Oh=o+a Oo=a+h
The correct mathematical representation is h²=o²+ a² . Option A
How to determine the expressionFirst, we need to know that the Pythagorean theorem states that the square of the longest side of a triangle is equal to the sum of the squares of the other two sides of the triangle.
This is expressed as;
h² = o² + a²
Such that the parameters of the formula are given as;
h is the hypotenuse side of the trianglea is the adjacent side of the triangleo is the opposite side of the triangleLearn more about Pythagorean theorem at: https://brainly.com/question/343682
#SPJ4
Suppose that you built the circuit given in Figure 3-2 of your lab instructions with slide wire of total length 7.7cm and try to experimentally determine the value of the unknown resistance Rx where Rc is 7.3. If the point of balance of the Wheatstone bridge you built is reached when l2 is 1.8 cm , calculate the experimental value for Rx. Give your answer in units of Ohms with 1 decimal.
In the circuit given in Figure 3-2 of your lab instructions with slide wire of total length 7.7cm, we need to experimentally determine the value of the unknown resistance Rx where Rc is 7.3.
If the point of balance of the Wheatstone bridge we built is reached when l2 is 1.8 cm, we have to calculate the experimental value for Rx.
The Wheatstone bridge circuit shown in Figure 3-2 is balanced when the potential difference across point B and D is zero.
This happens when R1/R2 = Rx/R3. Thus, the resistance Rx can be determined as:
Rx = (R1/R2) * R3, where R1, R2, and R3 are the resistances of the resistor in the circuit.
To find R2, we use the slide wire of total length 7.7 cm. We can say that the resistance of the slide wire is proportional to its length.
Thus, the resistance of wire of length l1 would be (R1 / 7.7) l1, and the resistance of wire of length l2 would be (R2 / 7.7) l2.
Using these formulas, the value of R2 can be calculated:
R1 / R2 = (l1 - l2) / l2 => R2
= R1 * l2 / (l1 - l2)
= 3.3 * 1.8 / (7.7 - 1.8)
= 0.905 Ω.
Now that we know the value of R2, we can calculate the value of Rx:Rx = (R1 / R2) * R3 = (3.3 / 0.905) * 7.3 = 26.68 Ω
Therefore, the experimental value for Rx is 26.7 Ω.
To know more about resistance visit:
https://brainly.com/question/32301085
#SPJ11
A sound wave is modeled as AP = 2.09 Pa sin(51.19 m 1 .3 – 17405 s ..t). What is the maximum change in pressure, the wavelength, the frequency, and the speed of the sound wave?
The maximum change in pressure is 2.09 Pa, the wavelength is approximately 0.123 m, the frequency is around 2770.4 Hz, and the speed of the sound wave is approximately 340.1 m/s.
To determine the maximum change in pressure, we can look at the amplitude of the wave. In the given model, the amplitude (A) is 2.09 Pa, so the maximum change in pressure is 2.09 Pa.
Next, let's find the wavelength of the sound wave. The wavelength (λ) is related to the wave number (k) by the equation λ = 2π/k. In this case, the wave number is given as 51.19 m^(-1), so we can calculate the wavelength using [tex]\lambda = 2\pi /51.19 m^{-1} \approx 0.123 m[/tex].
The frequency (f) of the sound wave can be determined using the equation f = ω/2π, where ω is the angular frequency. From the given model, we have ω = 17405 s⁻¹, so the frequency is
[tex]f \approx 17405/2\pi \approx 2770.4 Hz[/tex].
Finally, the speed of the sound wave (v) can be calculated using the equation v = λf. Plugging in the values we get,
[tex]v \approx 0.123 m \times 2770.4 Hz \approx 340.1 m/s[/tex].
Learn more about wavelength here:
https://brainly.com/question/30532991
#SPJ11
A cockroach of mass m lies on the rim of a uniform disk of mass 7.00 m that can rotate freely about its center like a merry-go-round. Initially the cockroach and disk rotate together with an angular velocity of 0.200 rad. Then the cockroach walks halfway to the
center of the disk.
(a) What then is the angular velocity of the cockroach-disk system?
(b) What is the ratio K/Ko of the new kinetic energy of the system to its initial kinetic energy?
(a) The angular velocity of the cockroach-disk system after the cockroach walks halfway to the centre of the disk is 0.300 rad.
(b) The ratio K/Ko of the new kinetic energy of the system to its initial kinetic energy is 0.700.
When the cockroach walks halfway to the centre of the disk, it decreases its distance from the axis of rotation, effectively reducing the moment of inertia of the system. Since angular momentum is conserved in the absence of external torques, the reduction in moment of inertia leads to an increase in angular velocity. Using the principle of conservation of angular momentum, the final angular velocity can be calculated by considering the initial and final moments of inertia. In this case, the moment of inertia of the system decreases by a factor of 4, resulting in an increase in angular velocity to 0.300 rad.
The kinetic energy of a rotating object is given by the equation K = (1/2)Iω^2, where K is the kinetic energy, I is the moment of inertia, and ω is the angular velocity. Since the moment of inertia decreases by a factor of 4 and the angular velocity increases by a factor of 1.5, the ratio K/Ko of the new kinetic energy to the initial kinetic energy is (1/2)(1/4)(1.5^2) = 0.700. Therefore, the new kinetic energy is 70% of the initial kinetic energy.
To learn more about velocity, click here:
brainly.com/question/30559316
#SPJ11
All work/steps must be shown following the "Problem-Solving Procedure". Part II - Short Problems −4 points 1. Find the ' x ' and ' y ' components of the following vectors. a. F=67.9 N,38∘ b. v=8.76 m/s,−57.3∘ 2. Determine the 'polar coordinate' form of the following vector components. a. Ax=7.87 mAy=−8.43 m b. vx=−67.3 m/svy=−24.9 m/s
In problem 1, the x and y components of the vector F are found to be 50.19 N and 51.95 N, respectively. In problem 2, the polar coordinate form of vector A is determined to be 11.01 m at an angle of -48.92 degrees, while vector v is expressed as 76.46 m/s at an angle of -197.65 degrees.
In problem 1a, the vector force F, is given with a magnitude of 67.9 N and an angle of 38 degrees. To find the x and y components, we use the trigonometric functions cosine (cos) and sine (sin).
The x component is calculated as Fx = F * cos(θ), where θ is the angle, yielding Fx = 67.9 N * cos(38°) = 50.19 N. Similarly, the y component is determined as Fy = F * sin(θ), resulting in Fy = 67.9 N * sin(38°) = 51.95 N.
In problem 1b, the vector v is given with a magnitude of 8.76 m/s and an angle of -57.3 degrees. Using the same trigonometric functions, we can find the x and y components.
The x component is calculated as vx = v * cos(θ), which gives vx = 8.76 m/s * cos(-57.3°) = 4.44 m/s. The y component is determined as vy = v * sin(θ), resulting in vy = 8.76 m/s * sin(-57.3°) = -7.37 m/s.
In problem 2a, the vector components Ax = 7.87 m and Ay = -8.43 m are given. To express this vector in polar coordinate form, we can use the Pythagorean theorem to find the magnitude (r) of the vector, which is r = √(Ax^2 + Ay^2).
Substituting the given values, we obtain r = √((7.87 m)^2 + (-8.43 m)^2) ≈ 11.01 m. The angle (θ) can be determined using the inverse tangent function, tan^(-1)(Ay/Ax), which gives θ = tan^(-1)(-8.43 m/7.87 m) ≈ -48.92 degrees.
Therefore, the polar coordinate form of vector A is approximately 11.01 m at an angle of -48.92 degrees.In problem 2b, the vector components vx = -67.3 m/s and vy = -24.9 m/s are given.
Following a similar procedure as in problem 2a, we find the magnitude of the vector v as r = √(vx^2 + vy^2) = √((-67.3 m/s)^2 + (-24.9 m/s)^2) ≈ 76.46 m/s.
The angle θ can be determined using the inverse tangent function, tan^(-1)(vy/vx), resulting in θ = tan^(-1)(-24.9 m/s/-67.3 m/s) ≈ -197.65 degrees. Hence, the polar coordinate form of vector v is approximately 76.46 m/s at an angle of -197.65 degrees.
Learn more about force here ;
https://brainly.com/question/30507236
#SPJ11