1) You are watering a garden using a garden hose connected to a large open tank of water. The garden hose has a circular cross-section with a diameter of 1.4 cm, and has a nozzle attachment at its end with a diameter of 0.80 cm. What is the gauge pressure at point A in the garden hose? (Ignore viscosity for this question.)

Answers

Answer 1

The gauge pressure at point A in the garden hose can be calculated as follows:The gauge pressure is the difference between the absolute pressure in the hose and atmospheric pressure.

The formula to calculate absolute pressure is given by;P = ρgh + P₀Where:P is the absolute pressureρ is the density of the liquid (water in this case)g is the acceleration due to gravity h is the height of the water column above the point A.

P₀ is the atmospheric pressure. Its value is usually 101325 Pa.The height of the water column above point A is equal to the height of the water level in the tank minus the length of the hose, which is 1 meter.

Let's assume that the tank is filled to a height of 2 meters above point A.

the height of the water column above point A is given by; h = 2 m - 1 m = 1 m

The density of water is 1000 kg/m³.

A.P = ρgh + P₀P

= (1000 kg/m³)(9.81 m/s²)(1 m) + 101325 PaP

= 11025 Pa

The absolute pressure at point A is 11025 Pa.

Gauge pressure = Absolute pressure - Atmospheric pressureGauge pressure

= 11025 Pa - 101325 PaGauge pressure

= -90299 Pa

Since the gauge pressure is negative, this means that the pressure at point A is below atmospheric pressure.

To know more about gauge pressure visit:

https://brainly.in/question/23089359

#SPJ11


Related Questions

The cliff divers of Acapulco push off horizontally from rock platforms about hhh = 39 mm above the water, but they must clear rocky outcrops at water level that extend out into the water LLL = 4.1 mm from the base of the cliff directly under their launch point
1.a What minimum pushoff speed is necessary to clear the rocks?
1.b How long are they in the air?

Answers

The cliff divers of Acapulco push off horizontally from rock platforms about hhh = 39 mm above the water, but they must clear rocky outcrops at water level that extend out into the water LLL = 4.1 mm from the base of the cliff directly under their launch point. The required minimum pushoff speed is 2.77 m/s and they are in the air for 0.0891 s.

Given data: The height of the rock platforms (hhh) = 39 mm

The distance of rocky outcrops at water level that extends out into the water (LLL) = 4.1 mm. We need to find the minimum push-off speed required to clear the rocks

(a) and how long they are in the air (t).a) Minimum push-off speed (v) required to clear the rocks is given by the formula:

v² = 2gh + 2gh₀Where,g is the acceleration due to gravity = 9.81 m/s²

h is the height of the rock platform = 39 mm = 39/1000 m (as the question is in mm)

h₀ is the height of the rocky outcrop = LLL = 4.1 mm = 4.1/1000 m (as the question is in mm)

On substituting the values, we get:

v² = 2 × 9.81 × (39/1000 + 4.1/1000)

⇒ v² = 0.78 × 9.81⇒ v = √7.657 = 2.77 m/s

Therefore, the minimum push-off speed required to clear the rocks is 2.77 m/s.

b) Time of flight (t) is given by the formula:

h = (1/2)gt²

On substituting the values, we get:

39/1000 = (1/2) × 9.81 × t²

⇒ t² = (39/1000) / (1/2) × 9.81

⇒ t = √0.007958 = 0.0891 s

Therefore, they are in the air for 0.0891 s. Hence, the required minimum push-off speed is 2.77 m/s and they are in the air for 0.0891 s.

For further information on Speed visit :

https://brainly.com/question/17661499

#SPJ11

Two vectors have magnitudes of 9.6 and 32. The angle between them when they are drawn with their tails at the same point is 61.7°. The component of the longer vector along the line of the shorter is: a. 32.0 b. 15.2 c. 4.6 d. 28.2 e. 8.5

Answers

The component of the longer vector along the line of the shorter vector is approximately 15.2 (option b). We can use the concept of vector projection.

To find the component of the longer vector along the line of the shorter vector, we can use the concept of vector projection.

Let's denote the longer vector as A (magnitude of 32) and the shorter vector as B (magnitude of 9.6). The angle between them is given as 61.7°.

The component of vector A along the line of vector B can be found using the formula:

Component of A along B = |A| * cos(theta)

where theta is the angle between vectors A and B.

Substituting the given values, we have:

Component of A along B = 32 * cos(61.7°)

Using a calculator, we can evaluate this expression:

Component of A along B ≈ 15.2

Therefore, the component of the longer vector along the line of the shorter vector is approximately 15.2 (option b).

To learn more about vector projection click here

https://brainly.com/question/30640982

#SPJ11

Gravity is an inverse-square force like electricity and magnetism. If lighter weight moose has a weight of 3640 N on Earth's surface (approximately 6.37 · 10^6 m from Earth's center), what will the moose's weight due to Earth in newtons be at the Moon's orbital radius (approximately 3.84 · 10^8 m from Earth's center) to two significant digits?

Answers

To two significant digits, the weight of the moose due to Earth at the Moon's orbital radius would be approximately 60 N.

To calculate the weight of the moose due to Earth at the Moon's orbital radius, we need to consider the inverse-square relationship of gravity and apply it to the given distances.

Given:

Weight of the moose on Earth's surface = 3640 N

Distance from Earth's center at Earth's surface (r1) = 6.37 × 10^6 m

Distance from Earth's center at Moon's orbital radius (r2) = 3.84 × 10^8 m

The gravitational force between two objects is given by the equation F = (G * m1 * m2) / r^2, where F is the force, G is the gravitational constant, m1 and m2 are the masses of the objects, and r is the distance between their centers.

To find the weight of the moose at the Moon's orbital radius, we need to calculate the force at that distance using the inverse-square relationship.

First, we calculate the ratio of the distances squared:

(r2/r1)^2 = (3.84 × 10^8 m / 6.37 × 10^6 m)^2

Next, we calculate the weight at the Moon's orbital radius:

Weight at Moon's orbital radius = Weight on Earth's surface * (r1^2 / r2^2)

Substituting the given values:

Weight at Moon's orbital radius ≈ 3640 N * (6.37 × 10^6 m)^2 / (3.84 × 10^8 m)^2

Calculating the weight at the Moon's orbital radius:

Weight at Moon's orbital radius ≈ 60 N

To learn more about gravitational force: https://brainly.com/question/32609171

#SPJ11

A planet orbits a star. The period of the rotation of 400 (earth) days. The mass of the star is 6.00 *1030kg. The mass of the planet is 8.00*1022 kg What is the orbital radius?

Answers

To determine the orbital radius of the planet, we can use Kepler's third law. The orbital radius of the planet is approximately 4.17 x 10^11 meters.

According to Kepler's third law, the square of the orbital period (T) is proportional to the cube of the orbital radius (r). Mathematically, it can be expressed as T^2 ∝ r^3.

Given that the orbital period of the planet is 400 Earth days, we can convert it to seconds by multiplying it by the conversion factor (1 Earth day = 86400 seconds). Therefore, the orbital period in seconds is (400 days) x (86400 seconds/day) = 34,560,000 seconds.

Now, let's substitute the values into the equation: (34,560,000 seconds)^2 = (orbital radius)^3.

Simplifying the equation, we find that the orbital radius^3 = (34,560,000 seconds)^2. Taking the cube root of both sides, we can find the orbital radius.

Using a calculator, the orbital radius is approximately 4.17 x 10^11 meters. Therefore, the orbital radius of the planet is approximately 4.17 x 10^11 meters.

Learn more about Kepler's third law here; brainly.com/question/30404084

#SPJ11

A 1 kg projectile is shot from the edge of the cliff 100 m above ground level with an initial speed of 100 m/s at an angle of 60°. a) At what time the projectile will reach the height of 20m above the cliff? b) How long it is in the air? c)Determine the horizontal distance traveled by the projectile (hint: not the range!) d)What is the velocity (magnitude and direction) of the projectile 3 seconds after it was shot?

Answers

Answer:

a.) The projectile will reach the height of 20m above the cliff after 0.4 seconds.

b.) The projectile will be in the air for 2 seconds.

c.)  The horizontal distance traveled by the projectile is 100 meters.

d.) The velocity of the projectile 3 seconds after it was shot is 20.6 m/s. The direction of the velocity is 30° below the horizontal.

Explanation:

a)  The time it takes for the projectile to reach a height of 20m above the cliff can be found using the following equation:

t = (20m - 100m) / (100m/s) * sin(60°)

t = 0.4 seconds

Therefore, the projectile will reach the height of 20m above the cliff after 0.4 seconds.

b) The time it takes for the projectile to reach the ground can be found using the following equation:

t = 2 * (100m) / (100m/s) * sin(60°)

t = 2 seconds

Therefore, the projectile will be in the air for 2 seconds.

c) The horizontal distance traveled by the projectile can be found using the following equation:

d = v * t * cos(θ)

where v is the initial velocity of the projectile, t is the time it takes for the projectile to travel the horizontal distance, and θ is the angle of projection.

v = 100 m/s

t = 2 seconds

θ = 60°

d = 100 m/s * 2 seconds * cos(60°)

d = 100 m/s * 2 seconds * 0.5

d = 100 meters

Therefore, the horizontal distance traveled by the projectile is 100 meters.

d.) The velocity of the projectile 3 seconds after it was shot can be found using the following equation:

v = v0 * cos(θ) - gt

where v is the final velocity of the projectile, v0 is the initial velocity of the projectile, θ is the angle of projection, and g is the acceleration due to gravity.

v0 = 100 m/s

θ = 60°

g = 9.8 m/s²

v = 100 m/s * cos(60°) - 9.8 m/s² * 3 seconds

v = 50 m/s - 29.4 m/s

v = 20.6 m/s

Therefore, the velocity of the projectile 3 seconds after it was shot is 20.6 m/s. The direction of the velocity is 30° below the horizontal.

Learn more about Projectile Motion.

https://brainly.com/question/33261303

#SPJ11

Problem 1. [10 points] Calculate kg T for T = 500 K in the following units: erg, eV, cm-t, wave length, degrees Kelvin, and Hertz. Problem 2. [10 points) The vibrational energy of a diatomic molecule is Ev = ħw(v + 1/2), v= 0, 1, 2, .... For H2, ħw = 4401 cm-7. For 12, ñ w=214.52 cm-7. Without performing a calculation tell which molecule has higher vibrational entropy. Explain your reasoning.

Answers

H2 has higher vibrational entropy due to larger energy spacing and more available energy states.

Without performing a calculation, determine which molecule has higher vibrational entropy between H2 and 12, and explain your reasoning?

Problem 1:

To calculate kg T for T = 500 K in various units:

[tex]erg: kg T = 1.3807 × 10^-16 erg/K * 500 K eV: kg T = 8.6173 × 10^-5 eV/K * 500 K cm-t: kg T = 1.3807 × 10^-23 cm-t/K * 500 K Wavelength: kg T = (6.626 × 10^-34 J·s) / (500 K) Degrees Kelvin: kg T = 500 K Hertz: kg T = (6.626 × 10^-34 J·s) * (500 Hz)[/tex]

Problem 2:

To determine which molecule has higher vibrational entropy without performing a calculation:

The vibrational entropy (Svib) is directly related to the number of available energy states or levels. In this case, the vibrational energy for H2 is given by Ev = ħw(v + 1/2) with ħw = 4401 cm^-1, and for 12 it is given by Ev = ħw(v + 1/2) with ħw = 214.52 cm^-1.

Since the energy spacing (ħw) is larger for H2 compared to 12, the energy levels are more closely spaced. This means that there are more available energy states for H2 and therefore a higher number of possible vibrational states. As a result, H2 is expected to have a higher vibrational entropy compared to 12.

By considering the energy spacing and the number of available vibrational energy states, we can conclude that H2 has a higher vibrational entropy.

Learn more about  entropy

brainly.com/question/32070225

#SPJ11

A battery of 15 volts is connected to a capacitor that stores 2 Coulomb of charge. What is the capacitance of the capacitor? (a) 7.5 F (b) 30 F (c) 0.13 F (d) not enough information

Answers

The capacitance of the capacitor is calculated to be approximately 0.13 Farads (F). This is determined based on a charge stored in the capacitor of 2 Coulombs (C) and a potential difference of 15 volts (V) applied across the capacitor (option c).

The capacitance of the capacitor can be calculated using the formula;

C = Q/V

Equation to calculate capacitance: The capacitance of the capacitor is directly proportional to the amount of charge stored per unit potential difference.

Capacitance of a capacitor can be defined as the ability of a capacitor to store electric charge. The unit of capacitance is Farad. One Farad is defined as the capacitance of a capacitor that stores one Coulomb of charge on applying one volt of potential difference. A battery of 15 volts is connected to a capacitor that stores 2 Coulomb of charge. We can calculate the capacitance of the capacitor using the formula above. C = Q/VC = 2/15 = 0.1333 F ≈ 0.13 F

The correct option is (c).

To know more about capacitance:

https://brainly.com/question/31871398


#SPJ11

A well-known technique for achieving a very tight fit between two components is to "expand by heating and then cool to shrink fit." For example, an aluminum ring of inner radius 5.98 cm
needs to be firmly bonded to a cylindrical shaft of radius 6.00 cm. (Measurements are at 20°C.) Calculate the minimum temperature to which the aluminum ring needs to be heated before it
can be slipped over the shaft for fitting.
A) 140°C B) 850°C C) 120°C D) 160°C E) 180°C

Answers

Solving for ΔT, we find that the minimum temperature change needed is approximately 160°C. Therefore, the correct answer is D) 160°C.

To achieve a tight fit between the aluminum ring and the cylindrical shaft, the ring needs to be heated and then cooled to shrink fit. In this case, the inner radius of the ring is 5.98 cm, while the radius of the shaft is 6.00 cm. At 20°C, the ring is slightly smaller than the shaft.

To calculate the minimum temperature to which the ring needs to be heated, we can use the coefficient of thermal expansion. For aluminum, the coefficient of linear expansion is approximately 0.000022/°C.

We can use the formula:

[tex]ΔL = α * L0 * ΔT[/tex]

Where:
ΔL is the change in length
α is the coefficient of linear expansion
L0 is the initial length
ΔT is the change in temperature

In this case, ΔL represents the difference in radii between the ring and the shaft, which is 0.02 cm. L0 is the initial length of the ring, which is 5.98 cm. ΔT is the temperature change we need to find.

Plugging in the values, we get:

0.02 cm = (0.000022/°C) * 5.98 cm * ΔT

Solving for ΔT, we find that the minimum temperature change needed is approximately 160°C.

Therefore, the correct answer is D) 160°C.

To know more about temperature visit-

https://brainly.com/question/7510619

#SPJ11

M Sodium is a monovalent metal having a density of 0.971 g / cm³ and a molar mass of 29.0 g/mol. Use this information to calculate (a) the density of charge carricrs.

Answers

The density of charge carriers is 0.0335 g/cm³ per mol.

The density of charge carriers can be calculated using the formula:

Density of charge carriers = (density of the metal) / (molar mass of the metal)

In this case, the density of sodium is given as 0.971 g/cm³ and the molar mass of sodium is 29.0 g/mol.

Substituting these values into the formula, we get:

Density of charge carriers = 0.971 g/cm³ / 29.0 g/mol

To calculate this, we divide 0.971 by 29.0, which gives us 0.0335 g/cm³ per mol.

Therefore, the density of charge carriers is 0.0335 g/cm³ per mol.

Please note that the density of charge carriers represents the average density of the charge carriers (ions or electrons) in the metal. It is a measure of how tightly packed the charge carriers are within the metal.

To know more about density visit:

https://brainly.com/question/29775886

#SPJ11

Consider a right angled triangle: h=Hyoptenuse a=Adjacent o=opposite Which of the following is true? O h²=o²+ a² 0 √h=√a+√o Oh=o+a Oo=a+h

Answers

The correct mathematical representation is  h²=o²+ a² . Option A

How to determine the expression

First, we need to know that the Pythagorean theorem states that the square of the longest side of a triangle is equal to the sum of the squares of the other two sides of the triangle.

This is expressed as;

h² = o² + a²

Such that the parameters of the formula are given as;

h is the hypotenuse side of the trianglea is the adjacent side of the triangleo is the opposite side of the triangle

Learn more about Pythagorean theorem at: https://brainly.com/question/343682

#SPJ4

The electric field strength in a region is 1900 N/C. What is the force on an object with a charge of 0.0035 C?___N

Answers

The force experienced by an object with a charge in an electric field can be calculated using the equation F = q * E, where F is the force, q is the charge of the object, and E is the electric field strength.

In this case, the electric field strength in the region is 1900 N/C, and the charge of the object is 0.0035 C. By substituting these values into the equation, we can find the force on the object.

The force on the object is given by:

F = 0.0035 C * 1900 N/C

Multiplying the charge of the object (0.0035 C) by the electric field strength (1900 N/C) gives us the force on the object. The resulting force will be in newtons (N), which represents the strength of the force acting on the charged object in the electric field. Therefore, the force on the object is equal to 6.65 N.

Learn more about the charge here:

brainly.com/question/13871705

#SPJ11

Obtain the moment of inertia tensor of a thin uniform ring of
radius R, and mass M, with the origin of the coordinate system
placed at the center of the ring, and the ring lying in the
xy−plane.

Answers

The diagonal elements of the moment of inertia tensor are [tex]MR^2/2[/tex] for the x and y axes, and [tex]MR^2[/tex] for the z-axis. The moment of inertia tensor of a thin uniform ring can be obtained by considering its rotational symmetry and the distribution of mass.

The moment of inertia tensor (I) for a thin uniform ring of radius R and mass M, with the origin at the center of the ring and lying in the xy-plane, is given by I = [tex]M(R^2/2)[/tex]  To derive the moment of inertia tensor, we need to consider the contributions of the mass elements that make up the ring. Each mass element dm can be treated as a point mass rotating about the z-axis.

The moment of inertia for a point mass rotating about the z-axis is given by I = [tex]m(r^2)[/tex], where m is the mass of the point and r is the perpendicular distance of the point mass from the axis of rotation.

In the case of a thin uniform ring, the mass is distributed evenly along the circumference of the ring. The perpendicular distance of each mass element from the z-axis is the same and equal to the radius R.

Since the ring has rotational symmetry about the z-axis, the moment of inertia tensor has off-diagonal elements equal to zero.

The diagonal elements of the moment of inertia tensor are obtained by summing the contributions of all the mass elements along the x, y, and z axes. Since the mass is uniformly distributed, each mass element contributes an equal amount to the moment of inertia along each axis.

Therefore, the diagonal elements of the moment of inertia tensor are [tex]MR^2/2[/tex] for the x and y axes, and [tex]MR^2[/tex] for the z-axis.

Learn more about inertia here:

https://brainly.com/question/3268780

#SPJ11

(hrwc10p24_6e) A bullet of mass 6.0 g is fired horizontally into a 2.7 kg wooden block at rest on a horizontal surface. The coefficient of kinetic friction between block and surface is 0.32. The bullet comes to rest in the block, which moves 2.40 m. (a) What is the speed of the block immediately after the bullet comes to rest within it? Submit Answer Tries 0/8 (b) At what speed is the bullet fired? Submit Answer Tries 0/7

Answers

22)In this problem, a bullet is fired horizontally into a wooden block at rest on a horizontal surface. The bullet comes to rest within the block, which then moves a certain distance. The goal is to find the speed of the block immediately after the bullet comes to rest and the speed at which the bullet was fired.

To solve this problem, we can apply the principle of conservation of momentum. Initially, the bullet is moving horizontally with a certain speed and the block is at rest. When the bullet comes to rest within the block, the momentum of the system is conserved.

The momentum before the collision is equal to the momentum after the collision. The momentum of the bullet is given by the product of its mass and initial velocity, while the momentum of the block is given by the product of its mass and final velocity. By equating the two momenta and solving for the final velocity of the block, we can find the speed of the block immediately after the bullet comes to rest within it.

To find the speed at which the bullet was fired, we can consider the forces acting on the block after the collision. The block experiences a frictional force due to the coefficient of kinetic friction between the block and the surface. This frictional force can be related to the distance traveled by the block using the work-energy principle. By solving for the initial kinetic energy of the block and equating it to the work done by the frictional force, we can find the speed at which the bullet was fired.

Learn more about Horizontal surface:

https://brainly.com/question/28541505

#SPJ11

Question 5: A europium-156 nucleus has a mass of 155.924752 amu. (a) Calculate the mass defect (Am) in amu and kg for the breaking of one nucleus (1 mol = 6.022 x 1023 nuclei) of europium-156 into its component nucleons if the mass of a proton = 1.00728 amu and the mass of a neutron = 1.00867 amu. (b) Calculate the binding energy (in J) of the nucleus given the speed of light = 3.0 x 10 m/s.

Answers

The mass defect of one nucleus of europium-156 is 0.100688 amu. The mass defect of one nucleus of europium-156 is 1.67 x 10-27 kg.

(a) A europium-156 nucleus has a mass of 155.924752 amu. To calculate the mass defect (Am) in amu and kg for the breaking of one nucleus (1 mol = 6.022 x 1023 nuclei) of europium-156 into its component nucleons if the mass of a proton = 1.00728 amu and the mass of a neutron = 1.00867 amu, we can use the formula:
Am = (Zmp + Nmn) - M
where Am is the mass defect, Z is the atomic number, mp is the mass of a proton, N is the number of neutrons, mn is the mass of a neutron, and M is the mass of the nucleus.
Given that europium-156 has 63 protons and 93 neutrons, we can substitute the values into the formula to get:
Am = (63 x 1.00728 + 93 x 1.00867) - 155.924752
Am = 0.100688 amu
To convert this into kilograms, we use the conversion factor 1 amu = 1.66 x 10-27 kg:
Am = 0.100688 amu x 1.66 x 10-27 kg/amu
Am = 1.67 x 10-27 kg

(b) To calculate the binding energy (in J) of the nucleus given the speed of light = 3.0 x 108 m/s, we can use Einstein's equation:
E = mc2
where E is the binding energy, m is the mass defect, and c is the speed of light

Given that the mass defect is 0.100688 amu, we can convert this into kilograms using the conversion factor 1 amu = 1.66 x 10-27 kg:
m = 0.100688 amu x 1.66 x 10-27 kg/amu
m = 1.67 x 10-28 kg
Substituting the values into the equation, we get:
E = 1.67 x 10-28 kg x (3.0 x 108 m/s)2
E = 1.505 x 10-11 J

Therefore, the mass defect of one nucleus of europium-156 is 0.100688 amu and the mass defect of one nucleus of europium-156 is 1.67 x 10-27 kg. The binding energy of the nucleus is 1.505 x 10-11 J.

To know more about mass defect visit:

brainly.com/question/29099255

#SPJ11

A thin metal rod of mass 1.7 kg and length 0.9 m is at rest in outer space, near a space station (see figure below). A tiny meteorite with mass 0.09 kg traveling at a high speed of 245 m/s strikes the rod a distance 0.2 m from the center and bounces off with speed 60 m/s as shown in the diagram. The magnitudes of the initial and final angles to the x axis of the small mass's velocity are thetai = 26° and thetaf = 82°. (a) Afterward, what is the velocity of the center of the rod? (Express your answer in vector form.) vCM = m/s (b) Afterward, what is the angular velocity of the rod? (Express your answer in vector form.) = rad/s (c) What is the increase in internal energy of the objects? J

Answers

The velocity of the center of the rod in vector form is approximately 24.85 m/s. The angular velocity of the rod after the collision is 24844.087 rad/s. The increase in internal energy of the objects is -103.347 J.

(a) Velocity of center of the rod: The velocity of the center of the rod can be calculated by applying the principle of conservation of momentum. Since the system is isolated, the total momentum of the system before the collision is equal to the total momentum of the system after the collision. Using this principle, the velocity of the center of the rod can be calculated as follows:

Let v be the velocity of the center of the rod after the collision.

m1 = 1.7 kg (mass of the rod)

m2 = 0.09 kg (mass of the meteorite)

v1 = 0 m/s (initial velocity of the rod)

u2 = 245 m/s (initial velocity of the meteorite)

i1 = 0° (initial angle of the rod)

i2 = 26° (initial angle of the meteorite)

j1 = 0° (final angle of the rod)

j2 = 82° (final angle of the meteorite)

v2 = 60 m/s (final velocity of the meteorite)

The total momentum of the system before the collision can be calculated as follows: p1 = m1v1 + m2u2p1 = 1.7 kg × 0 m/s + 0.09 kg × 245 m/sp1 = 21.825 kg m/s

The total momentum of the system after the collision can be calculated as follows: p2 = m1v + m2v2p2 = 1.7 kg × v + 0.09 kg × 60 m/sp2 = (1.7 kg)v + 5.4 kg m/s

By applying the principle of conservation of momentum: p1 = p221.825 kg m/s = (1.7 kg)v + 5.4 kg m/sv = (21.825 kg m/s - 5.4 kg m/s)/1.7 kg v = 10.015 m/s

To represent the velocity in vector form, we can use the following equation:

vCM = (m1v1 + m2u2 + m1v + m2v2)/(m1 + m2)

m1 = 1.7 kg (mass of the rod)

m2 = 0.09 kg (mass of the meteorite)

v1 = 0 m/s (initial velocity of the rod)

u2 = 245 m/s (initial velocity of the meteorite)

v = 10.015 m/s (velocity of the rod after the collision)

v2 = 60 m/s (velocity of the meteorite after the collision)

Substituting these values into the equation, we have:

vCM = (1.7 kg * 0 m/s + 0.09 kg * 245 m/s + 1.7 kg * 10.015 m/s + 0.09 kg * 60 m/s) / (1.7 kg + 0.09 kg)

Simplifying the equation:

vCM = (0 + 22.05 + 17.027 + 5.4) / 1.79

vCM = 44.477 / 1.79

vCM ≈ 24.85 m/s

Therefore, the velocity of the center of the rod in vector form is approximately 24.85 m/s.

(b) Angular velocity of the rod: To calculate the angular velocity of the rod, we can use the principle of conservation of angular momentum. Since the system is isolated, the total angular momentum of the system before the collision is equal to the total angular momentum of the system after the collision. Using this principle, the angular velocity of the rod can be calculated as follows:

Let ω be the angular velocity of the rod after the collision.I = (1/12) m L2 is the moment of inertia of the rod about its center of mass, where L is the length of the rod.m = 1.7 kg is the mass of the rod

The angular momentum of the system before the collision can be calculated as follows:

L1 = I ω1 + m1v1r1 + m2u2r2L1 = (1/12) × 1.7 kg × (0.9 m)2 × 0 rad/s + 1.7 kg × 0 m/s × 0.2 m + 0.09 kg × 245 m/s × 0.7 mL1 = 27.8055 kg m2/s

The angular momentum of the system after the collision can be calculated as follows:

L2 = I ω + m1v r + m2v2r2L2 = (1/12) × 1.7 kg × (0.9 m)2 × ω + 1.7 kg × 10.015 m/s × 0.2 m + 0.09 kg × 60 m/s × 0.7 mL2 = (0.01395 kg m2)ω + 2.1945 kg m2/s

By applying the principle of conservation of angular momentum:

L1 = L2ω1 = (0.01395 kg m2)ω + 2.1945 kg m2/sω = (ω1 - 2.1945 kg m2/s)/(0.01395 kg m2)

Here,ω1 is the angular velocity of the meteorite before the collision. ω1 = u2/r2

ω1 = 245 m/s ÷ 0.7 m

ω1 = 350 rad/s

ω = (350 rad/s - 2.1945 kg m2/s)/(0.01395 kg m2)

ω = 24844.087 rad/s

The angular velocity of the rod after the collision is 24844.087 rad/s.

(c) Increase in internal energy of the objects

The increase in internal energy of the objects can be calculated using the following equation:ΔE = 1/2 m1v1² + 1/2 m2u2² - 1/2 m1v² - 1/2 m2v2²

Here,ΔE is the increase in internal energy of the objects.m1v1² is the initial kinetic energy of the rod.m2u2² is the initial kinetic energy of the meteorite.m1v² is the final kinetic energy of the rod. m2v2² is the final kinetic energy of the meteorite.Using the given values, we get:

ΔE = 1/2 × 1.7 kg × 0 m/s² + 1/2 × 0.09 kg × (245 m/s)² - 1/2 × 1.7 kg × (10.015 m/s)² - 1/2 × 0.09 kg × (60 m/s)²ΔE = -103.347 J

Therefore, the increase in internal energy of the objects is -103.347 J.

Learn more about energy at: https://brainly.com/question/2003548

#SPJ11

An procedure is done at 110 inches at 8.5 mAs and results in a perfect exposure indicator. If the distance is changed to 70 inches, what new mAs would you use in order to maintain the receptor exposure?

Answers

To maintain the receptor exposure when changing the distance from 110 inches to 70 inches, you would need to use approximately 1.69 times the initial mAs.

To maintain the receptor exposure when changing the distance from 110 inches to 70 inches, we can use the inverse square law for radiation intensity. According to the inverse square law:

[tex]I_1 / I_2= (D_2 / D_1)^{2}[/tex]

Where:

I₁ and I₂ are the intensities of radiation at distances D₁ and D₂, respectively.

In this case, we want to maintain the receptor exposure, which is directly related to the intensity of radiation.

Let's assume the initial mAs used is M₁ at a distance of 110 inches, and we need to find the new mAs, M₂, at a distance of 70 inches.

We can set up the equation as follows:

I₁ / I₂ = (D₂ / D₁)²

(M₁ / M₂) = (70 / 110)²

Simplifying the equation:

M₂ = M₁ * [tex](110 / 70)^{2}[/tex]

M₂ = [tex]M_1 * (11/7)^{2}[/tex]

M₂ = M₁ * 1.69

To know more about receptor exposure, here

brainly.com/question/5288994

#SPJ4

Rutherford atomic model. In 1911, Ernest Rutherford sent a particles through atoms to determine the makeup of the atoms. He suggested: "In order to form some idea of the forces required to deflect an a particle through a large angle, consider an atom [as] containing a point positive charge Ze at its centre and surrounded by a distribution of negative electricity -Ze uniformly distributed within a sphere of
radius R." For his model, what is the electric field E at a distance + from the centre for a point inside the atom?

Answers

Ernest Rutherford was the discoverer of the structure of the atomic nucleus and the inventor of the Rutherford atomic model. In 1911, he directed α (alpha) particles onto thin gold foils to investigate the nature of atoms.

The electric field E at a distance + from the centre for a point inside the atom: For a point at a distance r from the nucleus, the electric field E can be defined as: E = KQ / r² ,Where, K is Coulomb's constant, Q is the charge of the nucleus, and r is the distance between the nucleus and the point at which the electric field is being calculated. So, for a point inside the atom, which is less than the distance of the nucleus from the centre of the atom (i.e., R), we can calculate the electric field as follows: E = K Ze / r².

Therefore, the electric field E at a distance + from the centre for a point inside the atom is E = KZe / r².

Let's learn more about Rutherford atomic model:

https://brainly.com/question/30087408

#SPJ11

A domestic smoke alarm contains a 35.0kBq sample of americium-241 which has a half-life of approximately 432 years and decays into neptunium-237. a) Calculate the activity after 15 years

Answers

The correct answer is that the activity of the sample after 15 years is approximately 34.198 Bq.

The activity of a radioactive sample can be determined by using a formula that relates the number of radioactive nuclei present to the elapsed time and the half-life of the substance.

A = A0 * (1/2)^(t / T1/2)

where A0 is the initial activity, t is the time elapsed, and T1/2 is the half-life of the radioactive material.

In this case, we are given the initial activity A0 = 35.0 kBq, and the half-life T1/2 = 432 years. We need to calculate the activity after 15 years.

By plugging in the provided values into the given formula, we can calculate the activity of the radioactive sample.

A = 35.0 kBq * (1/2)^(15 / 432)

Calculating the value, we get:

A ≈ 35.0 kBq * (0.5)^(15 / 432)

A ≈ 35.0 kBq * 0.97709

A ≈ 34.198 Bq

Therefore, the correct answer is that the activity of the sample after 15 years is approximately 34.198 Bq.

Learn more about activity at: https://brainly.com/question/28570637

#SPJ11

Twins A and B are both 19.0 years old when twin B decides to embark on a space voyage. Twin B blasts off from Earth and travels at a speed of 0.97c. Twin A remains on Earth, and after waiting 35.0 years, twin A is reunited with twin B, who has returned from the space voyage. Twin A is now 54.0 years old. How old is twin B?

Answers

ΔT = ΔT0 / (1 - v^2/c^2)^1/2

ΔT is the time elapsed in the moving frame and ΔT0 is the proper time that has elapsed in the frame where the clock is stationary

ΔT = 35 years which is the elapsed time in frame A - age of twin in that frame

ΔT0 = 35 * (1 - .97^2) = 2.07 yrs  time elapsed for twin (B) in stationary frame B - measured WRT a clock at a single point

the proper time in frame B will be the actual elapsed time (age) that has passed in that frame - frame A is moving WRT frame (B)

A low orbit satellite is one whose orbital radius not much larger, so can be assumed to be the
same as, the radius of the planet it orbits around.
a. The period of a low orbit satellite orbiting near the surface of Jupiter is about 10500 s. If the free fall acceleration on the surface is 25 m/s?, what is the radius of Jupiter (the
orbital radius)? b. What is the period of a low orbit satellite around a planet with free fall acceleration
half that of the Jupiter but three times the radius of the Jupiter's?

Answers

The period of a low orbit satellite around a planet with free fall acceleration half that of Jupiter but three times the radius of the Jupiter's is 4736.17 s.

a. The period of a low orbit satellite orbiting near the surface of Jupiter is about 10500 s. If the free fall acceleration on the surface is 25 m/s², what is the radius of Jupiter (the orbital radius)?Given,Period of the low orbit satellite, T = 10500 sAcceleration due to gravity on Jupiter, g = 25 m/s²Let the radius of Jupiter be r.Then, the height of the satellite above Jupiter's surface = r.T = 2π√(r/g)10500 = 2π√(r/25)10500/2π = √(r/25)r/25 = (10500/2π)²r = 753850.32 mTherefore, the radius of Jupiter is 753850.32 m.

b. The acceleration due to gravity on this planet is half of that of Jupiter. So, g = 12.5 m/s²The radius of the planet is three times the radius of Jupiter. Let R be the radius of this planet. Then, R = 3r.Height of the satellite from the surface of the planet = R - r.T' = 2π√((R - r)/g)T' = 2π√(((3r) - r)/(12.5))T' = 2π√(2r/12.5)T' = 2π√(8r/50)T' = 2π√(4r/25)T' = (2π/5)√rT' = (2π/5)√(753850.32)T' = 4736.17 sTherefore, the period of a low orbit satellite around a planet with free fall acceleration half that of Jupiter but three times the radius of the Jupiter's is 4736.17 s.

Learn more about period:

https://brainly.com/question/1073522

#SPJ11

A hollow aluminum propeller shaft, 30 ft. long with 15 in. outer diameter and an inner diameter which is 2/3 of the outer diameter, transmits 8000 hp at 250 rev/min. Use G=3.5x10^6 psi for aluminum. Calculate (a) the maximum shear stress; (b) the angle of twist of the shaft

Answers

According to the question The maximum shear stress is approximately 184.73 psi and the angle of twist is approximately 0.014 radians.

To calculate the maximum shear stress and the angle of twist of the aluminum propeller shaft.

Let's consider the following values:

Length of the shaft (L) = 10 ft

Outer diameter (D) = 6 in = 0.5 ft

Inner diameter (d) = 2/3 * D = 0.333 ft

Power transmitted (P) = 5000 hp

Speed of rotation (N) = 300 rev/min

Modulus of rigidity (G) = 3.5 × 10^6 psi

First, let's calculate the torque transmitted by the shaft (T) using the formula:

[tex]\[ T = \frac{P \cdot 60}{2 \pi N} \][/tex]

Substituting the given values:

[tex]\[ T = \frac{5000 \cdot 60}{2 \pi \cdot 300} \approx 15.915 \, \text{lb-ft} \][/tex]

Next, we can calculate the maximum shear stress [tex](\( \tau_{\text{max}} \))[/tex] using the formula:

[tex]\[ \tau_{\text{max}} = \frac{16T}{\pi d^3} \][/tex]

Substituting the given values:

[tex]\[ \tau_{\text{max}} = \frac{16 \cdot 15.915}{\pi \cdot (0.333)^3} \approx 184.73 \, \text{psi} \][/tex]

Moving on to the calculation of the angle of twist [tex](\( \phi \))[/tex], we need to find the polar moment of inertia (J) using the formula:

[tex]\[ J = \frac{\pi}{32} \left( D^4 - d^4 \right) \][/tex]

Substituting the given values:

[tex]\[ J = \frac{\pi}{32} \left( (0.5)^4 - (0.333)^4 \right) \approx 0.000321 \, \text{ft}^4 \][/tex]

Finally, we can calculate the angle of twist [tex](\( \phi \))[/tex] using the formula:

[tex]\[ \phi = \frac{TL}{GJ} \][/tex]

Substituting the given values:

[tex]\[ \phi = \frac{15.915 \cdot 10}{3.5 \times 10^6 \cdot 0.000321} \approx 0.014 \, \text{radians} \][/tex]

Therefore, for the given values, the maximum shear stress is approximately 184.73 psi and the angle of twist is approximately 0.014 radians.

To know more about radians visit-

brainly.com/question/12945638

#SPJ11

For questions 5, 6, and 7 calculate the shortest distance in degrees of latitude or longitude (as appropriate) between the two locations given in the question. In other words, how far apart are the given locations in degrees? If minutes or minutes and seconds are given for the locations as well as degrees, provide the degrees and minutes, or degrees, minutes, and seconds for your answer. For example, the answer for question 7 should contain degrees, minutes, and seconds, whereas 5 will have only degrees as part of the answer Question 5 55'W and 55°E QUESTION 6 6. 45°45'N and 10°15'S QUESTION 7 7. 22°09'33"S and 47°51'34"S

Answers

The shortest distance in degrees of longitude between 55'W and 55°E is 110 degrees. Thus, the shortest distance in degrees of longitude between the two locations is 110 degrees.

To calculate the shortest distance in degrees of longitude, we need to find the difference between the longitudes of the two locations. The maximum longitude value is 180 degrees, and both the 55'W and 55°E longitudes fall within this range.

55'W can be converted to decimal degrees by dividing the minutes value (55) by 60 and subtracting it from the degrees value (55):

55 - (55/60) = 54.917 degrees

The distance between 55'W and 55°E can be calculated as the absolute difference between the two longitudes:

|55°E - 54.917°W| = |55 + 54.917| = 109.917 degrees

However, since we are interested in the shortest distance, we consider the smaller arc, which is the distance from 55°E to 55°W or from 55°W to 55°E. Thus, the shortest distance in degrees of longitude between the two locations is 110 degrees.

The shortest distance in degrees of longitude between 55'W and 55°E is 110 degrees.

To know more about longitude ,visit:

https://brainly.com/question/31389985

#SPJ11

The
current through the 3 Q resistor is:
a. 9A
b. 6A
c. 5A
d. 3A
e. 1A
La corriente a través de la resistencia de 3 es: WW 312 9V 6V O A.9A OB.6A O C.5A O D.3A O E 1A

Answers

The correct option is d. 3A.

To determine the current through the 3 Ω resistor, we need to use Ohm's Law, which states that the current (I) flowing through a resistor is equal to the voltage (V) across the resistor divided by the resistance (R).

In this case, we are given the voltage across the resistor, which is 9V. The resistance is 3 Ω. Using Ohm's Law, we can calculate the current:

I = V / R

I = 9V / 3Ω

I = 3A

Therefore, the current through the 3 Ω resistor is 3A.

So the correct option is d. 3A.

Learn more about Ohm's Law from this link:

https://brainly.com/question/14796314

#SPJ11

How much work is done on the gas in the process as shown, in Joules? Vf = 94 cm3.(1.00 cm3 = 1.00×10-6 m3, 1.00 kPa = 1.00×103 Pa.)
Your answer needs to have 2 significant figures, including the negative sign in your answer if needed. Do not include the positive sign if the answer is positive. No unit is needed in your answer, it is already given in the question statement.

Answers

The work done on the gas in the process shown is approximately -3.5 × 10⁻³ Joules.

Given: Vi = 40.0 cm³ = 40.0 × 10⁻⁶ m³

          Vf = 94 cm³ = 94 × 10⁻⁶ m³

          P = 101 k

         Pa ΔV = Vf - Vi

                     = 94 × 10⁻⁶ - 40.0 × 10⁻⁶

                      = 54.0 × 10⁻⁶ m³

By the ideal gas law,

                         PV = nRTHere, n, R, T are constantn = number of moles of the gas R = gas constant

       T = temperature of the gas in kelvin

Assuming that the temperature of the gas remains constant during the process, we get,

                       P₁V₁ = P₂V₂or, P₁V₁ = P₂(V₁ + ΔV)or, P₂ = P₁V₁ / (V₁ + ΔV)

                        = 101 × 40.0 × 10⁳ / (40.0 + 54.0) × 10⁻⁶

                             = 65.1 kPa

Work done on the gas, w = -PΔV= -65.1 × 54.0 × 10⁻⁶

                           = -3.52 × 10⁻³ ≈ -3.5 × 10⁻³

The work done on the gas in the process shown is approximately -3.5 × 10⁻³ Joules.

Learn more about ideal gas law,

brainly.com/question/30458409

#SPJ11

A 20 gram hollow sphere rolls down a 25 cm high ramp from rest. The sphere has a radius of 1.5 cm. You can ignore air resistance. What is the sphere's linear speed at the bottom of the ramp? 3.46 m/s 0.87 m/s 1.73 m/s 4.65 m/s 2.05 m/s 1.34 m/s

Answers

The linear speed of a hollow sphere that rolls down a 25 cm high ramp from rest can be determined as follows:

Given data: mass of the sphere (m) = 20 g = 0.02 kg

The radius of the sphere (r) = 1.5 cm = 0.015 m

height of the ramp (h) = 25 cm = 0.25 m

Acceleration due to gravity (g) = 9.81 m/s².

Let's use the conservation of energy principle to calculate the linear speed of the sphere at the bottom of the ramp.

The initial potential energy (U₁) is given by: U₁ = mgh where m is the mass of the sphere, g is the acceleration due to gravity, and h is the height of the ramp.

U₁ = 0.02 kg × 9.81 m/s² × 0.25 m = 0.049 J.

The final kinetic energy (K₂) is given by: K₂ = (1/2)mv² where m is the mass of the sphere and v is the linear speed of the sphere.

K₂ = (1/2) × 0.02 kg × v².

Let's equate the initial potential energy to the final kinetic energy, that is:

U₁ = K₂0.049 = (1/2) × 0.02 kg × v²0.049

= 0.01v²v² = 4.9v = √(4.9) = 2.21 m/s (rounded to two decimal places).

Therefore, the sphere's linear speed at the bottom of the ramp is approximately 2.21 m/s.

Hence, the closest option (d) to this answer is 2.05 m/s.

The sphere's linear speed is 2.05 m/s.

Learn more about linear speed and hollow sphere https://brainly.com/question/15992647

#SPJ11

12. PHYSICS PROJECT TERM 3 Write a research paper on the topic " Mass Spectrometer". The research work should be minimum of a page in word document and to a maximum of 5 pages. After writing the research paper You should upload it here. (Non-anonymous question (1) * Upload file File number limit: 10 Single file size limit: 1GB Allowed file types: Word, Excel, PPT, PDF, Image, Video, Audio

Answers

This research paper provides an overview of mass spectrometry, a powerful analytical technique used to identify and quantify molecules based on their mass-to-charge ratio.

It discusses the fundamental principles of mass spectrometry, including ionization, mass analysis, and detection. The paper also explores different types of mass spectrometers, such as magnetic sector, quadrupole, time-of-flight, and ion trap, along with their working principles and applications.

Furthermore, it highlights the advancements in mass spectrometry technology, including tandem mass spectrometry, high-resolution mass spectrometry, and imaging mass spectrometry.

The paper concludes with a discussion on the current and future trends in mass spectrometry, emphasizing its significance in various fields such as pharmaceuticals, proteomics, metabolomics, and environmental analysis.

Mass spectrometry is a powerful analytical technique widely used in various scientific disciplines for the identification and quantification of molecules. This research paper begins by introducing the basic principles of mass spectrometry.

It explains the process of ionization, where analyte molecules are converted into ions, and how these ions are separated based on their mass-to-charge ratio.

The paper then delves into the different types of mass spectrometers available, including magnetic sector, quadrupole, time-of-flight, and ion trap, providing a detailed explanation of their working principles and strengths.

Furthermore, the paper highlights the advancements in mass spectrometry technology. It discusses tandem mass spectrometry, a technique that enables the sequencing and characterization of complex molecules, and high-resolution mass spectrometry, which offers increased accuracy and precision in mass measurement.

Additionally, it explores imaging mass spectrometry, a cutting-edge technique that allows for the visualization and mapping of molecules within a sample.

The paper also emphasizes the broad applications of mass spectrometry in various fields. It discusses its significance in pharmaceutical research, where it is used for drug discovery, metabolomics, proteomics, and quality control analysis.

Furthermore, it highlights its role in environmental analysis, forensic science, and food safety.In conclusion, this research paper provides a comprehensive overview of mass spectrometry, covering its fundamental principles, different types of mass spectrometers, advancements in technology, and diverse applications.

It highlights the importance of mass spectrometry in advancing scientific research and enabling breakthroughs in multiple fields.

Learn more about mass spectrometry here ;

https://brainly.com/question/27549121

#SPJ11

Suppose we have a piece of a candy bar that has an initial mass of 28g. If we ignite the piece of candy bar (literally burn it), and it increases the temperature of 373.51g of water from
15.33°C to 74.59°C, how many calories per gram of energy did the candy bar provide if the
final mass of the marshmallow is 4.22? Note: 1.00 cal = 4.184 J. Give your answer in units of cal/g. Note: In the space below, please enter you numerical answer. Do not enter any units. If you enter units, your answer will be marked as incorrect. If you have ever wondered how the calories on the nutrition labels are determined, this is how! One small additional piece of information is that your nutrition labels determine energy in units of kilocalories =Calorie (with
a capital C).

Answers

The candy bar provides approximately 29537.15 calories per gram of energy.

To calculate the energy provided by the candy bar per gram in calories (cal/g),

We can use the equation:

Energy = (mass of water) * (specific heat capacity of water) * (change in temperature)

Given:

Initial mass of the candy bar = 28 g

Mass of water = 373.51 g

Initial temperature of the water = 15.33°C

Final temperature of the water = 74.59°C

Final mass of the candy bar = 4.22 g

We need to convert the temperature from Celsius to Kelvin because the specific heat capacity of water is typically given in units of J/(g·K).

Change in temperature = (Final temperature - Initial temperature) in Kelvin

Change in temperature = (74.59°C - 15.33°C) + 273.15 ≈ 332.41 K

The specific heat capacity of water is approximately 4.184 J/(g·K).

Now we can substitute the values into the equation:

Energy = (373.51 g) * (4.184 J/(g·K)) * (332.41 K)

Energy ≈ 520994.51 J

To convert the energy from joules (J) to calories (cal), we divide by the conversion factor:

Energy in calories = 520994.51 J / 4.184 J/cal

Energy in calories ≈ 124633.97 cal

Finally, to find the energy provided by the candy bar per gram in calories (cal/g), we divide the energy in calories by the final mass of the candy bar:

Energy per gram = 124633.97 cal / 4.22 g

Energy per gram ≈ 29537.15 cal/g

Therefore, the candy bar provided approximately 29537.15 calories per gram of energy.

Learn more about Calorie from the given link :

https://brainly.com/question/830145

#SPJ11

Terrence goes for a walk. He walks 2.0 km north, then turns and walks 4.0 km south of east. What is his displacement vector?

Answers

Terrence's displacement vector is 4.0 km east and 2.0 km north.

How can we arrive at this result?

First, it is necessary to consider the magnitude and direction of each segment of Terrence's walk and establish the vector sum of these segments.

Terrence walked 2.0 km north and then 4.0 km east. In this case, let's consider north as the positive y-axis direction and east as the positive x-axis direction.

Therefore, we can conclude that:

We have a component of displacement of 2.0 km in the y direction.We have a component of displacement of 4.0 km in the x direction.

In this case, the displacement vector will be calculated by combining the displacement components in the x and y axes.

Therefore, Terrence's displacement vector is 4.0 km east and 2.0 km north.

Learn more about vectors:

https://brainly.com/question/29740341

#SPJ4

an electron is moving east in a uniform electric field of 1.50 n/c directed to the west. at point a, the velocity of the electron is 4.45×105 m/s pointed toward the east. what is the speed of the electron when it reaches point b, which is a distance of 0.370 m east of point a?

Answers

The speed of the electron when it reaches point b is approximately 4.45×10^5 m/s.

The acceleration of an electron in a uniform electric field is given by the equation:

a = q * E / m

where a is the acceleration, q is the charge of the electron (-1.6 x 10^-19 C), E is the electric field strength (-1.50 N/C), and m is the mass of the electron (9.11 x 10^-31 kg).

Given that the electric field is directed to the west, it exerts a force in the opposite direction to the motion of the electron. Therefore, the acceleration will be negative.

The initial velocity of the electron is 4.45 x 10^5 m/s, and we want to find its speed at point b, which is a distance of 0.370 m east of point a. Since the electric field is uniform, the acceleration remains constant throughout the motion.

We can use the equations of motion to calculate the speed of the electron at point b. The equation relating velocity, acceleration, and displacement is:

v^2 = u^2 + 2as

where v is the final velocity, u is the initial velocity, a is the acceleration, and s is the displacement.

Since the initial velocity (u) and the acceleration (a) have opposite directions, we can substitute the values into the equation:

v^2 = (4.45 x 10^5 m/s)^2 - 2 * (1.50 N/C) * (9.11 x 10^-31 kg) * (0.370 m)

v^2 ≈ 1.98 x 10^11 m^2/s^2

v ≈ 4.45 x 10^5 m/s

Therefore, the speed of the electron when it reaches point b, approximately 0.370 m east of point a, is approximately 4.45 x 10^5 m/s.

The speed of the electron when it reaches point b, which is a distance of 0.370 m east of point a, is approximately 4.45 x 10^5 m/s. This value is obtained by calculating the final velocity using the equations of motion and considering the negative acceleration due to the uniform electric field acting in the opposite direction of the electron's motion.

To know more about electron, visit;
https://brainly.com/question/860094
#SPJ11

Chec A crate of mass m-12.4 kg is pulled by a massless rope up a 36.9° ramp. The rope passes over an ideal pulley and is attached to a hanging crate of mass m2-16.3 kg. The crates move 1.50 m, starting from rest. If the frictional force on the sliding crate has magnitude 22.8 N and the tension in the rope is 121.5 N, find the total work done on the sliding crate. m₁ The total work done on the sliding crate is

Answers

A crate of mass m-12.4 kg is pulled by a massless rope up a 36.9° ramp. The rope passes over an ideal pulley and is attached to a hanging crate of mass m2-16.3 kg. Total Work = Work₁ + Work₂

To find the total work done on the sliding crate, we need to consider the work done by different forces acting on it.

The work done by the tension in the rope (T) can be calculated using the formula:

Work₁ = T * displacement₁ * cos(θ₁)

where displacement₁ is the distance the sliding crate moves along the ramp and θ₁ is the angle between the displacement and the direction of the tension force.

In this case, the displacement₁ is given as 1.50 m and the tension force T is given as 121.5 N. The angle θ₁ is the angle of the ramp, which is 36.9°. Therefore, we can calculate the work done by the tension force as:

Work₁ = 121.5 * 1.50 * cos(36.9°)

Next, we need to consider the work done by the frictional force (f) acting on the sliding crate. The work done by the frictional force is given by:

Work₂ = f * displacement₂

where displacement₂ is the distance the crate moves horizontally. In this case, the frictional force f is given as 22.8 N. The displacement₂ is equal to the displacement₁ because the crate moves horizontally over the same distance.

Therefore, we can calculate the work done by the frictional force as:

Work₂ = 22.8 * 1.50

Finally, the total work done on the sliding crate is the sum of the work done by the tension force and the work done by the frictional force:

Total Work = Work₁ + Work₂

To know more about massless refer here:

https://brainly.com/question/30467003#

#SPJ11

Other Questions
word or phrase bank medial temporal lobes. caudal Head pons lateral eye movement sciatic nerve taste sensation Midbrain 31 pairs inner ears PNS 12 pairs medullar oblongata fibular nerve superior oblique hip joints Medially simultaneously Ischial gluteal upper limbs CNS dorsal root and ventral roots extrinsic eye sensory and motor signals anterior thigh occipital lobes neck taste sensations skeletal muscles crossed extensor rami intrinsic and extrinsic thoracic and abdominopelvic quadricep visceral signals Hearing anterolateral somatosensory cortex encapsulated nerve sense organ motor neuron larynx and pharynx effectors biceps and skin lumbosacral maxillary nerve spinal cord thermoreceptors and nociceptor lateral rectus medial arm the pons and the medullar oblongata nerve plexus mastication in the mouth. sternocleidomastoid abdominal wall and iliopsoas stretch reflex odorant stimuli side opposite 3 types internal and internal Heart optic chiasma nociceptors Foot swallowing somatic motor signals Golgi tendon interceptors interneuron photoreceptors deltoid teres minor exteroceptors thermoreceptors Electromagnetic Afferent triceps brachii anterior forearm develop command abductor anterior special sense vision, and taste two criterial neurological and sensory chemoreceptors multiple synapses Mechanoreceptors tibia monosynaptic stretch thermoreceptors synapses Afferent Eye withdrawer organs1. The peripheral nervous system connects the body and environment to the. The PNS detects sensory stimuli and transmit it to the ... The . in turn process the sensory information, develop command, and send it via the .to the PNS effector like muscles and glands.2. Cranial nerves are attached to structures in the. and regions of the body. These are sensory nerves, the motor nerves and the mixed motor and sensory nerves. There are of cranial nerves named with Roman figures for nerve one to nerve twelve.3. The trochlear nerve that moves the eye and inferiorly, originates from the inferior portion of the, and terminate on the . muscles of the eye. The oculomotor motor nerve that also move the eye originates from the superior and lateral portions of the . and terminate on the . muscles and smooth muscles of the eye. The vestibulocochlear verve that controls .and equilibrium, originates from the vestibular and cochlear nerves of the., and terminates on nuclei of the cerebellum and.4. The optic nerve that carries visual information, originates from the posterior of the., and form an X-shaped structure called., and terminates on the nuclei of the .and midbrain before it gets to the visual cortex of the... The olfactory nerve that carries, originates form the olfactory epithelia and terminates on nuclei of the .5. The vagus nerve is a mixed nerve that is responsible for the contraction of muscles surrounding the, originates from the .and sensory receptors from the pharynx, larynx, skin, ears, certain blood vessels of the neck, innervate throat, anterior neck, visceral organs of cavities. The glossopharyngeal nerves are mixed nerves responsible for . movement, originates from the., and sensory receptor of the tongue, pharynx, and round the ears.6. The facial nerve, which is responsible for facial expressions and other facial muscles, originates from the and the medullar oblongata and terminates on the facial muscles the provide . and somatic sensation from the external eye and nasal cavities. The trigeminal nerve has 3 branches, the ophthalmic nerve, the., and the mandibular nerve. Their origin is from between . and innervates the primary for facial sensations. The mandibula nerve innervates the muscles for Which of Indigenous speech communities are most able tocontinue vibrant usage of their language(s) today? How are theydoing this? How can we support them? Give an example of a coefficient function a2(x) for the equation, a2(x)y+ln(x)y+2022y=sin(x),y(x0)=y0,y(x0)=y0, so that Theorem 4.1 guarantees the equation has unique solution on (10,5) but not the interval (6,10) and explain why your answer is correct. How much energy in calories (to 2 significant figures) isrequired to melt 7.6 grams of 0C ice ? The sale of cycles in a shop in three consecutive months are given as 70, 68 and 82 units respectively. Exponential smoothing method with a smoothing constant of 0.4 is used in forecasting. Assume the forecast for the first month is 70 units. The expected number of sales (round off to the nearest whole number) in the 4th month is:Group of answer choices1)66 units.2)71 units.3)76 units.4)81 units. You are evaluating two different silicon wafer milling machines. The Techron 1 costs $265.000, has a three-year life, and has pretax operating costs of $74,000 per year. The Techron il costs $445,000, has a five-year life, and has pretax operating costs of $47.000 per year. For both milling machines, use straight-line depreciation to zero over the project's life and assume a salvage value of $35.000, If your tax rate is 22 percent and your discount rate is 10 percent compute the EAC for both machines. (A negative answer should be indicated by a minus sign. Do not round intermediate calculations and round your answers to 2 decimal places, eg., 32.16.)Techron 1Techron 11 Please give final answer of both parts that which oneis true or it in 20 minutes please... I'll give you upthumb definitely35. From the economics point of view, stock markets are forward looking vehicles. 36. If a bank has more rate-sensitive liabilities than assets, a decline in interest rates will raise bank profits. Which of the following is TRUE regarding the muscle sarcomere? Ca2+ binds to Troponin, altering the position of Tropomyosin, revealing Myosin binding sites on Actin. ATP binds to Actin molecules in proportion to intracellular Ca2+ concentration ATP limitation halts the cross bridge cycle after Myosin detaches from Actin, reducing the capacity of musdes to generate tension. Ca2+ binds to Troponin, which then occupy Myosin binding sites on Actin, reducing the capacity of musclesperate tension. Two consumer researchers, one with the positivist paradigm and one with the interpretivist paradigm, would approach the same research study very differently. If Hallmark Cards was interested in learning about the response of their customers to a new store layout and design, how would you expect the two researchers to go about conducting this study? Please compare and contrast four differences between the two approaches; be specific in your comments and explanations. A company has a policy of requiring a rate of return on investment of 16%. Two investment alternatives are available but the company may choose only one. Alternative 1 offers a return of $50,000 at the end of year three, $70,000 at the end of year nine and $30,000 after ten years. Alternative 2 will return the company $600 at the end of each month for the next ten years. Compute the present value of each alternative and determine the preferred alternative according to the discounted cash flow criterion The present value of Alternative 1 is? The present value of Alternative 2 is ? One way to think about the case management process is to examine the key elements for success: responsibility, continuity, and accountability. In the context of case management, what do responsibility, continuity, and accountability mean to you? How might you ensure that these ideas are incorporated into your own professional activities? Match each description of property of a substance with the most appropriate of the three common states of matter. If the property may apply to more than one state of matter, match it to the choice that lists all states of matter that are appropriate. Some choices may go unused. Hint a Atoms and molecules in it are significantly attracted to neighboring atoms and molecules. can carry a sound wave takes on the shape of the container retains its own shape and size takes on the size of the container g f a f fis included as "fluids" a. solids b. solids and gases c. liquids d. gases e. solids and liquids f. liquids and gases g. solids, liquids, and gases Read this excerpt from Leah Missbach Days foreword to Wheels of Change.Bicycles have long played a role in my life. As a young woman, I rode one year-round before I had a car. But it was later in adulthood that the bicycle became more than a source of transportation for me. The bicycle actually began to truly shape the way I saw the world.What is the authors purpose for including this in the foreword?to outline the key points that are in Wheels of Changeto offer background information about bicyclesto emphasize a personal appreciation of bicyclesto inform the reader about how bicycles changed womens lives Solve the following equation 0.8+0.7x/x=0.86 Mr. Dietrich, a 68-year-old male, comes to his primary care office because he experienced severe leg pain while visiting his daughter's family last weekend. Mr. Dietrich had wanted to help his daughter out so had offered to mow her yard with her push mo mower. He states he mowed about one quarter of her yard before he felt pain in his left calf muscle. He thought he was experiencing a muscle cramp, so he stopped to stretch. The pain was relieved somewhat, but when he continued to mow the yard, the pain returned. When he removed his shoes to see, he noticed that his left foot did not look normal. It had a slight bluish color and was painful to touch. Examining Mr. Dietrich's health history, his primary care provider (PCP) notices he has been diagnosed with hypertension, hyperlipidemia, and type II diabetes mellitus. She asks Mr. Dietrich to remove his shoes and socks. The PCP notes the peripheral pulses on Mr. Dietrich's lower left extremity are very weak and decides to determine Mr. Dietrich's ABI for both the right and left sides. For further testing, the PCP orders a magnetic resonance angiography test. 1. What is the term for the cramping leg pain Mr. Dietrich experienced? 2. Why did Mr. Dietrich's pain lessen when he stopped mowing the yard? 3. Why was Mr. Dietrich's left foot cyanotic and painful to touch? 4. What risk factors does Mr. Dietrich have for arterial disease? 5. What do you expect the results were for Mr. Dietrich's ABI assessment? 6. Why was magnetic resonance angiography ordered? Exercise 3 Draw three lines under each letter that should be capitalized. Add the correct end mark to each sentence. Delete each unnecessary comma, semicolon, or colon.Tabithas grocery list included, bread, milk, eggs, and apples An open cylindrical tank with radius of 0.30 m and a height of 1.2 m is filled with water. Determine the spilled volume of the water if it was rotated by 90 rpm.Choices:a) 0.095 cu.m.b) 0.085 cu.m.c) 0.047 cu.m.d) 0.058 cu.m. Consider the RGV Transportation Project, which requires an investment of $1 billion initiatly, with subsequent cash flows of $200 million, 5300 manicn $400 million, and $500 million. What is the payback period? 3 years 3.2 years 3.75 years 4 years What is the profitability index of the RGV Transportation Project? 1.07 0.74 1.25 2.7 What is the IRR of the RGV Transportation Project? 9.87% 10.69% 11.47% 12.83% nt- Maths ACSF Level 3Your mum has saved $12,000 and has agreed to give you a share.Would you rather have1/5 or 1/10 10.Explain why discounting must be used in multi-yearenvironmental programs or projects.