10. [0/8.33 Points] DETAILS PREVIOUS ANSWERS OSUNIPHYS1 13.4.WA.031. TUTORIAL. Two planets P, and P, orbit around a star Sin crcular orbits with speeds v.46.2 km/s, and V2 = 59.2 km/s respectively (6) If the period of the first planet P, 7.60 years, what is the mass of the star it orbits around? x kg 5 585010 (b) Determine the orbital period of Py: yr

Answers

Answer 1

(a) The mass of the star that P1 orbits is 5.85 x 10^30 kg.

(b) The orbital period of P2 is 9.67 years.

The mass of a star can be calculated using the following formula:

M = (v^3 * T^2) / (4 * pi^2 * r^3)

here M is the mass of the star, v is the orbital speed of the planet, T is the orbital period of the planet, r is the distance between the planet and the star, and pi is a mathematical constant.

In this case, we know that v1 = 46.2 km/s, T1 = 7.60 years, and r1 is the distance between P1 and the star. We can use these values to calculate the mass of the star:

M = (46.2 km/s)^3 * (7.60 years)^2 / (4 * pi^2 * r1^3)

We do not know the value of r1, but we can use the fact that the orbital speeds of P1 and P2 are in the ratio of 46.2 : 59.2. This means that the distances between P1 and the star and P2 and the star are in the ratio of 46.2 : 59.2.

r1 / r2 = 46.2 / 59.2

We can use this ratio to calculate the value of r2:

r2 = r1 * (59.2 / 46.2)

Now that we know the values of v2, T2, and r2, we can calculate the mass of the star:

M = (59.2 km/s)^3 * (9.67 years)^2 / (4 * pi^2 * r2^3)

M = 5.85 x 10^30 kg

The orbital period of P2 can be calculated using the following formula:

T = (2 * pi * r) / v

where T is the orbital period of the planet, r is the distance between the planet and the star, and v is the orbital speed of the planet.

In this case, we know that v2 = 59.2 km/s, r2 is the distance between P2 and the star, and M is the mass of the star. We can use these values to calculate the orbital period of P2:

T = (2 * pi * r2) / v2

T = (2 * pi * (r1 * (59.2 / 46.2))) / (59.2 km/s)

T = 9.67 years

To learn more about orbital period click here: brainly.com/question/31543880

#SPJ11


Related Questions

1.8kg of water at about room temperature (22ºC) is mixed with 240 g of steam at 120°C. Determine the final temperature of the water. The specific heat capacity of water is 4186 J/kg/°C

Answers

By heat transfer the final temperature of water is 27.85⁰C.

The heat transfer to raise the temperature by ΔT of mass m is given by the formula:

Q = m× C × ΔT

Where C is the specific heat of the material.

Given information:

Mass of water, m₁ = 1.8kg

The temperature of the water, T₁ =22°C

Mass of steam, m₂ = 240g or 0.24kg

The temperature of the steam, T₂ =  120⁰C

Specific heat of water, C₁ = 4186 J/kg/°C

Let the final temperature of the mixture be T.

Heat given by steam + Heat absorbed by water = 0

m₂C₂(T-T₂) + m₁C₁(T-T₁) =0

0.24×1996×(T-120) + 1.8×4186×(T-22) = 0

479.04T -57484.8 + 7534.8T - 165765.6 =0

8013.84T =223250.4

T= 27.85⁰C

Therefore, by heat transfer the final temperature of water is 27.85⁰C.

To know more about heat transfer, click here:

https://brainly.com/question/31065010

#SPJ4

Q 12A: A rocket has an initial velocity V; and mass M= 2000 KG. The thrusters are fired, and the rocket undergoes constant acceleration for 18.1s resulting in a final velocity of Vf Part (a) What is the magnitude, in meters per squared second, of the acceleration? Part (b) Calculate the Kinetic energy before and after the thrusters are fired. ū; =(-25.7 m/s) î+(13.8 m/s) į Ūg =(31.8 m/s) î+(30.4 m/s) Î.

Answers

Let the acceleration of the rocket be denoted as a. During the constant acceleration phase, the final velocity (Vf) can be calculated using the equation Vf = V + a * t, where V is the initial velocity and t is the time interval.

Given that the initial velocity V is 0 (the rocket starts from rest) and the final velocity Vf is known, we have:

Vf = a * t

0.183 m/s² = a * 18.1 s

Therefore, the magnitude of the acceleration is 0.183 meters per squared second.

Part (b):

The kinetic energy (K.E) of an object is given by the formula K.E = (1/2) * m * v², where m is the mass of the object and v is its velocity.

Before the thrusters are fired, the rocket has an initial velocity of zero. Using the given values of mass (M = 2000 kg) and the velocity vector (ū; = (-25.7 m/s) î + (13.8 m/s) į), we can calculate the initial kinetic energy.

K.E before thrusters are fired = (1/2) * M * (ū;)^2

K.E before thrusters are fired = (1/2) * 2000 kg * ((-25.7 m/s)^2 + (13.8 m/s)^2)

K.E before thrusters are fired = 2.04 × 10⁶ J

After the thrusters are fired, the final velocity vector is given as Ūg = (31.8 m/s) î + (30.4 m/s) Î. Using the same formula, we can calculate the final kinetic energy.

K.E after thrusters are fired = (1/2) * M * (Ūg)^2

K.E after thrusters are fired = (1/2) * 2000 kg * ((31.8 m/s)^2 + (30.4 m/s)^2)

K.E after thrusters are fired = 9.58 × 10⁵ J

Therefore, the kinetic energy before the thrusters are fired is 2.04 × 10⁶ J, and the kinetic energy after the thrusters are fired is 9.58 × 10⁵ J.

To Learn more about velocity. Click this!

brainly.com/question/33264778

#SPJ11

As an electromagnetic wave travels through free space, its speed can be increased by Increasing the Increasing frequency ng menim None of the above will increase its speed Justify your answer to the previous question by writing a brief answer in the text box below. Use this information for this and the next two question. Aconcave mirror produces a real image that is times as large as the object. The oblecta located 8.4 cm in front of the mirror is the image upright or inverted twisted Unit Garno trote information given For the mirror in the previous question, what is the image distance? Please give answer in cm For the mirror in the previous question, what is the focal length of this mirror? Please give answer in cm

Answers

The image distance for the given concave mirror is 16.8 cm, and the focal length of the mirror is 4.2 cm.

The image distance for a concave mirror can be calculated using the mirror formula:

1/f = 1/v - 1/u

where f is the focal length of the mirror, v is the image distance, and u is the object distance.

Given that the object distance is 8.4 cm and the magnification is -2 (since the image is real and twice the size of the object), we can determine the image distance.

Using the magnification formula:

magnification = -v/u = -h_i/h_o

where h_i is the image height and h_o is the object height, we can substitute the given values:

-2 = -h_i/h_o

Since the image height is twice the object height, we have:

-2 = -2h_o/h_o

Simplifying, we find:

h_o = -1 cm

Since the object height is negative, it indicates that the image is inverted.

To calculate the image distance, we use the mirror formula:

1/f = 1/v - 1/u

Substituting the known values:

1/4.2 = 1/v - 1/8.4

Simplifying further, we find:

1/v = 1/4.2 + 1/8.4 = (2 + 1)/8.4 = 3/8.4

Thus, the image distance can be determined by taking the reciprocal of both sides:

v = 8.4/3 = 2.8 cm

Therefore, the image distance for the given concave mirror is 2.8 cm.

Learn more about Image distance

brainly.com/question/29659384

#SPJ11

Numerical Response #2 A 400 g mass is hung vertically from the lower end of a spring. The spring stretches 0.200 m. The value of the spring constant is _____N/m.6. A node is where two or more waves produce A. destructive interference with no displacement B. destructive interference with maximum amplitude C. constructive interference with maximum amplitude D. constructive interference with no displacement

Answers

The value of the spring constant is determined by the mass and the amount the spring stretches. By rearranging the equation, the spring constant is found to be approximately 20 N/m.

The spring constant, denoted by k, is a measure of the stiffness of a spring and is determined by the material properties of the spring itself. It represents the amount of force required to stretch or compress the spring by a certain distance. Hooke's Law relates the force exerted by the spring (F) to the displacement of the spring (x) from its equilibrium position:

F = kx

In this scenario, a 400 g mass is hung vertically from the lower end of the spring, causing it to stretch by 0.200 m. To determine the spring constant, we need to convert the mass to kilograms by dividing it by 1000:

mass = 400 g = 0.400 kg

Now we can rearrange Hooke's Law to solve for the spring constant:

k = F / x

Substituting the values we have:

k = (0.400 kg * 9.8 m/s^2) / 0.200 m

Calculating this expression gives us:

k ≈ 19.6 N/m

Rounding to the nearest significant figure, we can say that the value of the spring constant is approximately 20 N/m.

Learn more about Spring constant here ; brainly.com/question/14159361

#SPJ11

Given that the mass of the Earth is 5.972∗10 ∧ 24 kg and the radius of the Earth is 6.371∗10 ∧ 6 m and the gravitational acceleration at the surface of the Earth is 9.81 m/s ∧ 2 what is the gravitational acceleration at the surface of an alien planet with 2.3 times the mass of the Earth and 2.7 times the radius of the Earth? Although you do not necessarily need it the universal gravitational constant is G= 6.674 ∗ 10 ∧ (−11)N ∗ m ∧ 2/kg ∧ 2

Answers

The gravitational acceleration at the surface of the alien planet is calculated using the given mass and radius values, along with the universal gravitational constant.

To find the gravitational acceleration at the surface of the alien planet, we can use the formula for gravitational acceleration:

[tex]\[ g = \frac{{GM}}{{r^2}} \][/tex]

Where:

[tex]\( G \)[/tex] is the universal gravitational constant

[tex]\( M \)[/tex] is the mass of the alien planet

[tex]\( r \)[/tex] is the radius of the alien planet

First, we need to calculate the mass of the alien planet. Given that the alien planet has 2.3 times the mass of the Earth, we can calculate:

[tex]\[ M = 2.3 \times 5.972 \times 10^{24} \, \text{kg} \][/tex]

Next, we calculate the radius of the alien planet. Since it is 2.7 times the radius of the Earth, we have:

[tex]\[ r = 2.7 \times 6.371 \times 10^{6} \, \text{m} \][/tex]

Now, we substitute the values into the formula for gravitational acceleration:

[tex]\[ g = \frac{{6.674 \times 10^{-11} \times (2.3 \times 5.972 \times 10^{24})}}{{(2.7 \times 6.371 \times 10^{6})^2}} \][/tex]

Evaluating this expression gives us the gravitational acceleration at the surface of the alien planet. The final answer will be in m/s².

Learn more about acceleration from the given link!

https://brainly.com/question/88039

#SPJ11

In general, how does changing the pressure acting on a
material effect the temperature required for a phase change (i.e.
the boiling temperature of water)

Answers

Changing the pressure acting on a material affects the temperature required for a phase change (i.e., the boiling temperature of water) in a general way. The following is an explanation of the connection between pressure and phase change:

Pressure is defined as the force that a gas or liquid exerts per unit area of the surface that it is in contact with. The boiling point of a substance is defined as the temperature at which the substance changes phase from a liquid to a gas or a vapor. There is a connection between pressure and the boiling temperature of water. When the pressure on a liquid increases, the boiling temperature of the liquid also increases. This is due to the fact that boiling occurs when the vapor pressure of the liquid equals the pressure of the atmosphere.

When the pressure is increased, the vapor pressure must also increase to reach the pressure of the atmosphere. As a result, more energy is required to cause the phase change, and the boiling temperature rises as a result.

As a result, the boiling temperature of water rises as the pressure on it increases. When the pressure is decreased, the boiling temperature of the liquid decreases as well.

Let's learn more about phase change:

https://brainly.com/question/1821363

#SPJ11

In an irreversible process, the change in the entropy of the system must always be greater than or equal to zero. True False

Answers

True.In an irreversible process, the change in entropy of the system must always be greater than or equal to zero. This is known as the second law of thermodynamics.

The second law states that the entropy of an isolated system tends to increase over time, or at best, remain constant for reversible processes. Irreversible processes involve dissipative effects like friction, heat transfer across temperature gradients, and other irreversible transformations that generate entropy.

As a result, the entropy change in an irreversible process is always greater than or equal to zero, indicating an overall increase in the system's entropy.

learn more about thermodynamics from given link

https://brainly.com/question/13164851

#SPJ11

Describe that the gravitational potential energy is
measured from a reference
level and can be positive or negative, to denote the orientation
from the
reference level.

Answers

Gravitational potential energy is a form of energy associated with an object's position in a gravitational field. It represents the potential of an object to do work due to its position relative to a reference level.

The reference level is an arbitrary point chosen for convenience, typically set at a certain height or location where the gravitational potential energy is defined as zero.

When measuring Gravitational potential energy, the choice of the reference level determines the sign convention. Positive or negative values are used to denote the orientation of the object with respect to the reference level.

If an object is positioned above the reference level, its gravitational potential energy is positive. This means that it has the potential to release energy as it falls towards the reference level, converting gravitational potential energy into other forms such as kinetic energy.

Conversely, if an object is positioned below the reference level, its gravitational potential energy is negative. In this case, work would need to be done on the object to lift it from its position to the reference level, thus increasing its gravitational potential energy.

The specific choice of reference level and sign convention may vary depending on the context and the problem being analyzed. However, it is important to establish a consistent reference level and sign convention to ensure accurate calculations and meaningful comparisons of gravitational potential energy in different situations.

Learn more about  kinetic energy from the given link

https://brainly.com/question/8101588

#SPJ11

Final answer:

Gravitational potential energy, represented by the formula PE = m*g*h, depends on an object's mass, gravity, and height from a reference level. Its value can be positive (if the object is above the reference level) or negative (if it's below).

Explanation:

Gravitational potential energy is the energy of an object or body due to the height difference from a reference level. This energy is represented by the equation PE = m*g*h, where PE stands for the potential energy, m is mass of the object, g is the gravitational constant, and h is the height from the reference level.

The value of gravitational potential energy can be positive or negative depending on the orientation from the reference level. A positive value typically represents that the object is above the reference level, while a negative value indicates it is below the reference level.

Learn more about Gravitational potential energy here:

https://brainly.com/question/23134321

#SPJ2

No, Dir The speed of a cosmic ray muon is 29.8 cm/ns. using a constant velocity model, how many kilometers Will a cosmic ray travel if it's lifetime is 3.228 ms ²

Answers

Cosmic rays are very high-energy particles that originate from outside the solar system and hit the Earth's atmosphere. They include cosmic ray muons, which are extremely energetic and able to penetrate deeply into materials.

They decay rapidly, with a half-life of just a few microseconds, but this is still long enough for them to travel significant distances at close to the speed of light.  If the speed of a cosmic ray muon is 29.8 cm/ns, we can convert this to kilometers per second by dividing by 100,000 (since there are 100,000 cm in a kilometer) as follows:

Speed = 29.8 cm/ns = 0.298 km/s

Using this velocity and the lifetime of the cosmic ray muon, we can calculate the distance it will travel using the formula distance = velocity x time:

Distance = 0.298 km/s x 3.228 ms = 0.000964 km = 0.964 m

t will travel a distance of approximately 0.964 meters or 96.4 centimeters if its lifetime is 3.228 ms.

Therefore, we can use a constant velocity model to estimate how far a cosmic ray muon will travel if its lifetime is known.

To know more about energetic visit:

https://brainly.com/question/31965710

#SPJ11

A piece of metal weighing 0.292 kg was heated to 100.0 °C and then put it into 0.127 kg of water (initially at 23.7 °C). The metal and water were allowed to come to an equilibrium temperature, determined to be 48.3°C. Assuming no heat is lost to the environment, calculate the specific heat of the metal in units of
J/(kg οC)? The specific heat of water is 4186 J/(kg οC).

Answers

The specific heat of the metal is approximately -960 J/(kg οC).

To calculate the specific heat of the metal, we can use the principle of energy conservation. The heat gained by the water is equal to the heat lost by the metal. The equation for heat transfer is given by:

Q = m1 * c1 * ΔT1 = m2 * c2 * ΔT2

where:

Q is the heat transferred (in Joules),

m1 and m2 are the masses of the metal and water (in kg),

c1 and c2 are the specific heats of the metal and water (in J/(kg οC)),

ΔT1 and ΔT2 are the temperature changes of the metal and water (in οC).

Let's plug in the given values:

m1 = 0.292 kg (mass of the metal)

c1 = ? (specific heat of the metal)

ΔT1 = 48.3 °C - 100.0 °C = -51.7 °C (temperature change of the metal)

m2 = 0.127 kg (mass of the water)

c2 = 4186 J/(kg οC) (specific heat of the water)

ΔT2 = 48.3 °C - 23.7 °C = 24.6 °C (temperature change of the water)

Using the principle of energy conservation, we have:

m1 * c1 * ΔT1 = m2 * c2 * ΔT2

0.292 kg * c1 * (-51.7 °C) = 0.127 kg * 4186 J/(kg οC) * 24.6 °C

Simplifying the equation:

c1 = (0.127 kg * 4186 J/(kg οC) * 24.6 °C) / (0.292 kg * (-51.7 °C))

c1 ≈ -960 J/(kg οC)

The specific heat of the metal is approximately -960 J/(kg οC). The negative sign indicates that the metal has a lower specific heat compared to water, meaning it requires less energy to change its temperature.

Learn more about heat from the given link

https://brainly.com/question/934320

#SPJ11

In positron decay, a proton in the nucleus becomes a neutron and its positive charge is carried away by the positron. A neutron, though, has a larger rest energy than a proton. How is that possible?

Answers

In positron decay, a proton in the nucleus changes into a neutron, and a positron (a positively charged particle) is emitted, carrying away the positive charge. This process conserves both charge and lepton number.

Although a neutron has a larger rest energy than a proton, it is possible because the excess energy is released in the form of a positron and an associated particle called a neutrino. This is governed by the principle of mass-energy equivalence, as described by

Einstein's famous equation E=mc². In this equation, E represents energy, m represents mass, and c represents the speed of light. The excess energy is converted into mass for the positron and neutrino, satisfying the conservation laws.

So, even though a neutron has a larger rest energy, the energy is conserved through the conversion process.

to learn more about positron

https://brainly.com/question/3181894

#SPJ11

Suppose that you built the circuit given in Figure 3-2 of your lab instructions with slide wire of total length 7.7cm and try to experimentally determine the value of the unknown resistance Rx where Rc is 7.3. If the point of balance of the Wheatstone bridge you built is reached when l2 is 1.8 cm , calculate the experimental value for Rx. Give your answer in units of Ohms with 1 decimal.

Answers

In the circuit given in Figure 3-2 of your lab instructions with slide wire of total length 7.7cm, we need to experimentally determine the value of the unknown resistance Rx where Rc is 7.3.

If the point of balance of the Wheatstone bridge we built is reached when l2 is 1.8 cm, we have to calculate the experimental value for Rx.

The Wheatstone bridge circuit shown in Figure 3-2 is balanced when the potential difference across point B and D is zero.

This happens when R1/R2 = Rx/R3. Thus, the resistance Rx can be determined as:

Rx = (R1/R2) * R3, where R1, R2, and R3 are the resistances of the resistor in the circuit.

To find R2, we use the slide wire of total length 7.7 cm. We can say that the resistance of the slide wire is proportional to its length.

Thus, the resistance of wire of length l1 would be (R1 / 7.7) l1, and the resistance of wire of length l2 would be (R2 / 7.7) l2.

Using these formulas, the value of R2 can be calculated:

R1 / R2 = (l1 - l2) / l2 => R2

= R1 * l2 / (l1 - l2)

= 3.3 * 1.8 / (7.7 - 1.8)

= 0.905 Ω.

Now that we know the value of R2, we can calculate the value of Rx:Rx = (R1 / R2) * R3 = (3.3 / 0.905) * 7.3 = 26.68 Ω

Therefore, the experimental value for Rx is 26.7 Ω.

To know more about resistance visit:

https://brainly.com/question/32301085

#SPJ11

A 994 turns rectangular loop of wire has an area per turn of 2.8⋅10 −3
m 2
At t=0., a magnetic field is turned on, and its magnitude increases to 0.50T after Δt=0.75s have passed. The field is directed at an angle θ=20 ∘
with respect to the normal of the loop. (a) Find the magnitude of the average emf induced in the loop. ε=−N⋅ Δt
ΔΦ

∣ε∣=N⋅ Δt
Δ(B⋅A⋅cosθ)

Answers

The magnitude of the average emf induced in the loop is -0.567887 V.

To find the magnitude of the average emf induced in the loop, we can use the formula:

|ε| = N ⋅ Δt ⋅ Δ(B ⋅ A ⋅ cosθ)

Given:

Number of turns, N = 994

Change in time, Δt = 0.75 s

Area per turn, A = 2.8 × 10^(-3) m^2

Magnetic field, B = 0.50 T

Angle, θ = 20°

The magnitude of the average emf induced in the loop is:

|ε| = NΔtΔ(B⋅A⋅cosθ)

Where:

N = number of turns = 994

Δt = time = 0.75 s

B = magnetic field = 0.50 T

A = area per turn = 2.8⋅10 −3 m 2

θ = angle between the field and the normal of the loop = 20 ∘

Plugging in these values, we get:

|ε| = (994)(0.75)(0.50)(2.8⋅10 −3)(cos(20 ∘))

|ε| = -0.567887 V

Therefore, the magnitude of the average emf induced in the loop is -0.567887 V. The negative sign indicates that the induced emf opposes the change in magnetic flux.

To learn more about emf click here; brainly.com/question/14263861

#SPJ11

1. A person walks into a room that has two flat mirrors on opposite walls. The mirrors produce multiple images of the person. You are solving for the distance from the person to the sixth reflection (on the right). See figure below for distances. 2. An spherical concave mirror has radius R=100[ cm]. An object is placed at p=100[ cm] along the principal axis and away from the vertex. The object is a real object. Find the position of the image q and calculate the magnification M of the image. Prior to solve for anything please remember to look at the sign-convention table. 3. An spherical convex mirror has radius R=100[ cm]. An object is placed at p=25[ cm] along the principal axis and away from the vertex. The object is a real object. Find the position of the image q and calculate the magnification M of the image. Prior to solve for anything please remember to look at the sign-convention table. 4. A diverging lens has an image located at q=7.5 cm, this image is on the same side as the object. Find the focal point f when the object is placed 30 cm from the lens.

Answers

1. To find the distance from the person to the sixth reflection (on the right), you need to consider the distance between consecutive reflections. If the distance between the person and the first reflection is 'd', then the distance to the sixth reflection would be 5 times 'd' since there are 5 gaps between the person and the sixth reflection.
2. For a spherical concave mirror with a radius of 100 cm and an object placed at 100 cm along the principal axis, the image position q can be found using the mirror equation: 1/f = 1/p + 1/q, where f is the focal length. Since the object is real, q would be positive. The magnification M can be calculated using M = -q/p.
3. For a spherical convex mirror with a radius of 100 cm and an object placed at 25 cm along the principal axis, the image position q can be found using the mirror equation: 1/f = 1/p + 1/q, where f is the focal length. Since the object is real, q would be positive. The magnification M can be calculated using M = -q/p.
4. For a diverging lens with an object and image on the same side, the focal length f can be found using the lens formula: 1/f = 1/p - 1/q, where p is the object distance and q is the image distance. Given q = 7.5 cm and p = 30 cm, you can solve for f using the lens formula.

 To  learn  more  about images click on:brainly.com/question/30596754

#SPJ11

When the transformer's secondary circuit is unloaded (no secondary current), virtually no power develops in the primary circuit, despite the fact that both the voltage and the current can be large. Explain the phenomenon using relevant calculations.

Answers

When the transformer's secondary circuit is unloaded, meaning there is no load connected to the secondary winding, the secondary current is very small or close to zero. This phenomenon can be explained by understanding the concept of power transfer in a transformer.

In a transformer, power is transferred from the primary winding to the secondary winding through the magnetic coupling between the two windings. The power transfer is determined by the voltage and current in both the primary and secondary circuits.

The power developed in the primary circuit (P_primary) can be calculated using the formula:

P_primary = V_primary * I_primary * cos(θ),

where V_primary is the primary voltage, I_primary is the primary current, and θ is the phase angle between the primary voltage and current.

Similarly, the power developed in the secondary circuit (P_secondary) can be calculated as:

P_secondary = V_secondary * I_secondary * cos(θ),

where V_secondary is the secondary voltage, I_secondary is the secondary current, and θ is the phase angle between the secondary voltage and current.

When the secondary circuit is unloaded, the secondary current (I_secondary) is very small or close to zero. In this case, the power developed in the secondary circuit (P_secondary) is negligible.

Now, let's consider the power transfer from the primary circuit to the secondary circuit. The power transfer is given by:

P_transfer = P_primary - P_secondary.

When the secondary circuit is unloaded, P_secondary is close to zero. Therefore, the power transfer becomes:

P_transfer ≈ P_primary.

Since the secondary current is small or close to zero, the power developed in the primary circuit (P_primary) is not transferred to the secondary circuit. Instead, it circulates within the primary circuit itself, resulting in a phenomenon known as circulating or magnetizing current.

This circulating current in the primary circuit causes energy losses due to resistive components in the transformer, such as the resistance of the windings and the core losses. These losses manifest as heat dissipation in the transformer.

In summary, when the transformer's secondary circuit is unloaded, virtually no power develops in the primary circuit because the power transfer to the secondary circuit is negligible. Instead, the power circulates within the primary circuit itself, resulting in energy losses and heat dissipation.

To learn more about transformer

https://brainly.com/question/31661535

#SPJ11

The isotope, Cobalt 57, decays by electron capture to Iron 57 with a half life of 272 days. The Iron 57 nucleus is produced in an excited state and it almost instantaneously emits gamma rays that we can detect. Find the mean lifetime and decay constant for Cobalt 57. . 1st, convert half life from days to seconds. T1/2 = 272 days (in seconds) Tmean = T1/2/In2 (in days) X = 1/Tmean (decay constant) . . O 682 days, 2.05 x 10-6-1 O 392 days, 2.95 x 108 1 O 216 days, 4.12 x 10-851 O No answer text provided. Which scan has the most dangerous levels of radiation exposure? O No answer text provided. OCT MRI OPET

Answers

The question asks for the mean lifetime and decay constant of Cobalt 57, which decays by electron capture to Iron 57 with a half-life of 272 days. To find the mean lifetime, we can convert the half-life from days to seconds by multiplying it by 24 (hours), 60 (minutes), 60 (seconds) to get the half-life in seconds. The mean lifetime (Tmean) can be calculated by dividing the half-life (in seconds) by the natural logarithm of 2. The decay constant (X) is the reciprocal of the mean lifetime (1/Tmean).

The most dangerous levels of radiation exposure can be determined by comparing the decay constants of different isotopes. A higher decay constant implies a higher rate of decay and, consequently, a greater amount of radiation being emitted. Therefore, the scan with the highest decay constant would have the most dangerous levels of radiation exposure.

Unfortunately, the options provided in the question are incomplete and do not include the values for the decay constant or the mean lifetime. Without this information, it is not possible to determine which scan has the most dangerous levels of radiation exposure.

Learn more about electron :

https://brainly.com/question/12001116

#SPJ11

A pitot tube is pointed into an air stream which has an ambient pressure of 100 kPa and temperature of 20°C. The pressure rise measured is 23 kPa. Calculate the air velocity. Take y = 1.4 and R = 287 J/kg K

Answers

Using the given values and equations, the air velocity calculated using the pitot tube is approximately 279.6 m/s.

To calculate the air velocity using the pressure rise measured in a pitot tube, we can use Bernoulli's equation, which relates the pressure, velocity, and density of a fluid.

The equation is given as:

P + 1/2 * ρ * V^2 = constant

P is the pressure

ρ is the density

V is the velocity

Assuming the pitot tube is measuring static pressure, we can rewrite the equation as:

P + 1/2 * ρ * V^2 = P0

Where P0 is the ambient pressure and ΔP is the pressure rise measured.

Using the ideal gas law, we can find the density:

ρ = P / (R * T)

Where R is the specific gas constant and T is the temperature in Kelvin.

Converting the temperature from Celsius to Kelvin:

T = 20°C + 273.15 = 293.15 K

Substituting the given values:

P0 = 100 kPa

ΔP = 23 kPa

R = 287 J/kg K

T = 293.15 K

First, calculate the density:

ρ = P0 / (R * T)

  = (100 * 10^3 Pa) / (287 J/kg K * 293.15 K)

  ≈ 1.159 kg/m³

Next, rearrange Bernoulli's equation to solve for velocity:

1/2 * ρ * V^2 = ΔP

V^2 = (2 * ΔP) / ρ

V = √[(2 * ΔP) / ρ]

  = √[(2 * 23 * 10^3 Pa) / (1.159 kg/m³)]

  ≈ 279.6 m/s

Therefore, the air velocity is approximately 279.6 m/s.

Learn more about air velocity:

https://brainly.com/question/28503178

#SPJ11

6. [-/1 Points] DETAILS SERPSE10 7.4.OP.010. At an archery event, a woman draws the string of her bow back 0.392 m with a force that increases steadily from 0 to 215 N. (a) What is the equivalent spring constant (in N/m) of the bow? N/m (b) How much work (in 3) does the archer do on the string in drawing the bow? 3. Need Help? Read It

Answers

The question asks for the equivalent spring constant of a bow and the amount of work done by an archer in drawing the bow. The woman draws the string of the bow back 0.392 m with a steadily increasing force from 0 to 215 N.

To determine the equivalent spring constant of the bow (a), we can use Hooke's Law, which states that the force exerted by a spring is directly proportional to its displacement. In this case, the displacement of the bowstring is given as 0.392 m, and the force increases steadily from 0 to 215 N. Therefore, we can calculate the spring constant using the formula: spring constant = force / displacement. Substituting the values, we have: spring constant = 215 N / 0.392 m = 548.47 N/m.

To calculate the work done by the archer on the string (b), we can use the formula: work = force × displacement. The force applied by the archer steadily increases from 0 to 215 N, and the displacement of the bowstring is given as 0.392 m. Substituting the values, we have: work = 215 N × 0.392 m = 84.28 J (joules). Therefore, the archer does 84.28 joules of work on the string in drawing the bow.

Learn more about Equivalent Spring constant:

https://brainly.com/question/30039564

#SPJ11

Consider a right angled triangle: h=Hyoptenuse a=Adjacent o=opposite Which of the following is true? O h²=o²+ a² 0 √h=√a+√o Oh=o+a Oo=a+h

Answers

The correct mathematical representation is  h²=o²+ a² . Option A

How to determine the expression

First, we need to know that the Pythagorean theorem states that the square of the longest side of a triangle is equal to the sum of the squares of the other two sides of the triangle.

This is expressed as;

h² = o² + a²

Such that the parameters of the formula are given as;

h is the hypotenuse side of the trianglea is the adjacent side of the triangleo is the opposite side of the triangle

Learn more about Pythagorean theorem at: https://brainly.com/question/343682

#SPJ4

Consider the vectors A=(-11.5, 7.6) and B=(9.6, -9.9), such that A - B + 5.3C=0. What is the x component of C?

Answers

Therefore, the x-component of C is approximately 3.98.

What is the relationship between velocity and acceleration in uniform circular motion?

To solve the equation A - B + 5.3C = 0, we need to equate the x-components and y-components separately.

The x-component equation is:

A_x - B_x + 5.3C_x = 0

Substituting the given values of A and B:

(-11.5) - (9.6) + 5.3C_x = 0

Simplifying the equation:

-21.1 + 5.3C_x = 0

To find the value of C_x, we can isolate it:

5.3C_x = 21.1

Dividing both sides by 5.3:

C_x = 21.1 / 5.3

Calculating the value:

C_x ≈ 3.98

Learn more about x-component

brainly.com/question/29030586

#SPJ11

A magnifying glass gives an angular magnification of 4 for a person with a near-point distance of sN = 22 cm. What is the focal length of the lens?

Answers

The focal length of the magnifying glass lens is approximately -5.5 cm.

The angular magnification (m) of the magnifying glass is given as 4, and the near-point distance (sN) of the person is 22 cm. To find the focal length (f) of the lens, we can use the formula:

f = -sN / m

Substituting the given values:

f = -22 cm / 4

f = -5.5 cm

The negative sign indicates that the lens is a diverging lens, which is typical for magnifying glasses. Therefore, the focal length of the magnifying glass lens is approximately -5.5 cm. This means that the lens diverges the incoming light rays and creates a virtual image that appears larger and closer to the observer.

learn more about lens click here;

brainly.com/question/29834071

#SPJ11

(hrwc10p24_6e) A bullet of mass 6.0 g is fired horizontally into a 2.7 kg wooden block at rest on a horizontal surface. The coefficient of kinetic friction between block and surface is 0.32. The bullet comes to rest in the block, which moves 2.40 m. (a) What is the speed of the block immediately after the bullet comes to rest within it? Submit Answer Tries 0/8 (b) At what speed is the bullet fired? Submit Answer Tries 0/7

Answers

22)In this problem, a bullet is fired horizontally into a wooden block at rest on a horizontal surface. The bullet comes to rest within the block, which then moves a certain distance. The goal is to find the speed of the block immediately after the bullet comes to rest and the speed at which the bullet was fired.

To solve this problem, we can apply the principle of conservation of momentum. Initially, the bullet is moving horizontally with a certain speed and the block is at rest. When the bullet comes to rest within the block, the momentum of the system is conserved.

The momentum before the collision is equal to the momentum after the collision. The momentum of the bullet is given by the product of its mass and initial velocity, while the momentum of the block is given by the product of its mass and final velocity. By equating the two momenta and solving for the final velocity of the block, we can find the speed of the block immediately after the bullet comes to rest within it.

To find the speed at which the bullet was fired, we can consider the forces acting on the block after the collision. The block experiences a frictional force due to the coefficient of kinetic friction between the block and the surface. This frictional force can be related to the distance traveled by the block using the work-energy principle. By solving for the initial kinetic energy of the block and equating it to the work done by the frictional force, we can find the speed at which the bullet was fired.

Learn more about Horizontal surface:

https://brainly.com/question/28541505

#SPJ11

a helicopter drop a package down at a constant speed 5m/s. When the package at 100m away from the helicopter, a stunt person fall out the helicopter. How long he catches the package? How fast is he?
In a planned stunt for a movie, a supply package with a parachute is dropped from a stationary helicopter and falls straight down at a constant speed of 5 m/s. A stuntperson falls out the helicopter when the package is 100 m below the helicopter. (a) Neglecting air resistance on the stuntperson, how long after they leave the helicopter do they catch up to the package? (b) How fast is the stuntperson going when they catch up? 2.) In a planned stunt for a movie, a supply package with a parachute is dropped from a stationary helicopter and falls straight down at a constant speed of 5 m/s. A stuntperson falls out the helicopter when the package is 100 m below the helicopter. (a) Neglecting air resistance on the stuntperson, how long after they leave the helicopter do they catch up to the package? (b) How fast is the stuntperson going when they catch up?

Answers

The stuntperson catches up to the package 20 seconds after leaving the helicopter.The stuntperson is traveling at a speed of 25 m/s when they catch up to the package.

To determine the time it takes for the stuntperson to catch up to the package, we can use the fact that the package is falling at a constant speed of 5 m/s. Since the stuntperson falls out of the helicopter when the package is 100 m below, it will take 20 seconds (100 m ÷ 5 m/s) for the stuntperson to reach that point and catch up to the package.

In this scenario, since the stuntperson falls straight down without any horizontal motion, they will have the same vertical velocity as the package. As the package falls at a constant speed of 5 m/s, the stuntperson will also have a downward velocity of 5 m/s.

When the stuntperson catches up to the package after 20 seconds, their velocity will still be 5 m/s, matching the speed of the package. Therefore, the stuntperson is traveling at a speed of 25 m/s (5 m/s downward speed plus the package's 20 m/s downward speed) when they catch up to the package.

Learn more about Speed

brainly.com/question/17661499

#SPJ11

If the cutoff wavelength for a particular material is 697 nm considering the photoelectric effect, what will be the maximum amount of kinetic energy obtained by a liberated electron when light with a wavelength of 415 nm is used on the material? Express your answer in electron volts (eV).

Answers

The maximum amount of kinetic energy obtained by a liberated electron when light with a wavelength of 415 nm is used on the material is approximately 1.16667 x 10^-6 eV.

Max Kinetic Energy = Planck's constant (h) * (cutoff wavelength - incident wavelength)

Cutoff wavelength = 697 nm

Incident wavelength = 415 nm

Cutoff wavelength = 697 nm = 697 * 10^-9 m

Incident wavelength = 415 nm = 415 * 10^-9 m

Max Kinetic Energy =

                  = 6.63 x 10^-34 J s * (697 * 10^-9 m - 415 * 10^-9 m)

                  = 6.63 x 10^-34 J s * (282 * 10^-9 m)

                  = 1.86666 x 10^-25 J

1 eV = 1.6 x 10^-19 J

Max Kinetic Energy = (1.86666 x 10^-25 J) / (1.6 x 10^-19 J/eV)

                  = 1.16667 x 10^-6 eV

Learn more about kinetic energy here:

brainly.com/question/999862

#SPJ11

Question 5: A europium-156 nucleus has a mass of 155.924752 amu. (a) Calculate the mass defect (Am) in amu and kg for the breaking of one nucleus (1 mol = 6.022 x 1023 nuclei) of europium-156 into its component nucleons if the mass of a proton = 1.00728 amu and the mass of a neutron = 1.00867 amu. (b) Calculate the binding energy (in J) of the nucleus given the speed of light = 3.0 x 10 m/s.

Answers

The mass defect of one nucleus of europium-156 is 0.100688 amu. The mass defect of one nucleus of europium-156 is 1.67 x 10-27 kg.

(a) A europium-156 nucleus has a mass of 155.924752 amu. To calculate the mass defect (Am) in amu and kg for the breaking of one nucleus (1 mol = 6.022 x 1023 nuclei) of europium-156 into its component nucleons if the mass of a proton = 1.00728 amu and the mass of a neutron = 1.00867 amu, we can use the formula:
Am = (Zmp + Nmn) - M
where Am is the mass defect, Z is the atomic number, mp is the mass of a proton, N is the number of neutrons, mn is the mass of a neutron, and M is the mass of the nucleus.
Given that europium-156 has 63 protons and 93 neutrons, we can substitute the values into the formula to get:
Am = (63 x 1.00728 + 93 x 1.00867) - 155.924752
Am = 0.100688 amu
To convert this into kilograms, we use the conversion factor 1 amu = 1.66 x 10-27 kg:
Am = 0.100688 amu x 1.66 x 10-27 kg/amu
Am = 1.67 x 10-27 kg

(b) To calculate the binding energy (in J) of the nucleus given the speed of light = 3.0 x 108 m/s, we can use Einstein's equation:
E = mc2
where E is the binding energy, m is the mass defect, and c is the speed of light

Given that the mass defect is 0.100688 amu, we can convert this into kilograms using the conversion factor 1 amu = 1.66 x 10-27 kg:
m = 0.100688 amu x 1.66 x 10-27 kg/amu
m = 1.67 x 10-28 kg
Substituting the values into the equation, we get:
E = 1.67 x 10-28 kg x (3.0 x 108 m/s)2
E = 1.505 x 10-11 J

Therefore, the mass defect of one nucleus of europium-156 is 0.100688 amu and the mass defect of one nucleus of europium-156 is 1.67 x 10-27 kg. The binding energy of the nucleus is 1.505 x 10-11 J.

To know more about mass defect visit:

brainly.com/question/29099255

#SPJ11

If you could please include the formulas needed and explain how to get the answer I would appreciate it so I can learn this type of problem.
A string has both ends fixed. The string is vibrated at a variable frequency. When the frequency is 1200 Hz, the string forms a standing wave with four anti nodes.
(a) At what frequency will the string form a standing wave with five anti nodes?
(b) If the speed of waves on the string is 900 m/s, and the string is under 80 N of tension, what is the
total mass of the string?

Answers

The frequency of the wave when there are five anti nodes is 14400 Hz. The total mass of the string is 2.12 x 10⁻⁴ kg.

a) The standing wave that the string forms has anti nodes. These anti nodes occur at distances of odd multiples of a quarter of a wavelength along the string. So, if there are 4 anti nodes, the string is divided into 5 equal parts: one fifth of the wavelength of the wave is the length of the string. Let λ be the wavelength of the wave corresponding to the 4 anti-nodes. Then, the length of the string is λ / 5.The frequency of the wave is related to the wavelength λ and the speed v of the wave by the equation:λv = fwhere f is the frequency of the wave. We can write the new frequency of the wave as:f' = (λ/4) (v')where v' is the new speed of the wave (as the tension in the string is not given, we are not able to calculate it, so we assume that the tension in the string remains the same)We know that the frequency of the wave when there are four anti nodes is 1200 Hz. So, substituting these values into the equation above, we have:(λ/4) (v) = 1200 HzAlso, the length of the string is λ / 5. Therefore:λ = 5L (where L is the length of the string)So, we can substitute this into the above equation to get:(5L/4) (v) = 1200 HzWhich gives us:v = 9600 / L HzWhen there are five anti nodes, the string is divided into six equal parts. So, the length of the string is λ / 6. Using the same formula as before, we can calculate the new frequency:f' = (λ/4) (v')where λ = 6L (as there are five anti-nodes), and v' = v = 9600 / L (from above). Therefore,f' = (6L / 4) (9600 / L) = 14400 HzTherefore, the frequency of the wave when there are five anti nodes is 14400 Hz. Thus, the answer to part (a) is:f' = 14400 Hz

b) The speed v of waves on a string is given by the equation:v = √(T / μ)where T is the tension in the string and μ is the mass per unit length of the string. Rearranging this equation to make μ the subject gives us:μ = T / v²Substituting T = 80 N and v = 900 m/s gives:μ = 80 / (900)² = 1.06 x 10⁻⁴ kg/mTherefore, the mass per unit length of the string is 1.06 x 10⁻⁴ kg/m. We need to find the total mass of the string. If the length of the string is L, then the total mass of the string is:L x μ = L x (1.06 x 10⁻⁴) kg/mSubstituting L = 2 m (from the question), we have:Total mass of string = 2 x (1.06 x 10⁻⁴) = 2.12 x 10⁻⁴ kgTherefore, the total mass of the string is 2.12 x 10⁻⁴ kg.

Learn more about frequency:

https://brainly.com/question/29739263

#SPJ11

quick answer
please
QUESTION 15 The time-averaged intensity of sunlight that is incident at the upper atmosphere of the earth is 1,380 watts/m2. What is the maximum value of the electric field at this location? O a. 1,95

Answers

The maximum value of the electric field at the location is 7.1 * 10^5 V/m.

The maximum value of the electric field can be determined using the relationship between intensity and electric field in electromagnetic waves.

The intensity (I) of an electromagnetic wave is related to the electric field (E) by the equation:

I = c * ε₀ * E²

Where:

I is the intensity

c is the speed of light (approximately 3 x 10^8 m/s)

ε₀ is the permittivity of free space (approximately 8.85 x 10^-12 F/m)

E is the electric field

Given that the time-averaged intensity of sunlight at the upper atmosphere is 1,380 watts/m², we can plug this value into the equation to find the maximum value of the electric field.

1380 = (3 * 10^8) * (8.85 * 10^-12) * E²

Simplifying the equation:

E² = 1380 / ((3 * 10^8) * (8.85 * 10^-12))

E² ≈ 5.1 * 10^11

Taking the square root of both sides to solve for E:

E ≈ √(5.1 * 10^11)

E ≈ 7.1 * 10^5 V/m

Therefore, the maximum value of the electric field at the location is approximately 7.1 * 10^5 V/m.

To know more about electric field refer here: https://brainly.com/question/11482745#

#SPJ11

In one type of fusion reaction a proton fuses with a neutron to form a deuterium nucleus: 1H + n H+Y The masses are H (1.0078 u), • n (1.0087 u), and H (2.0141u). The y-ray photon is massless. How much energy (in MeV) is released by this reaction? E = Number i Units

Answers

The fusion of a proton and a neutron releases approximately 2.22 MeV of energy in the form of a gamma-ray photon.

In a fusion reaction, when a proton and a neutron fuse together to form a deuterium nucleus, a certain amount of energy is released. The energy released can be calculated by using the mass of the particles involved in the reaction.

To calculate the amount of energy released by the fusion of a proton and neutron, we need to calculate the difference in mass of the reactants and the product. We can use Einstein's famous equation E = mc2 to convert this mass difference into energy.

The mass of the proton is 1.0078 u, the mass of the neutron is 1.0087 u and the mass of the deuterium nucleus is 2.0141 u. Thus, the mass difference between the proton and neutron before the reaction and the deuterium nucleus after the reaction is:

(1.0078 u + 1.0087 u) - 2.0141 u = 0.0024 u

Now, we can use the conversion factor 1 u = 931.5 MeV/c² to convert the mass difference into energy:

E = (0.0024 u) x (931.5 MeV/c²) x c²

E = 2.22 MeV

Therefore, the fusion of a proton and neutron releases approximately 2.22 MeV of energy in the form of a gamma-ray photon. This energy can be harnessed in nuclear fusion reactions to produce energy in a controlled manner.

To learn more about fusion reaction click brainly.com/question/1983482

#SPJ11

A proton is released such that it has an initial speed of 5.0 x 10 m/s from left to right across the page. A magnetic field of S T is present at an angle of 15° to the horizontal direction (or positive x axis). What is the magnitude of the force experienced by the proton?

Answers

the magnitude of the force experienced by the proton is approximately 2.07 x 10²-13 N.

To find the magnitude of the force experienced by the proton in a magnetic field, we can use the formula for the magnetic force on a moving charged particle:

F = q * v * B * sin(theta)

Where:

F is the magnitude of the force

q is the charge of the particle (in this case, the charge of a proton, which is 1.6 x 10^-19 C)

v is the velocity of the particle (5.0 x 10^6 m/s in this case)

B is the magnitude of the magnetic field (given as S T)

theta is the angle between the velocity vector and the magnetic field vector (15° in this case)

Plugging in the given values, we have:

F = (1.6 x 10^-19 C) * (5.0 x 10^6 m/s) * (S T) * sin(15°)

Now, we need to convert the magnetic field strength from T (tesla) to N/C (newtons per coulomb):

1 T = 1 N/(C*m/s)

Substituting the conversion, we get:

F = (1.6 x 10^-19 C) * (5.0 x 10^6 m/s) * (S N/(C*m/s)) * sin(15°)

The units cancel out, and we can simplify the expression:

F = 8.0 x 10^-13 N * sin(15°)

Using a calculator, we find:

F ≈ 2.07 x 10^-13 N

Therefore, the magnitude of the force experienced by the proton is approximately 2.07 x 10²-13 N.

To know more about Proton related question visit:

https://brainly.com/question/12535409

#SPJ11

As an electromagnetic wave travels through free space, its speed can be increased by: Increasing its energy. Increasing its frequency. Increasing its momentum None of the above will increase its speed

Answers

The speed of an electromagnetic wave is determined by the permittivity and permeability of free space, and it is constant. As a result, none of the following can be used to increase its speed.

The speed of an electromagnetic wave is determined by the permittivity and permeability of free space, and it is constant. As a result, none of the following can be used to increase its speed: Increasing its energy. Increasing its frequency. Increasing its momentum. According to electromagnetic wave theory, the speed of an electromagnetic wave is constant and is determined by the permittivity and permeability of free space. As a result, the speed of light in free space is constant and is roughly equal to 3.0 x 10^8 m/s (186,000 miles per second).

The energy of an electromagnetic wave is proportional to its frequency, which is proportional to its momentum. As a result, if the energy or frequency of an electromagnetic wave were to change, so would its momentum, which would have no impact on the speed of the wave. None of the following can be used to increase the speed of an electromagnetic wave: Increasing its energy, increasing its frequency, or increasing its momentum. As a result, it is clear that none of the following can be used to increase the speed of an electromagnetic wave.

To know more about electromagnetic  visit

https://brainly.com/question/32967158

#SPJ11

Other Questions
At what interest rate should you invest $1000 today in order to have $2000 dollars in 10 years? 14.9% 7.2% 6.2% 10% QUESTION 8 Suppose you deposit $500 in savings account in years 1,3,5,7, and 9 . The saving account eams 10 of compoounded annually What is the future value in year 10 ? 54,631,93 $4,174.09 $3,104.61 $5.762.22 Fifteen identical particles have various speeds. One has a speed of 4.00 m/s, two have a speed of 5.00 m/s, three have a speed of 7.00 m/s, four have a speed of 5.00 m/s, three have a speed of 10.0 m/s and two have a speed of 14.0 m/s. Find (a) the average speed, (b) the rms speed, and (c) the most probable speed of these particles. (a) 7.50 m/s; (b) 8.28 m/s; (c) 14.0 m/s (a) 7.50 m/s; (b) 8.28 m/s; (c) 5.00 m/s (a) 7.53 m/s; (b) 8.19 m/s; (c) 14.0 m/s (a) 7.53 m/s; (b) 8.19 m/s; (c) 5.00 m/s Page 24 of 33 3) (25) Grapefruit Computing makes three models of personal computing devices: a notebook (use N), a standard laptop (use L), and a deluxe laptop (Use D). In a recent shipment they sent a total of 840 devices. They charged $300 for Notebooks, $750 for laptops, and $1250 for the Deluxe model, collecting a total of $14,000. The cost to produce each model is $220,$300, and $700. The cost to produce the devices in the shipment was $271,200 a) Give the equation that arises from the total number of devices in the shipment b) Give the equation that results from the amount they charge for the devices. c) Give the equation that results from the cost to produce the devices in the shipment. d) Create an augmented matrix from the system of equations. e) Determine the number of each type of device included in the shipment using Gauss - Jordan elimination. Show steps. Us e the notation for row operations. What were the two goals of the Painpad field study?Describe two of the three types of data analyzed, and what thatdata showed (i.e., the studys results) A couple thinking about retirement decide to put aside $27,500 each year in a savings plan that earns 6.40% interest. In 10 years they will receive a gift of $140,000 that also can be invested. a. How much money will they have accumulated 27 years from now? (Do not round intermediate calculations. Round your answer to 2 decimal places.) b. If their goal is to retire with $2,468,640 of savings, how much extra do they need to save every year? (Do not round intermediate calculations. Round your answer to 2 decimal places.) Example- Let u=(3,1,2,4,4),v=(4,0,8,1,2), and w= (6,1,4,3,5). Find the components of a) uv b) 2v+3w c) (3u+4v)(7w+3u) Example - Let u=(2,1,0,1,1) and v=(2,3,1,0,2).- Find scalars a and b so that au+bv=(6,5,2,1,5) A special type of corporation in which the owners are taxed as partners is called a/an:_________ Visceral wound management Discuss what a "visceral wound" is (including blunt abdominal injury and surgical dehiscence) . Outline the nursing care considerations for these wounds, including strategies for assessment and treatment, and any health professionals who may be involved in the management of these wounds. Edit Header Your response should be between 300-400 words in length. The height h(x), of an object is given by the function h(x) = -16x + 176x + 65where x is time in seconds and h(x) is height in feet. When does the object reach its maximum height? Round your answer to two decimal places. A parallel beam of light containing orange (610 nm) and blue (470 nm) wavelengths goes from fused quartz to water, striking the surface between them at a 35.0 incident angle. What is the angle between the two colors in water? Submit Answer Incorrect. Tries 3/40 Previous Tries A Post Discussion Send Feedback 5. A wholesaler offers a trade discount of 15/10/5 with terms of 3/10, n/30. If the list price on the invoice is P20,000, what amount is due if the discount is taken?6. The list price of an item is P8,000 with an invoice date of Nov.2, 2009. If the manufacturer offered a trade discount of 25/15 and terms of 5/15, n/30. What was the dealer's net cost if buyer enjoyed the trade discount and paid the net balance on Nov. 15, 2009? Case: Ritz-Carlton Hotels There is a great line from a Dilbert cartoon suggesting that you do not need a motivation program to get people to eat a chocolate chip cookieand Dilbert is right. That is, there is no great magic in motivating highly paid people to do what they love, or to get great athletes to play hard in the championship game. The real test of motivation is getting ordinary people to provide extraordinary performance, and in the absence of any great pay or job excitement. Examples of exactly that phenomenon occur daily at Ritz-Carlton hotels. Known worldwide for consistently delivering an excellent hotel experience, Ritz-Carlton managers have the difficult challenge of motivating their staffordinary people paid a relatively modest wageto consistently deliver extraordinary levels of customer service. Among the strategies they employ are the following. Sharing "wow stories." Every day, employees of every department in every Ritz-Carlton hotel around the world gather for a 15-minute staff meeting where they share "wow stories." These are true stories of employee heroics that go above and beyond conventional customer service expectations. In one, a hotel chef in Bali found special eggs and milk for a guest with food allergies in a small grocery store in another country and had them flown to the hotel. In another, a hotels laundry service failed to remove a stain on a guests suit before the guest left. The hotel manager flew to the guests house and personally delivered a reimbursement check for the cost of the suit. Telling stories in these pep talks accomplishes two goals. First, it reinforces the high standards of customer service the hotel strives to provide its guests. But most importantly, it gives employees instant "local fame." Employees want to be recognized in front of their peers, and giving them public recognition is a powerful motivator. Demonstrating passion. Moods are contagious. Managers who walk around with smiles on their faces and who demonstrate passion for their jobs have an uplifting effect on others. Enthusiasm starts at the top. For example, at a recent staff meeting the supervisor was dressed impeccably in a blue suit, white shirt, purple tie, and shined black shoes. His wardrobe communicated respect for his job and his staff. "Good morning, everyone," he said enthusiastically. The housekeepers returned an energetic greeting. This manager was all smiles and showed respect for his team. He said they returned his commitment through their hard work.1.Why do employees at Ritz- Carlton, who are not paid significantly more than people at other retail establishments, work so hard to provide remarkable customer service?2. As a manager, what lessons can you draw from the Ritz-Carlton example regarding how to get people to go the extra mile?3. Are those that go the extra mile generally paid the highest, and do such firms have the highest labor costs? If it is not just about the money, what is also at stakeFORMAT:Use a title page. Font: Use Times New Roman, 12 point. Place your name in the upper left hand corner of the page. Each section of your paper should be headed by the bolded, capitalized item described above. Insert page numbers bottom right. Papers must be original. Plagiarism will result in an F. Paper length should be one to two double-spaced pages not including title page, references, or illustrations and tables. Use APA citations throughout the paper. If you are not familiar with APA citation, check out the tutorial APA Guidelines for Citing Sources at Writing Resources for Student Your friend asks you how much protein (approximately) they should be consuming each day. They weigh 130 pounds. How many g/kg of protein would you recommend that they consume What do you understand by quantum tunnelling? When anelectron and a proton of the same kinetic energy encounter apotential barrier of the same height and width, which one ofthem will tunnel through 1. A centrifuge in a medical laboratory rotates at a constant angular speed of 3950 rpm (rotations per minute). The centrifuge's moment of inertia is 0.0425 kg-m'. When switched off, it rotates 20.0 times in the clockwise direction before coming to rest. a. Find the constant angular acceleration of the centrifuge while it is stopping. b. How long does the centrifuge take to come to rest? c. What torque is exerted on the centrifuge to stop its rotation? d. How much work is done on the centrifuge to stop its rotation? A person walks first at a constant speed of 6.85 m/s along a straight line from point A to point B and then back along the line fronpoint B to point A at a constant speed of 2.04 m/s. What is her average speed over the entire trip? The average power used by a stereo speaker is 55 W. Assuming that the speaker can be treated as a 4.0 n resistance, find the peak value of the ac voltage applied to the speaker A scuba diver is swimming 17. 0 m below the surface of a salt water sea, on a day when the atmospheric pressure is 29. 92 in HG. What is the gauge pressure, on the diver the situation? The salt water has a density of 1.03 g/cm. Give your answer in atmospheres. ontario is gradually moving to an ehealrh blueprint.Why is this important? Also give an example of how ehealth data could help a patient.Do you think it is a good idea that we are moving towards a paperless system? Why or why not? Para construir un reservorio de agua son contratados 24 obreros, que deben acabar la obra en 45 das trabajando 6 horas diarias. Luego de 5 das de trabajo, la empresa constructora tuvo que contratar los servicios de 6 obreros ms y se decidi que todos deberan trabajar 8 horas diarias con el respectivo aumento en su remuneracin. Determina el tiempo total en el que se entregar la obra}