11. The vapour pressure, p, of nitric acid varies with temperature according to the following data table. a) b) 0/°C p/kPa 0 20 40 50 1.92 6.38 17.7 27.7 70 62.3 80 89.3 Draw on a proper graph paper

Answers

Answer 1

The graph of vapor pressure (p) of nitric acid against temperature (°C) shows an increasing trend as temperature rises. The data points can be plotted on a graph paper, where the x-axis represents temperature (0°C, 20°C, 40°C, 50°C, 70°C, 80°C) and the y-axis represents vapor pressure (in kPa). The points can then be connected to form a smooth curve to visualize the relationship between vapor pressure and temperature.

In the graph, the vapor pressure values increase gradually with increasing temperature, indicating that nitric acid has a positive temperature coefficient for vapor pressure. This means that as the temperature increases, more molecules of nitric acid evaporate, leading to higher vapor pressure. The curve can be upward sloping, reflecting the increasing trend of vapor pressure with temperature. By plotting the data points and connecting them with a curve, the graph provides a visual representation of the vapor pressure-temperature relationship for nitric acid.

Learn more about temperature here: brainly.com/question/7510619

#SPJ11


Related Questions

Calculate the pH 0.367 M solution of NaF. The Ka for the weak
acid HF is 6.8×10-4

Answers

To calculate the pHof a solution of NaF, we need to consider the hydrolysis of the fluoride ion (F-) and its reaction with water. NaF is the salt of a weak base (F-) and a strong acid (Na+). The F- ion can react with water to produce a small amount of hydroxide ion (OH-) .

The balanced equation for the hydrolysis of F- is:

F- + H2O ⇌ HF + OH-

To calculate the pH, we need to determine the concentration of the hydroxide ion (OH-) and then use the relationship:

pOH = -log[OH-]

pH = 14 - pOH

Given:

[F-] = 0.367 M

Ka for HF = 6.8×10^-4

Since the solution is dilute, we can assume that the concentration of OH- is negligible compared to the concentration of F-.

Therefore, we can neglect the hydrolysis of water and assume that all the F- ion remains as F- in solution.

To find the concentration of OH-, we can use the equation for the ionization of water:

Kw = [H+][OH-]

Since [H+] = 10^-pH and Kw = 1.0×10^-14, we can rewrite the equation as:

[OH-] = Kw / [H+]

Since the concentration of OH- is negligible, we can ignore it in the calculation of pH.

Thus, we only need to consider the concentration of HF.

To find the concentration of HF, we can use the equation for the dissociation of the weak acid HF:

Ka = [H+][F-] / [HF]

Since [H+] = 10^-pH and [F-] = 0.367 M, we can rewrite the equation as:

Ka = (10^-pH)(0.367) / [HF]

Rearranging the equation to solve for [HF]:

[HF] = (10^-pH)(0.367) / Ka

Now we can plug in the values and calculate the pH:

[HF] = (10^-pH)(0.367) / Ka

0.367 = (10^-pH)(0.367) / 6.8×10^-4

0.367(6.8×10^-4) = (10^-pH)(0.367)

2.4976×10^-4 = (10^-pH)

Taking the logarithm of both sides:

-log(2.4976×10^-4) = -log(10^-pH)

log(2.4976×10^-4) = pH

Using a calculator, we find:

pH ≈ 3.60

Therefore, the pH of a 0.367 M solution of NaF is approximately 3.60.

To know more about pH, click here:-

https://brainly.com/question/2288405

#SPJ11

write the balance chemical equation and identify the reaction type
Write the balance chemical equation and identify the reaction type 1: sodium bicarbonate \( + \) acetic acid \( \rightarrow \) sodium acetate \( + \) carbonic acid carbonic acid \( \rightarrow \) carb

Answers

NaHCO3 + CH3COOH ⇒ CH3COONa + H2CO3,

it is a double displacement reaction (acid-base reaction)

In the given reaction, sodium bicarbonate (NaHCO3) reacts with acetic acid (CH3COOH) to produce sodium acetate (CH3COONa) and carbonic acid (H2CO3). To balance the equation, we need to ensure that the number of atoms of each element is equal on both sides. The balanced equation shows that one molecule of sodium bicarbonate reacts with one molecule of acetic acid to produce one molecule of sodium acetate and one molecule of carbonic acid. This balancing ensures that the number of atoms of each element (Na, H, C, O) is the same on both sides of the equation. The reaction type is identified as a double displacement reaction because the positive ions (Na+ and H+) and the negative ions (HCO3- and CH3COO-) exchange places to form the products. In this case, sodium from sodium bicarbonate replaces the hydrogen ion from acetic acid, forming sodium acetate. Simultaneously, the bicarbonate ion combines with the hydrogen ion from acetic acid to form carbonic acid. Overall, the reaction between sodium bicarbonate and acetic acid is a double displacement reaction, precisely an acid-base reaction.

To learn more about acid-base reaction

brainly.com/question/3911136

#SPJ11

2. (a). Outline the terminal orbitals when each molecule (i)-(iii) undergoes photochemical electrocyclic ring closure. (i). (ii). (iii). (15 marks)

Answers

When molecules (i), (ii), and (iii) undergo photochemical electrocyclic ring closure, the terminal orbitals involved can be determined based on their molecular structure and symmetry.

Specifically, we need to consider the frontier molecular orbitals, which are the Highest Occupied Molecular Orbital (HOMO) and the Lowest Unoccupied Molecular Orbital (LUMO). By analyzing the molecular orbitals of each molecule, we can identify the terminal orbitals involved in the ring closure process.

To provide a detailed explanation of the terminal orbitals involved in the photochemical electrocyclic ring closure for molecules (i), (ii), and (iii), additional information about their specific structures and molecular orbitals is needed. Please provide the molecular structures or relevant details for each molecule so that I can analyze their frontier molecular orbitals and determine the terminal orbitals involved.

Note: Electrocyclic reactions involve the breaking and forming of sigma bonds in a cyclic system, and the terminal orbitals involved in the process depend on the molecular structure and symmetry of the molecules.

Learn more about Electrocyclic reactions here: brainly.com/question/30674848

#SPJ11

Determine E, AG, and K for the overall reaction from the balanced half-reactions and their standard reduction potentials. 2 Co³+ + H₂ AsO₂ + H₂O 2 Co²+ + H₂AsO₂ + 2H+ AG = Co³+ + ² = Co�

Answers

From the solution to the problem below;

1) E = 1.345 V

K = [tex]3.18* 10^45[/tex]

G =  -259,585 J

The reaction is spontaneous

What is the standard reduction potential?

The standard reduction potential (E°) is a measure of the tendency of a species to undergo reduction (gain of electrons) under standard conditions. It represents the potential difference between a reduction half-reaction and the standard hydrogen electrode (SHE) at 25°C, with all species at a concentration of 1 M and a gas pressure of 1 atm.

We have that;

E° = Ecathode - Eanode

E° = 1.92 V - 0.575 V

E° = 1.345 V

Then we have that;

d G = -nFE

d G = -(2 * 96500 * 1.345)

= -259,585 J

Then;

d G = -RTlnK

[tex]K = e^(-dG/RT)\\= e^(-(-259,585)/8.314 * 298)[/tex]

=[tex]3.18* 10^45[/tex]

Learn more about electrode potential:https://brainly.com/question/17362810

#SPJ4

250 mL of 2.3 × 10−3 mol/L potassium iodate is reacted
with an equal volume of 2.0 × 10−5 mol/L lead(II) nitrate. Will a
precipitate of lead(II) iodate form (Ksp = 3.2 × 10−13) form? ( 5
mark

Answers

A precipitate of lead(II) iodate will form when 250 mL of 2.3 × 10⁻³ mol/L potassium iodate is reacted with an equal volume of 2.0 × 10⁻⁵ mol/L lead(II) nitrate.

To determine if a precipitate will form, we need to compare the value of the ion product (Q) with the solubility product constant (Ksp). In this case, the reaction between potassium iodate (KIO₃) and lead(II) nitrate (Pb(NO₃)₂) can be represented by the following equation:

2KIO₃(aq) + 3Pb(NO₃)₂(aq) → Pb(IO₃)₂(s) + 2KNO₃(aq)

The molar ratio between potassium iodate and lead(II) nitrate is 2:3. Given that the initial concentrations are 2.3 × 10⁻³ mol/L and 2.0 × 10⁻⁵ mol/L, respectively, we can calculate the concentration of lead(II) iodate formed as follows:

(2.3 × 10⁻³ mol/L) × [tex]\frac{250 mL}{1000 mL}[/tex] × [tex]\frac{3}{2}[/tex] = 1.725 × 10⁻⁴ mol/L

(2.3 × 10⁻³ mol/L) × [tex]\frac{250 mL}{1000 mL}[/tex] × [tex]\frac{3}{2}[/tex] = 1.725 × 10⁻⁴ mol/L

Since the volume of the solution doubles after mixing, the concentration of lead(II) iodate remains the same. Comparing this concentration to the Ksp value of 3.2 × 10⁻¹³, we find that Q > Ksp. Therefore, a precipitate of lead(II) iodate will form.

Learn more about solubility product constant here:

https://brainly.com/question/1419865

#SPJ11

please help
draw 4 different isomers with formula C4H10O
draw 4-butyl-2,6-dichloro-3-fluroheptane
draw cis-2,3-dichloro-2-butene
draw 3-bromocylobutanol
name+draw isomers of C5H10

Answers

Isomers of C₄H₁₀O:

a) Butan-1-ol (1-Butanol)

b) Butan-2-ol (2-Butanol)

c) 2-Methylpropan-1-ol (Isobutanol)

d) 2-Methylpropan-2-ol (tert-Butanol)

Isomers of C₅H₁₀:

a) Pentane:

b) 2-Methylbutane:

c) 2,2-Dimethylpropane:

d) 1-Pentene

Isomers of C4H10O:

a) Butan-1-ol (1-Butanol)

H H H H

| | | |

H-C-C-C-C-O-H

b) Butan-2-ol (2-Butanol)

H H H H

| | | |

H-C-C-C-O-H H

c) 2-Methylpropan-1-ol (Isobutanol)

H H H H

| | | |

H-C-C-C-O-H H

|

CH3

d) 2-Methylpropan-2-ol (tert-Butanol)

H H H H

| | | |

H-C-C-C-O-H

|

CH3

4-Butyl-2,6-dichloro-3-fluoroheptane:

H Cl Cl F H H H H

| | | | | | | |

H-C-C-C-C-C-C-C-H

|

CH3

cis-2,3-Dichloro-2-butene:

Cl H Cl

| | |

H-C-C=C-C-H

|

H

3-Bromocyclobutanol:

Br H H H H O H

| | | | | | |

H-C-C-C-C-O-H

|

H

Isomers of C₅H₁₀:

a) Pentane:

H H H H H

| | | | |

H-C-C-C-C-C-H

b) 2-Methylbutane:

H H H H H

| | | | |

H-C-C-C-C-H H

|

CH3

c) 2,2-Dimethylpropane:

H H H H H

| | | | |

H-C-C-C-H H

| |

CH3 CH3

d) 1-Pentene:

H H H H H

| | | | |

H-C-C-C-C=C-H

Learn more about Isomers from the link given below.

https://brainly.com/question/32508297

#SPJ4

Glucose, C6H12O6,C6⁢H12⁢O6, is used as an energy source by the
human body. The overall reaction in the body is described by the
equation
C6H12O6(aq)+6O2(g)⟶6CO2(g)+6H2O(l)C6⁢H12⁢O6⁡(aq)+6

Answers

Glucose (C6H12O6) is utilized by the human body as an energy source through a metabolic process that involves the reaction of glucose with oxygen (O2). This reaction produces carbon dioxide (CO2) and water (H2O).

Glucose is a fundamental carbohydrate that serves as a primary energy source for the human body. When glucose is metabolized, it undergoes a chemical reaction known as cellular respiration. The overall equation for this process is:

C6H12O6(aq) + 6O2(g) ⟶ 6CO2(g) + 6H2O(l)

In this reaction, one molecule of glucose (C6H12O6) combines with six molecules of oxygen (O2) to produce six molecules of carbon dioxide (CO2) and six molecules of water (H2O). This process occurs within cells, particularly in the mitochondria, where glucose is broken down through a series of enzymatic reactions to release energy in the form of adenosine triphosphate (ATP).

The released ATP is used as a fuel to drive various cellular processes, such as muscle contraction, nerve impulse transmission, and biochemical synthesis. Carbon dioxide, a waste product of cellular respiration, is transported to the lungs through the bloodstream and exhaled from the body. Water, another byproduct, is either utilized within the body or excreted through urine and sweat.

In summary, glucose is crucial for providing energy to the human body. Through the process of cellular respiration, glucose reacts with oxygen to produce carbon dioxide and water, releasing ATP as a usable form of energy. This energy is essential for the proper functioning of various physiological processes in the body.

To know more about  cellular respiration click here :

https://brainly.com/question/29760658

#SPJ11

PLS
HELP!! draw the condensed structural formula
1-bromo-2-chloroethane Draw the molecule on the canvas by choosing buttons from the Tools (for bonds), Atoms, and Advanced Template toolbars. The single bond is activo by default.

Answers

CH₃CH(Br)CH₂Cl

The process for drawing the condensed structural formula of 1-bromo-2-chloroethane.

To draw the condensed structural formula:

Start with a chain of three carbon atoms.

Attach a chlorine (Cl) atom to the second carbon atom and a bromine (Br) atom to the first carbon atom.

Fill the remaining valence electrons of carbon atoms with hydrogen (H) atoms.

Add appropriate bonds between the atoms to indicate the connections. A single bond (---) represents a sigma bond, which is the default bond type.

The final condensed structural formula for 1-bromo-2-chloroethane should appear as follows:

CH₃CH(Br)CH₂Cl

Learn more about 1-bromo-2-chloroethane from this link:

https://brainly.com/question/20340645

#SPJ11

The equilibrium constant, Kc,
for the reaction below is 1.6 x 10-4
at 540 K. Calculate the concentration of CCl4
if there is 1.1 mol of Cl2
present at equilibrium in a 1 L container.
(Please giv

Answers

The concentration of CCl4 at equilibrium is approximately 8325 M.

To calculate the concentration of CCl4 at equilibrium, we'll need to use the equilibrium constant expression and the information given.

The balanced chemical equation for the reaction is:

CCl4(g) + 2Cl2(g) ⇌ 3Cl2(g)

The equilibrium constant expression is:

Kc = [Cl2]³ / [CCl4][Cl2]²

Given:

Kc = 1.6 x 10^(-4)

[Cl2] = 1.1 mol

Volume = 1 L

We can substitute these values into the equilibrium constant expression:

1.6 x 10^(-4) = (1.1 mol)³ / [CCl4](1.1 mol)²

Simplifying the expression:

1.6 x 10^(-4) = 1.331 / [CCl4]

Now, rearranging the equation to solve for [CCl4]:

[CCl4] = 1.331 / (1.6 x 10^(-4))

[CCl4] ≈ 8325 M

Therefore, the concentration of CCl4 at equilibrium is approximately 8325 M.

To learn more about equation visit;

https://brainly.com/question/29657983

#SPJ11

Which structure would you expect to be the most abundant in the
equilibrium?

Answers

In an equilibrium system, the most abundant structure is the one with the lowest potential energy or the highest stability.

The abundance of structures in an equilibrium system is determined by the relative stability of each structure. The structure with the lowest potential energy or the highest stability is favored and therefore more abundant in the equilibrium.

The stability of a structure can be influenced by factors such as bonding interactions, electron distribution, molecular geometry, and the presence of any stabilizing or destabilizing forces. The specific details of the equilibrium system are necessary to determine the most abundant structure.

In chemical reactions, the equilibrium is reached when the rates of the forward and reverse reactions are equal. At equilibrium, the concentrations or amounts of reactants and products remain constant. The equilibrium position is determined by the relative stability of the reactants and products. If a particular structure has a lower potential energy or a higher stability, it will be more favored and therefore more abundant at equilibrium.

To determine the most abundant structure in an equilibrium system, one must analyze the potential energy or stability of each structure involved and compare their relative values.

To know more about equilibrium click here:

https://brainly.com/question/30807709

#SPJ11

D Question 3 What is the correct IUPAC name of the following compound? CI- Problem viewing the image, Click Here O 7-chlorohept-(3E)-en-1-yne O 7-chlorohept-(3Z)-en-1-yne O 1-chlorohept-(4E)-en-6-yne

Answers

The correct IUPAC name of the compound is 7-chlorohept-(3E)-en-1-yne.

The IUPAC name of a compound is determined by following a set of rules established by the International Union of Pure and Applied Chemistry (IUPAC). To determine the correct name of the compound given, we need to analyze its structure and identify the functional groups, substituents, and their positions.

In this case, the compound has a chain of seven carbon atoms (hept) with a chlorine atom (chloro) attached at the 7th position. It also contains a triple bond (yne) and a double bond (en) on adjacent carbon atoms. The stereochemistry of the double bond is indicated by the E configuration, which means that the two highest priority substituents are on opposite sides of the double bond.

Therefore, the correct IUPAC name of the compound is 7-chlorohept-(3E)-en-1-yne.

To learn more about IUPAC name click here: brainly.com/question/16631447

#SPJ11

Sketch a flowchart of a tvoical Activated Sludge Wastewater treatment
plant and briefly describe the functions of each treatment unit. How is acid rain
formed? How many settling patterns are there in a settling tank?

Answers

Flowchart of a typical Activated Sludge Wastewater Treatment Plant: Start - Influent Screening - Grit Removal - Primary Sedimentation Tank - Aeration Tank (Activated Sludge Process) - Secondary Sedimentation Tank - Disinfection - Effluent

Acid rain is formed by the emissions of sulfur dioxide (SO2) and nitrogen oxides (NO) into the atmosphere, primarily from the burning of fossil fuels in power plants, industrial processes, and vehicles. These pollutants undergo chemical reactions with water, oxygen, and other substances in the air, forming sulfuric acid (H2SO4) and nitric acid (HNO3). These acids then dissolve in atmospheric moisture and fall to the ground as acid rain.

In settling tanks used in wastewater treatment, there are generally two common settling patterns:

Upflow Clarifiers: In this pattern, the influent wastewater enters the tank from the bottom and flows upward, allowing solids to settle toward the bottom. The clarified effluent is then collected from the top.

Downflow Clarifiers: In this pattern, the influent wastewater enters the tank from the top and flows downward, promoting the settling of solids towards the bottom. The clarified effluent is collected from the bottom.

Both patterns aim to separate solids from the liquid phase, allowing the settled solids to be removed as sludge while the clarified water is discharged or further treated. The choice of settling pattern depends on the specific design and operational requirements of the wastewater treatment plant.

To learn more about atmosphere visit;

https://brainly.com/question/32358340

#SPJ11

Titrate 25.00 mL of 0.40M HNO2 with 0.15M KOH,
the pH of the solution after adding
15.00 mL of the titrant is:
Ka of HNO2 = 4.5 x 10-4
Select one:
a.1.87
b.2.81
c.3.89
d.10.11
e.11.19

Answers

HNO2 (aq) + KOH (aq) → H2O (l) + KNO2 (aq)Step 1: Before the reaction, the HNO2 solution has a concentration of 0.4 M and a volume of 25.00 mL. The number of moles of HNO2 that are present in the solution is:0.4 M × 0.0250 L = 0.0100 mol HNO2.

Step 2: Add 15.00 mL of 0.15 M KOH to the HNO2 solution. Determine the number of moles of KOH that are added to the solution as follows:0.15 M × 0.0150 L = 0.00225 mol KOHStep 3: The reaction between HNO2 and KOH is a 1:1 reaction. As a result, the number of moles of HNO2 that remain in solution after the reaction is the initial number of moles of HNO2 minus the number of moles of KOH that reacted with the HNO2:0.0100 mol HNO2 - 0.00225 mol KOH = 0.00775 mol HNO2

Step 4: Calculate the pH of the HNO2 solution using the Henderson-Hasselbalch equation:pH = pKa + log([A-]/[HA])pKa of HNO2 = 4.5 × 10-4[A-] (concentration of NO2-) = [KOH] = 0.00225 mol / (0.0250 L + 0.0150 L) = 0.045 M[HA] (concentration of HNO2) = 0.00775 mol / (0.0250 L + 0.0150 L) = 0.155 MpH = 4.5 × 10-4 + log(0.045 / 0.155) = 2.81Answer: b. 2.81The pH of the solution after adding 15.00 mL of the titrant is 2.81.

To know more about Henderson visit:
https://brainly.com/question/13423434
#SPJ11

3 2 23 5 points Consider the following process: C(s, diamond)--> C(s, graphite) AH, (Cs, diamond) = 1.9 kJ/mol; AS° (Cs, diamond) = 2.38 J/molk AH, (Cs, graphite) = 0 kJ/mol; Asº (Cs, graphite) = 5.

Answers

The entropy change for the formation of graphite is 5 J/(mol·K), indicating a significant increase in disorder.

The given process involves the transformation of carbon from the diamond form (C(s, diamond)) to the graphite form (C(s, graphite)). The enthalpy change (ΔH) for this process is 1.9 kJ/mol, indicating that the transformation from diamond to graphite is endothermic. The entropy change (ΔS) for this process is 2.38 J/(mol·K), indicating an increase in disorder or randomness. The enthalpy change for the formation of graphite from carbon is 0 kJ/mol, indicating no heat is evolved or absorbed during this process.

The positive ΔH value suggests that energy is required to convert diamond into graphite, making it an endothermic process. The positive ΔS value suggests that the transformation leads to an increase in randomness or disorder. Although the enthalpy change is positive, the greater increase in entropy drives the process towards the formation of graphite. Overall, the process involves the conversion of a more ordered and dense form of carbon (diamond) into a less ordered and more stable form (graphite) with an increase in entropy.

The entropy change for the formation of graphite is 5 J/(mol·K), indicating a significant increase in disorder.


To learn more about entropy click here: brainly.com/question/20166134

#SPJ11

Given the NMR, Please help me identify the compound!
The formula is
C11H14O

Answers

The compound is: 1-phenyl-1-butanol for the formula C₁₁H₁₄O, the NMR-spectrum provides valuable information about the connectivity and environment of the hydrogen and carbon atoms in the compound.

Without the specific NMR data, it is challenging to determine the compound definitively.

With a molecular formula of C11H14O, the compound likely contains 11 carbon atoms, 14 hydrogen atoms, and one oxygen atom. To provide a plausible suggestion, let's consider a compound with a common structure found in organic chemistry, such as an aromatic ring.

The compound is: 1-phenyl-1-butanol

H - C - C - C - C - C - C - C - C - C - OH

| | | | | | |

H H H H H H C6H5

In this structure, there are 11 carbon atoms, 14 hydrogen atoms, and one oxygen atom. The presence of an aromatic ring (C6H5) adds up to the formula C₁₁H₁₄O.

To accurately determine the compound, it is crucial to analyze the specific peaks and splitting patterns in the NMR spectrum, which can provide information about the functional groups and the connectivity of the atoms within the molecule.

To know more about NMR-spectrum, visit:

brainly.com/question/31594623

#SPJ11

Chlorine has a electronegativity value of 3.0, and hydrogen's
value is 2.1. What type of bond is present between the chlorine and
hydrogen atoms in a molecule of hydrochloric acid?
A. Ionic
B. Nonpola

Answers

In a molecule of hydrochloric acid (HCl), chlorine (Cl) has an electronegativity value of 3.0, and hydrogen (H) has an electronegativity value of 2.1.

The type of bond present between chlorine and hydrogen atoms in a molecule of hydrochloric acid (HCl) is a polar covalent bond, as opposed to an ionic bond (Option B).

Electronegativity is a measure of an atom's ability to attract electrons in a chemical bond. The difference in electronegativity values between Cl and H in HCl is 3.0 - 2.1 = 0.9.

Based on the electronegativity difference, we can determine the type of bond present. In the case of HCl, the electronegativity difference of 0.9 is relatively small. This suggests that the bond between Cl and H is a polar covalent bond.

In a polar covalent bond, the electrons are not equally shared between the atoms. Instead, the more electronegative atom (in this case, Cl) attracts the electrons slightly more towards itself, creating a partial negative charge (δ-) on chlorine and a partial positive charge (δ+) on hydrogen. The polarity in the bond arises due to the electronegativity difference.

Therefore, the type of bond present between chlorine and hydrogen atoms in a molecule of hydrochloric acid (HCl) is a polar covalent bond, as opposed to an ionic bond (Option B).

To learn more about electronegativity, visit

https://brainly.com/question/24370175

#SPJ11

A buffer solution is 0.474 M in H2S and
0.224 M in KHS . If Ka1 for H2S is 1.0 x
10^-7, what is the pH of this buffer solution?
pH =

Answers

A buffer solution is a solution that can resist changes in pH due to the addition of small amounts of acid or base. Buffer solutions are made by mixing a weak acid or a weak base with their salt (a strong acid or base).  The pH of the buffer solution is 7.32.

The pH of a buffer solution can be determined using the Henderson-Hasselbalch equation, which is:

pH = pKa + log [A-] / [HA],

where pKa is the acid dissociation constant, [A-] is the concentration of the conjugate base, and [HA] is the concentration of the weak acid.

Given: Initial concentrations of H2S and KHS are 0.474 M and 0.224 M respectively. Ka1 for H2S is 1.0 × 10-7 pH of buffer solution is to be calculated pKa1 for H2S is given by the formula:

pKa1 = -log10

Ka1= -log10 (1.0 × 10-7)

= 7

Hence, pKa1 is 7. Molarities of [H2S] and [HS-] can be found from the given information, and then pH of the buffer solution can be calculated. [H2S] = 0.474 M[HS-] = 0.224 M[H+] = ?

We know that Ka1 = [H+][HS-] / [H2S]

= 1.0 × 10-7[H+][0.224] / [0.474]

= 1.0 × 10-7[H+]

= (1.0 × 10-7) × (0.474 / 0.224)[H+]

= 2.114 × 10-7

Now, we can use the Henderson-Hasselbalch equation to calculate the pH of the buffer solution:

pH = pKa + log [A-] / [HA]pH

= 7 + log (0.224 / 0.474)pH

= 7 + log 0.472pH

= 7.32

Therefore, the pH of the buffer solution is 7.32.

To know more about acid visit :

https://brainly.com/question/29796621

#SPJ11

1. Convert the following. Show your calculations work. a. 36 µg/mL + ng/μl μmol μg b. 825.2 pmol c. 371 ng 2. How much NaCl would you need to prepare 550 ml of 0.1M NaCl using deionized water. The molecular weight of NaCl is 58.44 g/mol. Recall: 1 M = 1 mol/L. Show your calculations work. Round your answer to the hundredths place. 3. Describe how to make 250 ml of 75% yellow dye solution starting with 100% yellow dye and water. Do not forget to include the amount of diluent needed. Show your calculations work. Round your answer to the nearest whole number.

Answers

3.22 g of NaCl is needed to prepare 550 mL of 0.1M NaCl solution and 50 mL of 100% yellow dye is needed to make 250 mL of 75% yellow dye solution, and the diluent required would be 250 mL of water.

Volume is a physical quantity that measures the amount of three-dimensional space occupied by an object or substance. It is typically expressed in cubic units, such as cubic meters (m³) or cubic centimeters (cm³). Volume can be thought of as the capacity or extent of an object or substance.

In simple terms, volume refers to the amount of space an object or substance takes up. It is determined by the dimensions (length, width, and height) or shape of the object or substance.

Volume is an important concept in various fields of science and engineering, including physics, chemistry, fluid mechanics, and architecture. It is used to describe the size, capacity, or amount of a substance, and is often used in calculations and measurements involving quantities of solids, liquids, and gases.

1 µg = 1000 ng and 1 mL = 1000 μL.

36 µg/mL × 1000 ng/μL = 36000 ng/μL

Assuming the molecular weight is 100 g/mol:

36000 ng/μL / 100 μmol/μg = 360 μmol/μg

b.  1 pmol = 0.001 μmol.

825.2 pmol / 1000 = 0.8252 μmol

c.  1 ng = 0.001 μg.

371 ng / 1000 = 0.371 μg

Molar mass of NaCl = 58.44 g/mol

0.1 mol/L × 0.550 L = 0.055 mol

0.055 mol × 58.44 g/mol = 3.2174 g

Assuming the desired concentration is 75% w/v (weight/volume).

100% yellow dye = 75% of final solution

100% yellow dye = 75% of (100% yellow dye + diluent)

Let X be the amount of 100% yellow dye needed.

X = 0.75 × (X + 250)

X = 0.75X + 187.5

0.25X = 187.5

X = 187.5 / 0.25

X = 750 ml

Learn more about Volume, here:

https://brainly.com/question/28058531

#SPJ4

What happens at the threshold value of a neuron?
a. Voltage-gated sodium (Na
) channels open.
b. Voltage-gated potassium (K
) channels open.
c. Voltage-gated calcium (Ca
) channels open.
d. Chemically-gated sodium (Na
) channels open.

Answers

At the threshold value of a neuron, voltage-gated sodium (Na+) channels open. The threshold value of a neuron is the critical level of depolarization that must be reached in order for an action potential to be generated. When this threshold value is reached, it causes voltage-gated sodium (Na+) channels in the neuron's membrane to open.

This allows sodium ions to flow into the neuron, causing further depolarization and leading to the generation of an action potential.Voltage-gated potassium (K+) channels also play a role in the generation of action potentials. However, these channels do not open at the threshold value of a neuron.

Instead, they open later in the action potential, allowing potassium ions to flow out of the neuron and repolarize the membrane. Chemically-gated sodium (Na+) channels are also involved in the generation of action potentials, but these channels are not voltage-gated and are not involved in the threshold value of a neuron.

To know more about threshold visit:

https://brainly.com/question/32863242

#SPJ11

Need help with questions 2-7
2 The reaction of zinc with nitric acid was carried out in a calorimeter. This reaction caused the temperature of 72.0 grams of liquid water, within the calorimeter, to raise from 25.0°C to 100 "C. C

Answers

The reaction of zinc with nitric acid in a calorimeter resulted in a temperature increase of liquid water from 25.0°C to 100°C. The amount of heat absorbed by the water can be calculated using the formula Q = mcΔT, where Q is the heat absorbed, m is the mass of water, c is the specific heat capacity of water, and ΔT is the change in temperature. The heat absorbed by the water is 223,776 J.

To calculate the heat absorbed by the water, we need to determine the values of mass (m) and specific heat capacity (c) of water. The given mass of liquid water is 72.0 grams. The specific heat capacity of water is approximately 4.18 J/g°C.

Using the formula Q = mcΔT, we can calculate the heat absorbed by the water. The change in temperature (ΔT) is (100°C - 25.0°C) = 75.0°C.

Q = (72.0 g) * (4.18 J/g°C) * (75.0°C) = 223,776 J

Therefore, the heat absorbed by the water is 223,776 J.

The heat absorbed by the water represents the heat released by the reaction between zinc and nitric acid in the calorimeter.

Learn more about calorimeter here:

https://brainly.com/question/16951804

#SPJ11

Consider the isothermal expansion of a 1.00 mol sample of ideal gas at 37
from the initial pressure of 3.00 atm to a final pressure of 1.00 atm against a
constant external pressure of 1.00 atm and calculate
a) the heat, q.
b) the work, w.
c) the change in internal energy.
d) the change in enthalpy.
e) the change in the entropy of the system.
f) the change in the entropy of the surroundings.
g) the total change in entropy.

Answers

Answer:

Answers at the bottom

To calculate the various quantities for the isothermal expansion of the ideal gas, we can use the equations related to the First Law of Thermodynamics and the Second Law of Thermodynamics.

Given:

Initial pressure (P₁) = 3.00 atm

Final pressure (P₂) = 1.00 atm

External pressure (P_ext) = 1.00 atm

Number of moles (n) = 1.00 mol

Temperature (T) = 37°C (convert to Kelvin: T = 37 + 273.15 = 310.15 K)

a) The heat (q):

Since the process is isothermal (constant temperature), the heat exchanged can be calculated using the equation:

q = nRT ln(P₂/P₁)

where R is the ideal gas constant.

Plugging in the values:

q = (1.00 mol)(0.0821 L·atm/(mol·K))(310.15 K) ln(1.00 atm / 3.00 atm)

Calculating:

q = -12.42 J (rounded to two decimal places)

b) The work (w):

The work done during an isothermal expansion can be calculated using the equation:

w = -nRT ln(V₂/V₁)

where V is the volume of the gas.

Since the process is against a constant external pressure, the work done is given by:

w = -P_ext(V₂ - V₁)

Since the external pressure is constant at 1.00 atm, the work can be calculated as:

w = -1.00 atm (V₂ - V₁)

c) The change in internal energy (ΔU):

For an isothermal process, the change in internal energy is zero:

ΔU = 0

d) The change in enthalpy (ΔH):

Since the process is isothermal, the change in enthalpy is equal to the heat (q):

ΔH = q = -12.42 J

e) The change in entropy of the system (ΔS_sys):

The change in entropy of the system can be calculated using the equation:

ΔS_sys = nR ln(V₂/V₁)

Since it's an isothermal process, the change in entropy can also be calculated as:

ΔS_sys = q/T

Plugging in the values:

ΔS_sys = (-12.42 J) / (310.15 K)

Calculating:

ΔS_sys = -0.040 J/K (rounded to three decimal places)

f) The change in entropy of the surroundings (ΔS_sur):

Since the process is reversible and isothermal, the change in entropy of the surroundings is equal to the negative of the change in entropy of the system:

ΔS_sur = -ΔS_sys = 0.040 J/K (rounded to three decimal places)

g) The total change in entropy (ΔS_total):

The total change in entropy is the sum of the changes in entropy of the system and the surroundings:

ΔS_total = ΔS_sys + ΔS_sur = -0.040 J/K + 0.040 J/K = 0 J/K

Therefore, the answers are:

a) q = -12.42 J

b) w = -1.00 atm (V₂ - V₁)

c) ΔU = 0

d) ΔH = -12.42 J

e) ΔS_sys = -0.040 J/K

f) ΔS_sur = 0.040 J/K

g) ΔS_total = 0 J/K

You would expect _______ to have the highest boiling
point.
a) He
b) Cl2
c) Ar
d) F2

Answers

The correct answer is  Ar. Among the given options, Argon (Ar) is expected to have the highest boiling point.option (c)

Argon is a noble gas and exists as individual atoms, which have weak intermolecular forces. This makes it difficult for the atoms to break apart and transition into a gaseous state. As a result, Argon has a higher boiling point compared to the other options.

Boiling point is a measure of the temperature at which a substance changes from a liquid to a gas. It is influenced by intermolecular forces, which are the attractive forces between molecules or atoms. Stronger intermolecular forces require more energy to break the bonds and convert the substance into a gas, resulting in a higher boiling point.

In this case, (a) He is a noble gas like Argon, but it is lighter and has weaker intermolecular forces, leading to a lower boiling point. (b) Cl2 and (d) F2 are diatomic molecules and experience stronger intermolecular forces due to the presence of covalent bonds. However, their boiling points are still lower compared to Argon because the intermolecular forces in Ar are weaker due to the larger size and nonpolar nature of its atoms.

Therefore, based on the intermolecular forces and molecular properties, Argon (Ar) is expected to have the highest boiling point among the given options.option (c)

for such more questions on Argon

https://brainly.com/question/4742409

#SPJ8

Anna dissolves 32. grams of glucose with water and the final volume of solute and solvent is 100. mL. What is the concentration of glucose in her solution using the % (m/v) method?

Answers

The concentration of glucose in the solution using the % (m/v) method is 320 g/L.

How to find?

To calculate the concentration of glucose using the % (m/v) method, we need to determine the mass of glucose and the volume of the solution.

Given:

Mass of glucose = 32 grams

Volume of solution = 100 mL

The % (m/v) concentration is calculated by dividing the mass of the solute (glucose) by the volume of the solution and multiplying by 100.

% (m/v) = (mass of solute / volume of solution) * 100

First, we need to convert the volume of the solution from milliliters (mL) to liters (L) since the concentration is usually expressed in grams per liter.

Volume of solution = 100 mL = 100/1000 L = 0.1 L

Now we can calculate the concentration of glucose:

% (m/v) = (32 g / 0.1 L) * 100

% (m/v) = 320 g/L

Therefore, the concentration of glucose in the solution using the % (m/v) method is 320 g/L.

To know more on Glucose visit:

https://brainly.com/question/13555266

#SPJ11

An iron bar of mass 714 g cools from 87.0
°
C to 8.0
°
C. Calculate the metal's heat change (in kilojoules).
kJ

Answers

The heat change of the iron bar is -63.05 kJ. The negative sign indicates that the iron bar has lost heat as it cooled down from 87.0 °C to 8.0 °C.

To calculate the heat change of the iron bar, we can use the formula:

Q = mcΔT

where:

Q is the heat change,

m is the mass of the iron bar,

c is the specific heat capacity of iron, and

ΔT is the change in temperature.

Mass of iron bar (m) = 714 g = 0.714 kg

Initial temperature (T1) = 87.0 °C

Final temperature (T2) = 8.0 °C

To find the specific heat capacity of iron (c), we can use the following known value:

Specific heat capacity of iron = 0.45 kJ/kg°C

Substituting the values into the formula:

Q = (0.714 kg) * (0.45 kJ/kg°C) * (8.0 °C - 87.0 °C)

Q = (0.714 kg) * (0.45 kJ/kg°C) * (-79.0 °C)

Q = -63.05 kJ (rounded to two decimal places)

The heat change of the iron bar is -63.05 kJ. The negative sign indicates that the iron bar has lost heat as it cooled down from 87.0 °C to 8.0 °C.

To know more about heat  visit:

https://brainly.com/question/934320

#SPJ11

1) What kind of macromolecule is shown here?
(Carbohydrates, Proteins or Lipids)
2) Identify the bond between 1 and 2.
3) Identify the bond between 2 and 3.

Answers

1) The macromolecule shown is a carbohydrate.

2) The bond between 1 and 2 would be a glycosidic bond.

3) The bond between 2 and 3 would also be a glycosidic bond.

Carbohydrates are macromolecules composed of carbon, hydrogen, and oxygen atoms. They are commonly found in foods and serve as a source of energy in living organisms. Carbohydrates are made up of monosaccharide units, which can be linked together through glycosidic bonds to form larger carbohydrate molecules.

The glycosidic bond is a type of covalent bond that forms between the hydroxyl (-OH) groups of two monosaccharide units. It involves the condensation reaction, where a molecule of water is eliminated as the bond forms.

The glycosidic bond plays a crucial role in joining monosaccharide units and creating polysaccharides, such as starch, cellulose, and glycogen.

In the given structure, the bond between 1 and 2 represents a glycosidic bond because it joins two monosaccharide units together. Similarly, the bond between 2 and 3 also represents a glycosidic bond, indicating the linkage between additional monosaccharide units.

Learn more about molecules here:

https://brainly.com/question/32298217

#SPJ11

10 What is the product of the following action OH N NH₂ IZ heat

Answers

The given reaction involves the generation of a product through the reaction of an alcohol and an amine under heat. The product is formed through the elimination of water and subsequent rearrangement.

The reaction shown involves an alcohol (OH) and an amine (NH₂) in the presence of heat (denoted as "IZ heat"). When heated, the hydroxyl group (-OH) of the alcohol can act as a leaving group, resulting in the elimination of a water molecule. This elimination reaction is known as dehydration. After the elimination of water, the amine group (NH₂) can undergo rearrangement to form an isocyanate group (N=C=O). This rearrangement is commonly referred to as the Hofmann rearrangement.

The Hofmann rearrangement involves the migration of an alkyl or aryl group from the amine nitrogen to the carbon adjacent to the isocyanate group. As a result, the product formed in this reaction is an isocyanate (N=C=O). Isocyanates are versatile compounds widely used in the synthesis of various organic compounds, such as polyurethanes, pharmaceuticals, and agricultural chemicals. They serve as important intermediates in many chemical reactions and have a range of applications in different industries.

In summary, when an alcohol and an amine are subjected to heat, the reaction proceeds through dehydration of the alcohol and subsequent rearrangement of the amine to form an isocyanate product. This reaction is known as the Hofmann rearrangement and is commonly used in organic synthesis to produce isocyanates, which have diverse applications in various industries.

Learn more about isocyanates :

brainly.com/question/26234493

#SPJ11

Consider how best to prepare one liter of a buffer solution with pH = 9.78 using one of the weak acid/conjugate base systems shown here. Weak Acid Conjugate Base Ka 6.4 x 10-5 6.2 x 10-8 4.8 x 10-11 H

Answers

To prepare a buffer solution with pH = 9.78, the most suitable weak acid/conjugate base system from the options provided is the one with a [tex]K_a[/tex] value of 6.2 x 10⁻⁸.

The buffer solution can be prepared by combining the weak acid and its conjugate base in the appropriate ratio to achieve the desired pH.

The pH of a buffer solution is determined by the ratio of the concentrations of the weak acid and its conjugate base. To prepare a buffer solution with pH = 9.78, we need to choose the weak acid/conjugate base system with a p[tex]K_a[/tex] value close to 9.78. The p[tex]K_a[/tex] value is a measure of the acidity of the weak acid and is related to the [tex]K_a[/tex] value through the equation  p[tex]K_a[/tex]= -log([tex]K_a[/tex]).

Among the options provided, the weak acid/conjugate base system with a [tex]K_a[/tex] value of 6.2 x  10⁻⁸ is the most suitable choice. This is because the p[tex]K_a[/tex] value of this system would be approximately 7.2 (-log(6.2 x 10⁻⁸)), which is closest to the desired pH of 9.78.

To prepare the buffer solution, we need to mix the weak acid and its conjugate base in the appropriate ratio. The exact ratio depends on the Henderson-Hasselbalch equation, which relates the pH, p[tex]K_a[/tex], and the concentrations of the weak acid and its conjugate base. By using the Henderson-Hasselbalch equation and knowing the desired pH and the p[tex]K_a[/tex] value, we can calculate the ratio of the weak acid to its conjugate base that will yield a buffer solution with pH = 9.78.

In summary, to prepare a buffer solution with pH = 9.78, we would choose the weak acid/conjugate base system with a [tex]K_a[/tex] value of 6.2 x  10⁻⁸. By mixing the weak acid and its conjugate base in the appropriate ratio determined by the Henderson-Hasselbalch equation, we can create the desired buffer solution.

Learn more about Henderson-Hasselbalch equation :

brainly.com/question/31495136?referrer

#SPJ11

1.- What molecules carry the chemical energy necessary for the Calvin cycle to take place?
2.-List all the products for the Calvin Cycle below
3.-What is the role of Rubisco (Ribulose bisphosphate carboxylase oxygenase)?
4.-How many carbon dioxides are needed to form one Glyceraldehyde 3 phosphate?
5.-How many carbon dioxides are needed to form one glucose (formed from 2 Glyceraldehyde 3 phosphate)?

Answers

ATP and NADPH carry the chemical energy required for the Calvin cycle. The products of the Calvin Cycle include Glyceraldehyde 3-phosphate (G3P), which can be used to synthesize glucose and other carbohydrates. Rubisco (Ribulose bisphosphate carboxylase oxygenase) is responsible for catalyzing the carboxylation of RuBP, initiating the conversion of carbon dioxide into organic molecules. It takes three carbon dioxide molecules to form one Glyceraldehyde 3-phosphate, and six carbon dioxide molecules are needed to form one glucose (from 2 G3P).

ATP and NADPH are the molecules that carry the chemical energy required for the Calvin cycle. During the light-dependent reactions of photosynthesis, ATP and NADPH are synthesized in the thylakoid membrane. These molecules serve as energy carriers and provide the necessary energy and reducing power for the Calvin cycle to occur in the stroma of chloroplasts.The products of the Calvin Cycle are glyceraldehyde 3-phosphate (G3P) and other organic molecules. G3P is a three-carbon sugar phosphate that can be used to form glucose and other carbohydrates. G3P molecules can also be used to regenerate the starting molecule of the Calvin cycle, Ribulose 1,5-bisphosphate (RuBP). The regeneration of RuBP is crucial for the continued operation of the Calvin cycle and the fixation of carbon dioxide.Rubisco, or ribulose bisphosphate carboxylase oxygenase, plays a key role in the Calvin cycle. It is the enzyme responsible for catalyzing the carboxylation of RuBP by fixing carbon dioxide. Rubisco adds carbon dioxide to RuBP, forming a six-carbon intermediate that quickly breaks down into two molecules of phosphoglycerate. This process initiates the conversion of inorganic carbon dioxide into organic molecules during photosynthesis.To form one molecule of Glyceraldehyde 3-phosphate (G3P), three molecules of carbon dioxide are needed. During the Calvin cycle, each carbon dioxide molecule is added to one molecule of RuBP, resulting in the formation of a six-carbon compound that rapidly breaks down into two molecules of G3P. Thus, six carbon dioxide molecules are required to produce two molecules of G3P.To form one molecule of glucose, which is composed of six carbon atoms, two molecules of Glyceraldehyde 3-phosphate (G3P) are needed. Each G3P molecule contains three carbon atoms, so a total of six carbon dioxide molecules are required to synthesize two molecules of G3P, which can then be converted into one molecule of glucose.

Learn more about organic molecules here:

https://brainly.com/question/30923988

#SPJ11

For the chemical reaction shown. 2H₂O₂(0)+ N₂H₂(1) 4H₂O(g) + N₂(g) determine how many grams of N₂ are produced from the reaction of 8.13 g of H₂O2 and 6.48 g of N₂H4. - N₂ produced

Answers

To determine the number of grams of N₂ produced in the given chemical reaction, we need to calculate the stoichiometric ratio between H₂O₂ and N₂ in the balanced equation.

By comparing the molar masses of H₂O₂ and N₂H₄ and using the stoichiometric coefficients, we can find the number of moles of N₂ produced. Finally, using the molar mass of N₂, we can convert the moles of N₂ to grams.

The balanced chemical equation for the reaction is:

2H₂O₂ + N₂H₄ → 4H₂O + N₂

First, we need to calculate the number of moles of H₂O₂ and N₂H₄.

Molar mass of H₂O₂ = 34.02 g/mol

Molar mass of N₂H₄ = 32.05 g/mol

Moles of H₂O₂ = mass / molar mass = 8.13 g / 34.02 g/mol ≈ 0.239 mol

Moles of N₂H₄ = mass / molar mass = 6.48 g / 32.05 g/mol ≈ 0.202 mol

Next, we compare the stoichiometric coefficients of H₂O₂ and N₂ in the balanced equation.

From the balanced equation, we can see that the ratio between H₂O₂ and N₂ is 2:1. Therefore, the moles of N₂ produced will be half of the moles of H₂O₂ used.

Moles of N₂ = 0.5 × moles of H₂O₂ = 0.5 × 0.239 mol ≈ 0.120 mol

Finally, we convert the moles of N₂ to grams using its molar mass:

Molar mass of N₂ = 28.02 g/mol

Grams of N₂ = moles × molar mass = 0.120 mol × 28.02 g/mol ≈ 3.36 g

Therefore, approximately 3.36 grams of N₂ are produced from the reaction of 8.13 grams of H₂O₂ and 6.48 grams of N₂H₄.

To know more about stoichiometric, click here-

brainly.com/question/6907332

#SPJ11

How many electrons are being transferred in the reaction below
as written?
I₂(s) + CaCl₂(s) ⇄ CaI₂(s) + Cl₂(g)

Answers

In the reaction I₂(s) + CaCl₂(s) ⇄ CaI₂(s) + Cl₂(g) , a total of 2 electrons are being transferred.

The balanced equation for the reaction I₂(s) + CaCl₂(s) ⇄ CaI₂(s) + Cl₂(g) shows the stoichiometry of the reaction.

On the reactant side, we have I₂, which is a diatomic molecule, and CaCl₂, which consists of one calcium ion (Ca²⁺) and two chloride ions (Cl⁻). On the product side, we have CaI₂, which consists of one calcium ion (Ca²⁺) and two iodide ions (I⁻), and Cl₂, which is a diatomic molecule.

Looking at the overall reaction, we can see that one calcium ion (Ca²⁺) is reacting with two iodide ions (I⁻) to form one CaI₂ compound. Additionally, one molecule of I₂ is reacting with one molecule of Cl₂ to form two iodide ions (I⁻) and two chloride ions (Cl⁻).

The formation of CaI₂ involves the transfer of two electrons: one electron is gained by each iodide ion. Therefore, the overall reaction involves the transfer of 2 electrons.

Learn more about balanced equation:

brainly.com/question/31242898

#SPJ11

Other Questions
What did you learn from writing the assignments in this courseand why do you think I madethem so different from the lecture material (No, it is not to messwith you)? (20 Marks) Summarize the effects of body position (i.e. sitting, lying down, and standing) and exercise on blood pressure.Blood Pressure:Blood pressure refers to the force of blood pushing against the walls of the arteries as the heart pumps blood throughout the body. Blood pressure typically rises and falls throughout the day, depending on activity levels, stress levels, and the posture one is taking. heights of adults. researchers studying anthropometry collected body girth measurements and skele- tal diameter measurements, as well as age, weight, height and gender, for 507 physically active individuals. the histogram below shows the sample distribution of heights in centimeters.8 100 80 60 40 20 0 min 147.2 q1 163.8 median 170.3 mean 171.1 sd 9.4 q3 177.8 max 198.1 150 160 170 180 height 190 200 (a) what is the point estimate for the average height of active individuals? what about the median? (b) what is the point estimate for the standard deviation of the heights of active individuals? what about the iqr? (c) is a person who is 1m 80cm (180 cm) tall considered unusually tall? and is a person who is 1m 55cm (155cm) considered unusually short? explain your reasoning. (d) the researchers take another random sample of physically active individuals. would you expect the mean and the standard deviation of this new sample to be the ones given above? explain your reasoning. (e) the sample means obtained are point estimates for the mean height of all active individuals, if the sample of individuals is equivalent to a simple random sample. what measure do we use to quantify the variability of such an estimate? compute this quantity using the data from the original sample under the condition that the data are a simple random sample. DNA helices inhibitors are well studied as potential drug targets. What would you expect to see if DNA helices activity is inhibited? a. the replisome complex would not assemble on the orC region b. Helices catalyzes ATP hydrolysis and DNA strands separation, so the helix cannot be unwound and strands will not separate c. helices carries the SSB protein to the open region of DNA, so hydrolysis and strand separation will not occur d. The DNA cannot bend, so hydrogen bonds in the 13 mer region of one orC remain intact (WRONG, I selected this) d. Helices prevents reannealing of the separated strands, so strands would quickly reanneal end DNA replication cannot proceed A large tank of height 8 m discharges water at its base through a fully opened valve. Determine the water velocity at the end of the valve? Select one: O a. 18.4 m/s O b. 2.4 m/s O c. 24.8 m/s O d. 12.6 m/s Calculate the pH of each solution.[OH]= 2.21011 M[OH]= 7.2102 M Suppose that there is an AEF given by: \[ \mathrm{AEF}=800+0.90 Y \] Desired Government Expenditure is 188. The tax rate is \( 16 \% \). How large is the government surplus? (If it a deficit, write th Write a report on Electric Disharge Machining(EDM)including:1.Introduction.2.Theory.3.Applications.4.Examples.5.References.Note:With 15 pages, on Microsoft word Hamy's Fish Fry orders cooking oil every 10 days. Lead time is six days. Suppose that usage of cooking oil at Harry's Fish Fry is normally distributed with an average of 15 gallons/day and a standard deviation of two gallons/day. Check of stock reviewed that 20 jars of 10 gallons are on hand. Harry has just fired the manager and taken over operating the restaurant himself. Harry has asked you to help him decide how to reorder cooking oil in order to achieve a service level 95%. How many jars of cooking oil should be ordered? In an experiment, a group of college students was told that they were participating in a manual skill study. Half of the students were given a stack of money to count and the other half got a stack of blank pieces of paper. After the counting task, the participants were asked to dip their hands into bowls of very hot water (122F) and rate how uncomfortable it was. Given the following data; Find the estimated error of the mean only. For counting Money: n1=10, M1-216, S51-216 For counting Paper: n2 =10, M2-60, SS2=383 I Please type the estimated error of the mean only in nearest hundredths place. Below are several common solvents in organic chemistry. Select those that would not be compatible with a Grignard reagent (i.e. which would react with a Grignard reagent?) THF A benzene H liquid ammon Fibroin is the main protein in silk from moths and spiders. It is characterized by: A. Antiparallel b sheet structure D. All of the above. C. Structure is stabilized by hydrogen bonding within sheets. B Small side chains (Alanine and Glycine) allow the close packing of sheets. E. None of the above. MFL1601 ASSESSMENT 3 QUESTION 1 [10 MARKSI Figure 21 shows a 10 m diameter spherical balloon filled with air that is at a temperature of 30 C and absolute pressure of 108 kPa. Determine the weight of the air contained in the balloon. Take the sphere volume as V = nr. Figure Q1: Schematic of spherical balloon filled with air What are the characteristics of a fibrous root system? (Select all that apply.)made up of thin rootsmade up of branched rootsmade up of one large rootmade up of many roots A real (but unnamed) popular soda/pop contains 26 grams of sugar per 8 ounce "serving." According to the American Heart Association's recommendation for added sugar in a women's diet, what percentage of a woman's daily limit of added sugar is 26 grams of sugar? a.104% b.1278.2% c.58% d.25%e. 3.25% A thermocouple whose surface is diffuse and gray with an emissivity of 0.6 indicates a temperature of 180C when used to measure the temperature of a gas flowing through a large duct whose walls have an emissivity of 0.85 and a uniform temperature of 440C. If the convection heat transfer coefficient between 125 W/m K and there are negligible conduction losses from the thermocouple and the gas stream is h the thermocouple, determine the temperature of the gas, in C. To MI C What is the standard path of sperm from the vagina to the oocyte? A. ovary B. cervical canal C. uterine (Fallopian) tubes D. vagina E. uterus F. fimbriae G. fertilization D, B, E, C, G O D, E, B, C, A A shaft with diameter of 3.50 inches carries a bearing radial load of 975 lb while rotating at 575 rpm. The machine starts and stops frequently.a) Recommend a suitable type of plain bearing for this application.b) Complete the bearing design process for the bearing type selected. 8. The golden rule capital stock is the steady-state capital stock where A. f'(k) = d B. sf'(k)= dk C. sf'(k)= d D. f'(k) = 1 E. sf (k)= dk A turbine develops 10000 kW under a head of 25 m at 135 r.p.m. What is the specific speed? What would be its normal speed and output power under a head of 20 m?