1) Write two different expressions for the total number of small squares in design of figure shown below. Each expression should use either multiplication or addition, or both.

Answers

Answer 1

The figure given below represents a design made up of squares, as shown below. There are a total of 5 rows and 8 columns in the design, so we can add up the number of squares in each of the 5 rows to find the total number of squares in the design.

First expression: [tex]5(8)=40[/tex]To find the total number of squares, we can multiply the number of rows (5) by the number of columns (8). This gives us:[tex]5(8)=40[/tex] Therefore, the total number of squares in the design is 40.2. Second expression: [tex](1+2+3+4+5)+(1+2+3+4+5+6+7+8)=90[/tex]

Alternatively, we can add up the number of squares in each row separately. The first row has 5 squares, the second row has 5 squares, the third row has 5 squares, the fourth row has 5 squares, and the fifth row has 5 squares. This gives us a total of:[tex]5+5+5+5+5=25[/tex]We can also add up the number of squares in each column. The first column has 5 squares, the second column has 6 squares, the third column has 7 squares, the fourth column has 8 squares, the fifth column has 7 squares, the sixth column has 6 squares, the seventh column has 5 squares, and the eighth column has 4 squares. This gives us a total of:[tex]5+6+7+8+7+6+5+4=48[/tex] Therefore, the total number of squares in the design is:[tex]25+48=73[/tex]

To know more about squares visit:

https://brainly.com/question/14198272

#SPJ11


Related Questions

A single dose of a drug was given to a 65 kg person at a dose level of 10 mg/kg (500 mg). Blood samples were collected periodically and the unchanged drug (parent drug) content in the samples was estimated. Does it take different amount of time to reach this steady state if the therapeutic steady-state dosage is different?

Answers

Individual variations in pharmacokinetics and patient factors can also impact the time to reach steady state. So, it is always recommended to follow the specific dosing instructions provided for medication.

Yes, the time required to reach steady state can vary depending on the therapeutic steady-state dosage of the drug. Steady state refers to a condition where the rate of drug administration equals the rate of drug elimination, resulting in a relatively constant concentration of the drug in the body over time.

The time it takes to reach steady state depends on several factors, including the drug's pharmacokinetic properties, such as its half-life and clearance rate, as well as the dosage regimen. The half-life is the time it takes for the concentration of the drug in the body to decrease by half, while clearance refers to the rate at which the drug is eliminated from the body.

When a drug is administered at a higher therapeutic steady-state dosage, it typically results in higher drug concentrations in the body. As a result, it may take longer to reach steady state compared to a lower therapeutic dosage. This is because higher drug concentrations take more time to accumulate and reach a steady level that matches the rate of elimination.

In the given scenario, a single dose of 500 mg was administered to a 65 kg person at a dose level of 10 mg/kg. To determine the time required to reach steady state, additional information is needed, such as the drug's half-life and clearance rate, as well as the dosage regimen for the therapeutic steady-state dosage. These factors would help estimate the time needed for the drug to reach steady state at different dosage levels.

Learn more about half-life here:

https://brainly.com/question/31666695

#SPJ11

If 9 people will attend a lunch and 3 cans of juice should be
provided per person, how many total cans of juice are needed?
3 cans
27 cans
12 cans
18 cans

Answers

The total of 27 cans of juice are needed for the lunch.

We multiply the total number of lunch attendees by the average number of juice cans per person to determine the total number of cans of juice required.

How many people attended the lunch? 9 juice cans per person: 3

Number of individuals * total number of juice cans *Cans per individual

Juice cans required in total: 9 * 3

27 total cans of juice are required.

For the lunch, a total of 27 cans of juice are required.

Learn more about algebra and similar problems here:

https://brainly.com/question/16989990

#SPJ11

Consider the integer numbers in set U={0,1,2,3,4,5,6,7,8,9,10}. Let : P={0,2,4,6,8,10}
Q={x∣0≤x≤6}
R={x∣3 ​
i) Find: (P∪Q)−(Q∩R) ii) List the ordered pairs in the relation S on the set (Q∩R), where S={(a,b), if a+b>=11}

Answers

i) (P∪Q)−(Q∩R)={4, 6, 8, 10, 5}

ii) The ordered pairs in the relation S on the set (Q∩R) are {(2,3), (3,2), (3,3)}.

i) We need to find (P∪Q)−(Q∩R).

P∪Q is the union of sets P and Q, which contains all the elements in P and Q. So,

P∪Q={0, 2, 4, 6, 8, 10, 1, 3, 5, 6}

Q∩R is the intersection of sets Q and R, which contains only the elements that are in both Q and R. So,

Q∩R={0, 1, 2, 3}

Therefore,

(P∪Q)−(Q∩R)={4, 6, 8, 10, 5}

ii) We need to list the ordered pairs in the relation S on the set (Q∩R), where S={(a,b), if a+b[tex]\geq[/tex]11}.

(Q∩R)={0, 1, 2, 3}

To find the ordered pairs that satisfy the relation S, we need to find all pairs (a,b) such that a+b[tex]\geq[/tex]11.

The pairs are:

(2, 3)

(3, 2)

(3, 3)

So, the ordered pairs in the relation S on the set (Q∩R) are {(2,3), (3,2), (3,3)}.

learn more about relation and set here:

https://brainly.com/question/13088885

#SPJ11

HW Score: 12.5 O Points: 0 of 1 The half-life of a certain tranquilizer in the bloodstream is 20 hours How long will it take for the drug to decay to 84% of the original dosage? Use the exponential decay model, AA to solve +4 hours (Round to one decimal place as needed)

Answers

The tranquilizer will take approximately 22.3 hours to decay to 84% of the original dosage.

The decay of the tranquilizer can be modeled using the exponential decay formula A = A₀ * (1/2)^(t/t₁/₂), where A is the final amount, A₀ is the initial amount, t is the elapsed time, and t₁/₂ is the half-life of the substance. In this case, the initial amount is 100% of the original dosage, and we want to find the time it takes for the amount to decay to 84%.

To solve for the time, we can set up the equation 84 = 100 * (1/2)^(t/20). We rearrange the equation to isolate the exponent and solve for t by taking the logarithm of both sides. Taking the logarithm base 2, we have log₂(84/100) = (t/20) * log₂(1/2). Simplifying further, we find t/20 = log₂(84/100) / log₂(1/2).

Using the properties of logarithms, we can rewrite the equation as t/20 = log₂(84/100) / (-1). Multiplying both sides by 20, we obtain t ≈ -20 * log₂(84/100). Evaluating the expression, we find t ≈ -20 * (-0.222) ≈ 4.44 hours.

Rounding to one decimal place, the tranquilizer will take approximately 4.4 hours or 4 hours and 24 minutes to decay to 84% of the original dosage. Therefore, it will take about 22.3 hours (20 + 4.4) for the drug to decay to 84% of the original dosage.

Learn more about equation here:

https://brainly.com/question/30098550

#SPJ11

For all integers a, b and c if alb and a (b² - c), then a c.

Answers

The given proposition is:

If alb and a(b² - c), then ac. We are to prove this statement for all integers a, b, and c.

Now, let’s consider the given statements:

alb —— (1)

a(b² - c) —— (2)

We have to prove ac.

We will start by using statement (1) and will manipulate it to form the required result.

To manipulate equation (1), we will divide it by b, which is possible since b ≠ 0, we will get a = alb / b.

Also, b² - c ≠ 0, otherwise,

a(b² - c) = 0, which contradicts statement (2).

Thus, a = alb / b implies a = al.

Therefore, we have a = al —— (3).

Next, we will manipulate equation (2) by dividing both sides by b² - c, which gives us

a = a(b² - c) / (b² - c).

Now, using equation (3) in equation (2), we have

al = a(b² - c) / (b² - c), which simplifies to

l(b² - c) = b², which further simplifies to

lb² - lc = b², which gives us

lb² = b² + lc.

Thus,

c = (lb² - b²) / l = b²(l - 1) / l.

Using this value of c in statement (1), we get

ac = alb(l - 1) / l

= bl(l - 1).

Hence, we have proved that if alb and a(b² - c), then ac.

Therefore, the given proposition is true for all integers a, b, and c.

To know more about proposition visit:

https://brainly.com/question/30895311

#SPJ11

2. Find the domain of the function f(x) = a. (-[infinity]0,00) b. x 1 c. x = -2 d. x = 2,-1 e. x = -2,1 1 x²+x-2

Answers

The correct answer is a. (-∞, +∞), which represents all real numbers.

The collection of values for x that define the function, f(x) = x2 + x - 2, must be identified in order to identify its domain.

Polynomials are defined for all real numbers, and the function that is being presented is one of them. As a result, the set of all real numbers, indicated by (-, +), is the domain of the function f(x) = x2 + x - 2.

As a result, (-, +), which represents all real numbers, is the right response.

Learn more about  function here:

https://brainly.com/question/24274034

#SPJ11

18. Vivian and Bobby are 250 m apart and are facing each other. Each one is looking up at a hot air balloon. The angle of elevation from Vivian to the balloon is 75∘ and the angle of elevation from Bobby to the balloon is 50∘. Determine the height of the balloon, to one decimal place.

Answers

Therefore, the height of the balloon is approximately 687.7 meters.

To determine the height of the balloon, we can use trigonometry and the concept of similar triangles.

Let's denote the height of the balloon as 'h'.

From Vivian's perspective, we can consider a right triangle formed by the balloon, Vivian's position, and the line connecting them. The angle of elevation of 75° corresponds to the angle between the line connecting Vivian and the balloon and the horizontal ground. In this triangle, the side opposite the angle of elevation is the height of the balloon, 'h', and the adjacent side is the distance between Vivian and the balloon, which is 250 m.

Using the tangent function, we can write the equation:

tan(75°) = h / 250

Similarly, from Bobby's perspective, we can consider a right triangle formed by the balloon, Bobby's position, and the line connecting them. The angle of elevation of 50° corresponds to the angle between the line connecting Bobby and the balloon and the horizontal ground. In this triangle, the side opposite the angle of elevation is also the height of the balloon, 'h', but the adjacent side is the distance between Bobby and the balloon, which is also 250 m.

Using the tangent function again, we can write the equation:

tan(50°) = h / 250

Now we have a system of two equations with two unknowns (h and the distance between Vivian and Bobby). By solving this system of equations, we can find the height of the balloon.

Solving the equations:

tan(75°) = h / 250

tan(50°) = h / 250

We can rearrange the equations to solve for 'h':

h = 250 * tan(75°)

h = 250 * tan(50°)

Evaluating these equations, we find:

h ≈ 687.7 m (rounded to one decimal place)

To know more about height,

https://brainly.com/question/23857482

#SPJ11

Suppose that an arithmetic sequence has \( a_{12}=60 \) and \( a_{20}=84 \). Find \( a_{1} \).
Find \( a_{1} \) if \( S_{14}=168 \) and \( a_{14}=25 \)

Answers

Suppose that an arithmetic sequence has [tex]\( a_{12}=60 \) and \( a_{20}=84 \)[/tex] Find [tex]\( a_{1} \)[/tex] Also, find [tex]\( a_{1} \) if \( S_{14}=168 \) and \( a_{14}=25 \).[/tex]

Given, an arithmetic sequence has [tex]\( a_{12}=60 \) and \( a_{20}=84 \)[/tex] .We need to find [tex]\( a_{1} \)[/tex]

Formula of arithmetic sequence is: [tex]$$a_n=a_1+(n-1)d$$$$a_{20}=a_1+(20-1)d$$$$84=a_1+19d$$ $$a_{12}=a_1+(12-1)d$$$$60=a_1+11d$$[/tex]

Subtracting above two equations, we get

[tex]$$24=8d$$ $$d=3$$[/tex]

Put this value of d in equation [tex]\(84=a_1+19d\)[/tex], we get

[tex]$$84=a_1+19×3$$ $$84=a_1+57$$ $$a_1=27$$[/tex]

Therefore, [tex]\( a_{1}=27 \)[/tex]

Given, [tex]\(S_{14}=168\) and \(a_{14}=25\).[/tex] We need to find[tex]\(a_{1}\)[/tex].We know that,

[tex]$$S_n=\frac{n}{2}(a_1+a_n)$$ $$S_{14}=\frac{14}{2}(a_1+a_{14})$$ $$168=7(a_1+25)$$ $$24= a_1+25$$ $$a_1=-1$$[/tex]

Therefore, [tex]\( a_{1}=-1 \).[/tex]

Therefore, the first term of the arithmetic sequence is -1.

The first term of the arithmetic sequence is 27 and -1 for the two problems given respectively.

To know more about arithmetic sequence visit:

brainly.com/question/28882428

#SPJ11

Question 1 Calculator For the function f(x) = 5x² + 3x, evaluate and simplify. f(x+h)-f(x) h Check Answer ▼ || < >

Answers

The solution to the given problem is `f(x + h) - f(x) / h = 10x + 5h + 3` and the slope of the given function `f(x) = 5x² + 3x` is `10x + 5h + 3`.

To evaluate and simplify the function `f(x) = 5x² + 3x`, we need to substitute the given equation in the formula for `f(x + h)` and `f(x)` and then simplify. Thus, the given expression can be expressed as

`f(x + h) = 5(x + h)² + 3(x + h)` and

`f(x) = 5x² + 3x`

To solve this expression, we need to substitute the above values in the above mentioned formula.

i.e., `

= f(x + h) - f(x) / h

= [5(x + h)² + 3(x + h)] - [5x² + 3x] / h`.

After substituting the above values in the formula, we get:

`f(x + h) - f(x) / h = [5x² + 10xh + 5h² + 3x + 3h] - [5x² + 3x] / h`

Therefore, by simplifying the above expression, we get:

`= f(x + h) - f(x) / h

= (10xh + 5h² + 3h) / h

= 10x + 5h + 3`.

Thus, the final value of the given expression is `10x + 5h + 3` and the slope of the function `f(x) = 5x² + 3x`.

Therefore, the solution to the given problem is `f(x + h) - f(x) / h = 10x + 5h + 3` and the slope of the given function `f(x) = 5x² + 3x` is `10x + 5h + 3`.

To know more about the slope, visit:

brainly.com/question/3605446

#SPJ11

Hi, can someone please explain to me in further detail or
providing a working example of how to setup a bicubic polynomial
using this formula? thanks
\( =\left[C_{00} u^{0} v^{0}+C_{01} u^{0} v^{\prime}+C_{02} u^{0} v^{2}+C_{03} u^{0} v^{3}\right]+ \) \( \left[c_{10} u^{\prime} v^{0}+c_{11} u^{\prime} v^{\prime}+c_{12} u^{\prime} v^{2}+c_{13} u^{\p

Answers

The bicubic polynomial formula you provided is used for interpolating values in a two-dimensional grid. It calculates the value at a specific point based on the surrounding grid points and their coefficients.

The bicubic polynomial formula consists of a series of terms multiplied by coefficients. Each term represents a combination of powers of u and v, where u and v are the horizontal and vertical distances from the desired point to the grid points, respectively. The coefficients (C and c) represent the values of the grid points.

To set up the bicubic polynomial, you need to know the values of the grid points and their corresponding coefficients. Let's take an example where you have a 4x4 grid and know the coefficients for each grid point. You can then plug in these values into the formula and calculate the value at a specific point (u, v) within the grid.

For instance, let's say you want to calculate the value at point (u, v) = (0.5, 0.5). You would substitute these values into the formula and perform the calculations using the known coefficients. The resulting value would be the interpolated value at that point.

It's worth noting that the coefficients in the formula can be determined through various methods, such as curve fitting or solving a system of equations, depending on the specific problem you're trying to solve.

In summary, the bicubic polynomial formula allows you to interpolate values in a two-dimensional grid based on the surrounding grid points and their coefficients. By setting up the formula with the known coefficients, you can calculate the value at any desired point within the grid.

Learn more about polynomial here:
https://brainly.com/question/11536910

#SPJ11

Using flat rate depreciation, the value of another machine after 5 years will be \( \$ 2695 \) and after a further 7 years it will become worthless. The value \( T_{n} \) of this machine after \( n \)

Answers

Answer: The value Tₙ of the machine after n years using flat rate depreciation is Tₙ = $4620 - $385n.

Step-by-step explanation:

To determine the value of the machine after a given number of years using flat rate depreciation, we need to find the common difference in value per year.

Let's denote the initial value of the machine as V₀ and the common difference in value per year as D. We are given the following information:

After 5 years, the value of the machine is $2695.

After a further 7 years, the value becomes $0.

Using this information, we can set up two equations:

V₀ - 5D = $2695    ... (Equation 1)

V₀ - 12D = $0      ... (Equation 2)

To solve this system of equations, we can subtract Equation 2 from Equation 1:

(V₀ - 5D) - (V₀ - 12D) = $2695 - $0

Simplifying, we get:

7D = $2695

Dividing both sides by 7, we find:

D = $2695 / 7 = $385

Now, we can substitute this value of D back into Equation 1 to find V₀:

V₀ - 5($385) = $2695

V₀ - $1925 = $2695

Adding $1925 to both sides, we get:

V₀ = $2695 + $1925 = $4620

Therefore, the initial value of the machine is $4620, and the common difference in value per year is $385.

To find the value Tₙ of the machine after n years, we can use the formula:

Tₙ = V₀ - nD

Substituting the values we found, we have:

Tₙ = $4620 - n($385)

So, To determine the value of the machine after a given number of years using flat rate depreciation, we need to find the common difference in value per year.

Let's denote the initial value of the machine as V₀ and the common difference in value per year as D. We are given the following information:

After 5 years, the value of the machine is $2695.

After a further 7 years, the value becomes $0.

Using this information, we can set up two equations:

V₀ - 5D = $2695    ... (Equation 1)

V₀ - 12D = $0      ... (Equation 2)

To solve this system of equations, we can subtract Equation 2 from Equation 1:

(V₀ - 5D) - (V₀ - 12D) = $2695 - $0

Simplifying, we get:

7D = $2695

Dividing both sides by 7, we find:

D = $2695 / 7 = $385

Now, we can substitute this value of D back into Equation 1 to find V₀:

V₀ - 5($385) = $2695

V₀ - $1925 = $2695

Adding $1925 to both sides, we get:

V₀ = $2695 + $1925 = $4620

Therefore, the initial value of the machine is $4620, and the common difference in value per year is $385.

To find the value Tₙ of the machine after n years, we can use the formula:

Tₙ = V₀ - nD

Substituting the values we found, we have:

Tₙ = $4620 - n($385)

So, the value Tₙ of the machine after n years using flat rate depreciation is Tₙ = $4620 - $385n.

Learn more about depreciation:https://brainly.com/question/1203926

#SPJ11

The doubling period of a bacterial population is 20 minutes. At time \( t=80 \) minutes, the bacterial population was 60000 . What was the initial population at time \( t=0 \) ? Find the size of the b

Answers

The size of the bacterial population at time t=100 is 120,000.Since the doubling period of the bacterial population is 20 minutes, this means that every 20 minutes, the population doubles in size. Let's let N be the initial population at time t=0.

After 20 minutes (i.e., at time t=20), the population would have doubled once and become 2N.

After another 20 minutes (i.e., at time t=40), the population would have doubled again and become 4N.

After another 20 minutes (i.e., at time t=60), the population would have doubled again and become 8N.

After another 20 minutes (i.e., at time t=80), the population would have doubled again and become 16N.

We are given that at time t=80, the population was 60,000. Therefore, we can write:

16N = 60,000

Solving for N, we get:

N = 60,000 / 16 = 3,750

So the initial population at time t=0 was 3,750.

Now let's find the size of the bacterial population at time t=100 (i.e., 20 minutes after t=80). Since the population doubles every 20 minutes, the population at time t=100 should be double the population at time t=80, which was 60,000. Therefore, the population at time t=100 should be:

2 * 60,000 = 120,000

So the size of the bacterial population at time t=100 is 120,000.

Learn more about population here:

https://brainly.com/question/31598322

#SPJ11

as
soon as possible please
Every homogeneous linear ordinary differential equation is solvable. True False

Answers

False. Not every homogeneous linear ordinary differential equation is solvable in terms of elementary functions.

These equations may involve special functions, transcendental functions, or have no known analytical solution at all. For example, Bessel's equation, Legendre's equation, or Airy's equation are examples of homogeneous linear ODEs that require specialized functions to express their solutions.

In cases where a closed-form solution is not available, numerical methods such as Euler's method, Runge-Kutta methods, or finite difference methods can be employed to approximate the solution. These numerical techniques provide a way to obtain numerical values of the solution at discrete points.

Therefore, while a significant number of homogeneous linear ODEs can be solved analytically, it is incorrect to claim that every homogeneous linear ordinary differential equation is solvable in terms of elementary functions.

Learn more about differential equation here:

https://brainly.com/question/32645495

#SPJ11

1) David makes clay vases in the shape of right triangular prisms, as shown, then paints them bright colours. A can of spray paint costs $5.49 and covers 2 m 2
. How much will it cost David to paint the outer surface of 15 vases, including the bottom, with three coats of paint? Assume the vases do not have lids. [6]

Answers

The cost for David to paint the outer surface of 15 vases, including the bottom, with three coats of paint is $4,005.30First, we need to calculate the surface area of one vase:

Cost of painting 15 vases = 15 × $2.03 = $30.45But this is only for one coat. We need to apply three coats, so the cost of painting the outer surface of 15 vases, including the bottom, with three coats of paint will be:Cost of painting 15 vases with 3 coats of paint = 3 × $30.45 = $91.35The cost of painting the outer surface of 15 vases, including the bottom, with three coats of paint will be $91.35.Hence, the : The cost for David to paint the outer surface of 15 vases, including the bottom, with three coats of paint is $4,005.30.

Height of prism = 12 cmLength of base = 24 cm

Width of base = 24 cmSlant

height = hypotenuse of the base triangle = `

sqrt(24^2 + 12^2) =

sqrt(720)` ≈ 26.83 cmSurface area of one vase = `2 × (1/2 × 24 × 12 + 24 × 26.83) = 2 × 696.96` ≈ 1393.92 cm²

Paint will be applied on both the sides of the vase, so the outer surface area of one vase = 2 × 1393.92 = 2787.84 cm

We know that a can of spray paint covers 2 m² and costs $5.49. Converting cm² to m²:

1 cm² = `10^-4 m²`Therefore, 2787.84 cm² = `2787.84 × 10^-4 = 0.278784 m²

`David wants to apply three coats of paint on each vase, so the cost of painting one vase will be:

Cost of painting one vase = 3 × (0.278784 ÷ 2) × $5.49 = $2.03

To know more about calculate visit:

https://brainly.com/question/30151794

#SPJ11

The waving distance that is saved by auting across the lot is (Round the final answer to the nesrest integor as needed. Round an inermedath values to the nearest thousandth as needed.)

Answers

It's hard to answer your question without further context or information about the terms you want me to include in my answer.

Please provide more details and clarity on what you are asking so I can assist you better.

Thank you for clarifying that you would like intermediate values to be rounded to the nearest thousandth.

When performing calculations, I will round the intermediate values to three decimal places.

If rounding is necessary for the final answer, I will round it to the nearest whole number.

Please provide the specific problem or equation you would like me to work on, and I will apply the requested rounding accordingly.

To know more about the word equation visits :

https://brainly.com/question/29657983

#SPJ11

For a given function \( f(x) \), the divided-differences table is given by: An approximation of \( f^{\prime}(0) \) is: \( 21 / 2 \) \( 11 / 2 \) \( 1 / 2 \) \( 7 / 2 \)

Answers

The approximation of f'(0) using the given divided-differences table is 10.

To approximate f'(0) using the divided-differences table, we can look at the first column of the table, which represents the values of the function evaluated at different points. The divided-differences table is typically used for approximating derivatives by finite differences.

The first column values in the divided-differences table you provided are [tex]\( \frac{21}{2} \), \( \frac{11}{2} \), \( \frac{1}{2} \), and \( \frac{7}{2} \).[/tex]

To approximate f'(0) using the divided-differences table, we can use the formula for the forward difference approximation:

[tex]\[ f'(0) \approx \frac{\Delta f_0}{h}, \][/tex]

where [tex]\( \Delta f_0 \)[/tex] represents the difference between the first two values in the first column of the divided-differences table, and ( h ) is the difference between the corresponding ( x ) values.

In this case, the first two values in the first column are[tex]\( \frac{21}{2} \) and \( \frac{11}{2} \),[/tex] and the corresponding ( x ) values are[tex]\( x_0 = 0 \) and \( x_1 = h \).[/tex] The difference between these values is [tex]\( \Delta f_0 = \frac{21}{2} - \frac{11}{2} = 5 \).[/tex]

The difference between the corresponding ( x ) values can be determined from the given divided-differences table. Looking at the values in the second column, we can see that the difference is [tex]\( h = x_1 - x_0 = \frac{1}{2} \).[/tex]

Substituting these values into the formula, we get:

[tex]\[ f'(0) \approx \frac{\Delta f_0}{h} = \frac{5}{\frac{1}{2}} = 10. \][/tex]

Therefore, the approximation of f'(0) using the given divided-differences table is 10.

Learn more about divided-differences table here:

https://brainly.com/question/13501235

#SPJ11

Solve the system of equation by the method of your choice if the the system has a unique solution, type in that answer as an ordered triple. If the system is inconsistebt or dependent type in "no solutio"
-4x-6z=-12
-6x-4y-2z = 6
−x + 2y + z = 9

Answers

The solution is given as (-4 + z, (-46z + 240)/56, z), where z can take any real value.

To solve the system of equations:

-4x - 6z = -12 ...(1)

-6x - 4y - 2z = 6 ...(2)

-x + 2y + z = 9 ...(3)

We can solve this system by using the method of Gaussian elimination.

First, let's multiply equation (1) by -3 and equation (2) by -2 to create opposite coefficients for x in equations (1) and (2):

12x + 18z = 36 ...(4) [Multiplying equation (1) by -3]

12x + 8y + 4z = -12 ...(5) [Multiplying equation (2) by -2]

-x + 2y + z = 9 ...(3)

Now, let's add equations (4) and (5) to eliminate x:

(12x + 18z) + (12x + 8y + 4z) = 36 + (-12)

24x + 8y + 22z = 24 ...(6)

Next, let's multiply equation (3) by 24 to create opposite coefficients for x in equations (3) and (6):

-24x + 48y + 24z = 216 ...(7) [Multiplying equation (3) by 24]

24x + 8y + 22z = 24 ...(6)

Now, let's add equations (7) and (6) to eliminate x:

(-24x + 48y + 24z) + (24x + 8y + 22z) = 216 + 24

56y + 46z = 240 ...(8)

We are left with two equations:

56y + 46z = 240 ...(8)

-x + 2y + z = 9 ...(3)

We can solve this system of equations using various methods, such as substitution or elimination. Here, we'll use elimination to eliminate y:

Multiplying equation (3) by 56:

-56x + 112y + 56z = 504 ...(9) [Multiplying equation (3) by 56]

56y + 46z = 240 ...(8)

Now, let's subtract equation (8) from equation (9) to eliminate y:

(-56x + 112y + 56z) - (56y + 46z) = 504 - 240

-56x + 112y - 56y + 56z - 46z = 264

-56x + 56z = 264

Dividing both sides by -56:

x - z = -4 ...(10)

Now, we have two equations:

x - z = -4 ...(10)

56y + 46z = 240 ...(8)

We can solve this system by substitution or another method of choice. Let's solve it by substitution:

From equation (10), we have:

x = -4 + z

Substituting this into equation (8):

56y + 46z = 240

Simplifying:

56y = -46z + 240

y = (-46z + 240)/56

Now, we can express the solution as an ordered triple (x, y, z):

x = -4 + z

y = (-46z + 240)/56

z = z

Therefore, the solution is given as (-4 + z, (-46z + 240)/56, z), where z can take any real value

Learn more about the System of equations:

brainly.com/question/13729904

#SPJ11

Solve 4x 2
+24x−5=0 by completing the square. Leave your final answers as exact values in simplified form.

Answers

To solve the quadratic equation 4x^2 + 24x - 5 = 0 by completing the square, we follow a series of steps. First, we isolate the quadratic terms and constant term on one side of the equation.

Then, we divide the entire equation by the coefficient of x^2 to make the leading coefficient equal to 1. Next, we complete the square by adding a constant term to both sides of the equation. Finally, we simplify the equation, factor the perfect square trinomial, and solve for x.

Given the quadratic equation 4x^2 + 24x - 5 = 0, we start by moving the constant term to the right side of the equation:

4x^2 + 24x = 5

Next, we divide the entire equation by the coefficient of x^2, which is 4:

x^2 + 6x = 5/4

To complete the square, we add the square of half the coefficient of x to both sides of the equation. In this case, half of 6 is 3, and its square is 9:

x^2 + 6x + 9 = 5/4 + 9

Simplifying the equation, we have:

(x + 3)^2 = 5/4 + 36/4

(x + 3)^2 = 41/4

Taking the square root of both sides, we obtain:

x + 3 = ± √(41/4)

Solving for x, we have two possible solutions:

x = -3 + √(41/4)

x = -3 - √(41/4)

These are the exact values in simplified form for the solutions to the quadratic equation.

To learn more about quadratic equation; -brainly.com/question/29269455

#SPJ11

2. Using third order polynomial Interpolation method to plan the following path: A linear axis takes 3 seconds to move from Xo= 15 mm to X-95 mm. (15 Marks)

Answers

The third-order polynomial is: f(x) = 15 - 0.00125(x-15)² + 1.3889 x 10^-5(x-15)³

The third-order polynomial interpolation method can be used to plan the path given that the linear axis takes 3 seconds to move from Xo=15 mm to X-95 mm.

The following steps can be taken to plan the path:

Step 1:  Write down the data in a table as follows:

X (mm) t (s)15 0.095 1.030 2.065 3.0

Step 2: Calculate the coefficients for the third-order polynomial using the following equation:

f(x) = a0 + a1x + a2x² + a3x³

We can use the following equations to calculate the coefficients:

a0 = f(Xo) = 15

a1 = f'(Xo) = 0

a2 = (3(X-Xo)² - 2(X-Xo)³)/(t²)

a3 = (2(X-Xo)³ - 3(X-Xo)²t)/(t³)

We need to calculate the coefficients for X= -95 mm. So, Xo= 15mm and t= 3s.

Substituting the values, we get:

a0 = 15

a1 = 0

a2 = -0.00125

a3 = 1.3889 x 10^-5

Thus, the third-order polynomial is:f(x) = 15 - 0.00125(x-15)² + 1.3889 x 10^-5(x-15)³

Learn more about interpolation method visit:

brainly.com/question/31984229

#SPJ11

The function f(x) = (x - tan x)/ {x^{3}} has a hole at the point (0, b). Find b.

Answers

To find the value of b for the function f(x) = (x - tan(x))/x^3 at the point (0, b), we need to evaluate the limit of the function as x approaches 0. By applying the limit definition, we can determine the value of b.

To find the value of b, we evaluate the limit of the function f(x) as x approaches 0. Taking the limit involves analyzing the behavior of the function as x gets arbitrarily close to 0.

Using the limit definition, we can rewrite the function as f(x) = (x/x^3) - (tan(x)/x^3). As x approaches 0, the first term simplifies to 1/x^2, while the second term approaches 0 because tan(x) approaches 0 as x approaches 0. Therefore, the limit of the function f(x) as x approaches 0 is 1/x^2.

Since we are interested in finding the value of b at the point (0, b), we evaluate the limit of f(x) as x approaches 0. The limit of 1/x^2 as x approaches 0 is ∞. Therefore, the value of b at the point (0, b) is ∞, indicating that there is a hole at the point (0, ∞) on the graph of the function.

Learn more about function here:

https://brainly.com/question/30721594

#SPJ11

We wish to determine the flow past a cylinder of radius 50 mm where the velocity of the uniform flow far away from the cylinder is 2.0 m/s. As a first approximation we consider the flow to be inviscid, irrotational and incompressible. What would be the required strength of the doublet? Give your answer to two decimal places. Note that the stream function for a uniform flow in the horizontal direction is given by w=Uy and for a doublet is given by K sin(e) W=- 2л r Here k denotes the strength of the doublet and the other variables carry the usual meaning.

Answers

The required strength of the doublet for the flow past a cylinder can be determined using the given information. In this case, we assume the flow to be inviscid, irrotational, and incompressible. The stream function for a uniform flow in the horizontal direction is given by ψ = Uy, where U represents the velocity of the uniform flow and y is the vertical coordinate.

To determine the strength of the doublet, we can use the stream function for a doublet, which is given by ψ = -2πKr sin(θ), where K represents the strength of the doublet and θ is the polar angle. The negative sign indicates that the streamlines are clockwise around the doublet.

The flow past a cylinder can be represented by the combination of a uniform flow and a doublet. The doublet is introduced to simulate the circulation around the cylinder. By matching the flow conditions at the surface of the cylinder, we can determine the strength of the doublet required.

To calculate the strength of the doublet, we equate the stream function of the uniform flow at the surface of the cylinder (ψ_uniform) to the sum of the stream function of the doublet and the stream function of the uniform flow (ψ_doublet + ψ_uniform). By solving this equation, we can find the value of K, the strength of the doublet.

In summary, to determine the required strength of the doublet for the flow past a cylinder, we need to solve the equation that equates the stream function of the uniform flow to the sum of the stream function of the doublet and the stream function of the uniform flow. Solving this equation will provide us with the value of the strength of the doublet, which represents the circulation around the cylinder.

Learn more about stream function here:

https://brainly.com/question/31379787

#SPJ11

A person sitting on a Ferris wheel rises and falls as the wheel turns. Suppose that the person's height above ground is described by the following function. h(t)=18.3+16.6cos1.6r In this equation, h(t) is the height above ground in meters, and f is the time in minutes. Find the following. If necessary, round to the nearest hundredth. An object moves in simple harmonic motion with amplitude 8 m and period 4 minutes. At time t = 0 minutes, its displacement d from rest is 0 m, and initially it moves in a positive direction. Give the equation modeling the displacement d as a function of time f.

Answers

The equation modeling the displacement d as a function of time f is d(t) = 8 sin(π/2 - π/2t).

motion:

Amplitude = 8m

Period = 4 minutes

Displacement from rest = 0m

Initially moves in a positive direction

We need to find the equation that models the displacement d of the object as a function of time f.Therefore, the equation that models the displacement d of the object as a function of time f is given by the formula:

d(t) = 8 sin(π/2 - π/2t)

To verify that the displacement is 0 at time t = 0, we substitute t = 0 into the equation:

d(0) = 8 sin(π/2 - π/2 × 0)= 8 sin(π/2)= 8 × 1= 8 m

Therefore, the displacement of the object from its rest position is zero at time t = 0, as required.

:Therefore, the equation modeling the displacement d as a function of time f is d(t) = 8 sin(π/2 - π/2t).

To know more about displacement visit:

brainly.com/question/11934397

#SPJ11

Let f : Z × Z → Z × Z be a function defined by g(m, n) = 2 − n, 3 + m). a. Carefully prove that f is injective (one-to-one). Important! In each step of your proof make sure it is clear whether what is written is something you are assuming, something you are about to prove, or something that follows from a previous step. If any variables appear in your proof, make sure you clearly write what they represent. b. Carefully prove that f is surjective (onto). Justify your answer

Answers

We have shown that the function f : Z × Z → Z × Z defined by f(m, n) = (2 − n, 3 + m) is both injective (one-to-one) and surjective (onto), satisfying the conditions of a bijective function.

a. To prove that the function f : Z × Z → Z × Z defined by f(m, n) = (2 − n, 3 + m) is injective (one-to-one), we need to show that for any two distinct inputs (m1, n1) and (m2, n2) in Z × Z, their corresponding outputs under f are also distinct.

Let (m1, n1) and (m2, n2) be two arbitrary distinct inputs in Z × Z. We assume that f(m1, n1) = f(m2, n2) and aim to prove that (m1, n1) = (m2, n2).

By the definition of f, we have (2 − n1, 3 + m1) = (2 − n2, 3 + m2). From this, we can deduce two separate equations:

1. 2 − n1 = 2 − n2 (equation 1)

2. 3 + m1 = 3 + m2 (equation 2)

From equation 1, we can see that n1 = n2, and from equation 2, we can observe that m1 = m2. Therefore, we conclude that (m1, n1) = (m2, n2), which confirms the injectivity of the function.

b. To prove that the function f : Z × Z → Z × Z defined by f(m, n) = (2 − n, 3 + m) is surjective (onto), we need to show that for every element (a, b) in the codomain Z × Z, there exists an element (m, n) in the domain Z × Z such that f(m, n) = (a, b).

Let (a, b) be an arbitrary element in Z × Z. We need to find values for m and n such that f(m, n) = (2 − n, 3 + m) = (a, b).

From the first component of f(m, n), we have 2 − n = a, which implies n = 2 − a.

From the second component of f(m, n), we have 3 + m = b, which implies m = b − 3.

Therefore, by setting m = b − 3 and n = 2 − a, we have f(m, n) = (2 − n, 3 + m) = (2 − (2 − a), 3 + (b − 3)) = (a, b).

Hence, for every element (a, b) in the codomain Z × Z, we can find an element (m, n) in the domain Z × Z such that f(m, n) = (a, b), demonstrating the surjectivity of the function.

To know more about Function, visit

https://brainly.com/question/11624077

#SPJ11

Find the inverse function of f(x)=15+³√x f−1(x)=

Answers

Answer:

f−1(x)    = (x - 15)³

Step-by-step explanation:

f(x)=15+³√x
And to inverse the function we need to switch the x for f−1(x), and then solve for f−1(x):
x         =15+³√(f−1(x))
x- 15   =15+³√(f−1(x)) -15

x - 15  = ³√(f−1(x))
(x-15)³ = ( ³√(f−1(x)) )³  

(x - 15)³=  f−1(x)

f−1(x)    = (x - 15)³

A.
Translate each sentence into an algebraic equation.
1.A number increased by four is twelve.
2.A number decreased by nine is equal to eleven.
3. Five times a number is fifty.
4. The quotient of a number and seven is eight.
5. The sum of a number and ten is twenty.
6. The difference between six and a number is two.
7. Three times a number increased by six is fifteen.
8. Eight less than twice a number is sixteen.
9. Thirty is equal to twice a number decreased by four.
10. If four times a number is added to nine, the result is forty-nine​

Answers

To translate each sentence into an algebraic equations are:

1.  x + 4 = 12, 2. x - 9 = 11. 3.  5x = 50, 4. x / 7 = 8, 5. x + 10 = 20, 6. 6 - x = 2, 7.  3x + 6 = 15, 8. 2x - 8 = 16, 9. 30 = 2x - 4, 10.  4x + 9 = 49

1. A number increased by four is twelve.

Let's denote the unknown number as "x".

Algebraic equation: x + 4 = 12

2. A number decreased by nine is equal to eleven.

Algebraic equation: x - 9 = 11

3. Five times a number is fifty.

Algebraic equation: 5x = 50

4. The quotient of a number and seven is eight.

Algebraic equation: x / 7 = 8

5. The sum of a number and ten is twenty.

Algebraic equation: x + 10 = 20

6. The difference between six and a number is two.

Algebraic equation: 6 - x = 2

7. Three times a number increased by six is fifteen.

Algebraic equation: 3x + 6 = 15

8. Eight less than twice a number is sixteen.

Algebraic equation: 2x - 8 = 16

9. Thirty is equal to twice a number decreased by four.

Algebraic equation: 30 = 2x - 4

10. If four times a number is added to nine, the result is forty-nine.

Algebraic equation: 4x + 9 = 49

Learn more about Algebraic equation here:

https://brainly.com/question/29131718

#SPJ11

In a town whose poputation is 3300 , a disease creaces an 4 ? a) How many are insaly indected with the dasease (t = O)? Round to the nearest whole number os needed.) b) Find the number indected affer 2 doys, 5 days, 8 day, 12 dpys, and 16 daya. The rumber infected after 2 days a (Found to the nearett whole namber at needed) The number infecied afler 5 days is . Feound to the rearest whole numbers as needed.) The number intected ater 8 days is (Alound fo the nearest whoie numbers as needed.) The namber zeected atter 12 days is (Found fo the nearest mhole mambere as needed.). The number infected after 16 days is. (Round to the nearest whole numben as needed ) A As (→6,N(1)−3300,103300 be00le wit be infeched after days.

Answers

a) The number of people that are initially infected with the disease are 145 people.

b) The number infected after 2 days is 719 people.

The number infected after 5 days is 2659 people.

The number infected after 8 days is 3247 people.

The number infected after 12 days is 3299 people.

The number infected after 16 days is 3300 people.

c) As t → e, N(t) → 3300, so 3300 people will be infected after 16 days.

How many are initially infected with the disease?

Based on the information provided above, the number of people N infected t days after the disease has begun can be modeled by the following exponential function;

[tex]N(t)=\frac{3300}{1\;+\;21.7e^{-0.9t}}[/tex]

When t = 0, the number of people N(0) infected can be calculated as follows;

[tex]N(0)=\frac{3300}{1\;+\;21.7e^{-0.9(0)}}[/tex]

N(0) = 145 people.

Part b.

When t = 2, the number of people N(2) infected can be calculated as follows;

[tex]N(2)=\frac{3300}{1\;+\;21.7e^{-0.9(2)}}[/tex]

N(2) = 719 people.

When t = 5, the number of people N(5) infected can be calculated as follows;

[tex]N(5)=\frac{3300}{1\;+\;21.7e^{-0.9(5)}}[/tex]

N(5) = 2659 people.

When t = 8, the number of people N(8) infected can be calculated as follows;

[tex]N(8)=\frac{3300}{1\;+\;21.7e^{-0.9(8)}}[/tex]

N(8) = 3247 people.

When t = 12, the number of people N(12) infected can be calculated as follows;

[tex]N(12)=\frac{3300}{1\;+\;21.7e^{-0.9(12)}}[/tex]

N(12) = 3299 people.

When t = 16, the number of people N(16) infected can be calculated as follows;

[tex]N(16)=\frac{3300}{1\;+\;21.7e^{-0.9(16)}}[/tex]

N(16) = 3300 people.

Part c.

Based on this model, we can logically deduce that 3300 people will be infected after 16 days because as t tends towards e, N(t) tends towards 3300.

Read more on exponential functions here: brainly.com/question/28246301

#SPJ4

Missing information:

The question is incomplete and the complete question is shown in the attached picture.

What is the probability of obtaining through a random draw, a
four-card hand that has each card in a different suit?

Answers

The probability of obtaining a four-card hand with each card in a different suit is approximately 0.4391, or 43.91%.

The probability of obtaining a four-card hand with each card in a different suit can be calculated by dividing the number of favorable outcomes (four cards of different suits) by the total number of possible outcomes (any four-card hand).

First, let's determine the number of favorable outcomes:

Select one card from each suit: There are 13 cards in each suit, so we have 13 choices for the first card, 13 choices for the second card, 13 choices for the third card, and 13 choices for the fourth card.

Multiply the number of choices for each card together: 13 * 13 * 13 * 13 = 285,61

Next, let's determine the total number of possible outcomes:

Select any four cards from the deck: There are 52 cards in a standard deck, so we have 52 choices for the first card, 51 choices for the second card, 50 choices for the third card, and 49 choices for the fourth card.

Multiply the number of choices for each card together: 52 * 51 * 50 * 49 = 649,7400

Now, let's calculate the probability:

Divide the number of favorable outcomes by the total number of possible outcomes: 285,61 / 649,7400 = 0.4391

Therefore, the probability of obtaining a four-card hand with each card in a different suit is approximately 0.4391, or 43.91%.

To learn more about probability click here:

brainly.com/question/30034780

#SPJ11

Definition 16.2. Let S⊆V, and let u 1

,⋯,u k

be elements of S. For θ 1

,⋯,θ k

∈[0,1], with θ 1

+⋯+θ k

=1, v=θ 1

u 1

+⋯,+θ k

u k

is a convex combination of u 1

,⋯,u k

. Exercise 97. Let S⊆V. Show that the set of all convex combinations of all finite subsets {u 1

,⋯,u k

}⊆S is convex.

Answers

A convex combination of elements is a weighted sum where the weights are non-negative and sum to 1. Therefore, the set C of all convex combinations of finite subsets of S is convex.

Let C be the set of all convex combinations of finite subsets of S. To show that C is convex, we consider two convex combinations, say v and w, in C. These combinations can be written as v = [tex]θ_1u_1 + θ_2u_2 + ... + θ_ku_k and w = ϕ_1u_1 + ϕ_2u_2 + ... + ϕ_ku_k[/tex], where [tex]u_1, u_2, ..., u_k[/tex] are elements from S and[tex]θ_1, θ_2, ..., θ_k, ϕ_1, ϕ_2, ..., ϕ_k[/tex] are non-negative weights that sum to 1.

Now, consider the combination x = αv + (1-α)w, where α is a weight between 0 and 1. We need to show that x is also a convex combination. By substituting the expressions for v and w into x, we get x = (αθ_1 + (1-[tex]α)ϕ_1)u_1 + (αθ_2 + (1-α)ϕ_2)u_2 + ... + (αθ_k + (1-α)ϕ_k)u_k.[/tex]

Since [tex]αθ_i + (1-α)ϕ_i[/tex]is a non-negative weight that sums to 1 (since α and (1-α) are non-negative and sum to 1, and [tex]θ_i and ϕ_[/tex]i are non-negative weights that sum to 1), we conclude that x is a convex combination.

Therefore, the set C of all convex combinations of finite subsets of S is convex.

Learn more about finite subsets here:

https://brainly.com/question/32447319

#SPJ11

The population of a pod of bottlenose dolphins is modeled by the function A(t)=15(1.2)t, where t is given in years. To the nearest whole number, what will the pod population be after 5 years? The pod population will be dolphins.

Answers

Rounding to the nearest whole number, the pod population after 5 years will be approximately 37 dolphins.

To find the pod population after 5 years, we can substitute t = 5 into the given function [tex]A(t) = 15(1.2)^t[/tex] and evaluate it.

[tex]A(t) = 15(1.2)^t\\A(5) = 15(1.2)^5[/tex]

Calculating the expression:

[tex]A(5) = 15(1.2)^5[/tex]

≈ 15(2.48832)

≈ 37.3248

To know more about population,

https://brainly.com/question/32585256

#SPJ11

On the right are the numbers of customers served by a restaurant on 40 2nd decile The number of customers representing the 2nd decile is 41 45 46 49 50 50 52 53 53 53 consecutive days. (The numbers have been ranked lowest to highest.) Find the61 61 62 62 63 63 64 64 64 65 66 66 66 67 67 67 68 68 69 69 70 70 71 71 72 75 77 77 81 83

Answers

The second decile contains 10% of the total customers served by the restaurant over the consecutive 30 days.The number of customers that are served by the restaurant over 30 consecutive days is as follows:

41, 45, 46, 49, 50, 50, 52, 53, 53, 53, 61, 61, 62, 62, 63, 63, 64, 64, 64, 65, 66, 66, 66, 67, 67, 67, 68, 68, 69, 69, 70, 70, 71, 71, 72, 75, 77, 77, 81, 83.The first decile is from the first number of the list to the fourth. The second decile is from the fifth number to the fourteenth.

Hence, the second decile is: 50, 50, 52, 53, 53, 53, 61, 61, 62, 62. Add these numbers together:50+50+52+53+53+53+61+61+62+62=558. The average number of customers served by the restaurant per day is 558/30=18.6.Rounding up, we see that the median number of customers served is 19.

The second decile is the range of numbers from the 5th to the 14th numbers in the given list of consecutive numbers. We calculate the sum of these numbers and get the total number of customers served in the second decile, which comes to 558.

We divide this number by 30 (the number of days) to get the average number of customers served, which comes to 18.6. Since the average number of customers served cannot be a fraction, we round this value up to 19. Therefore, the median number of customers served by the restaurant is 19.

The number of customers served by the restaurant on the second decile is 558 and the median number of customers served is 19.

To know more about consecutive numbers:

brainly.com/question/29775116

#SPJ11

Other Questions
According to the NEC requirements, what is the maximum currentallowed in a circuit where the current carrying capacity of aconductor is 500 amps? 27.Which of the following species lived at the same time as modern Homo sapiens? Homo habilis Homo floresiensis O Homo rudolfensis Australopithecus afarensis Q1: (30 Marks) An NMOS transistor has K = 200 A/V. What is the value of Kn if W= 60 m, L=3 m? If W=3 m, L=0.15 m? If W = 10 m, L=0.25 m? How you start is a good indicator of how you finish. WIIFM Rapport Halo Effect The Approach Question 2 (10 points) Saved 4) Listen The Approach includes all except the following: Professional Introduction Uncovering the buying process Pre-Commitment Stating purpose of sales call Question 3 (10 points) 4) Listen Saved Asking S.P.I.N. questions in sequence is not important as long as you ask all the questions. True False Custom ProcessesQuestion: Synthesize the implications of thecurrent Russo-Ukrainian War on International Trade for developingcountries. Compare the functions of the nervous and endocrine systems inmaintaining homeostasis (IN SIMPLEST FORM) A permanent negative productivity shock (e.g. a new government regulation) will result inan increase in user cost and decrease in the desired level of capital. no change in user cost and decrease in the desired level of capital. a decrease in user cost and the desired level of capital. an increase in user cost and the desired level of capital. Describe and comment on the achievements and failuresof Einstein and Debye model at low and high temperature of thermalproperties of solid. Why do mutations in asexual organisms produce greater evolutionary changes than in organisms that reproduce sexually?a. Mutations in organisms that reproduce asexually are expressed immediately.b. Organisms that reproduce asexually invest more time and energy in the reproduction process.c. Organisms that reproduce sexually can produce more offspring in a given period of time.d. Organisms that reproduce asexually will exhibit greater genetic variation than those that reproduce sexually. Calculate the weight fraction of mullite that is pro eutectic in a slowly cooled 30 mol % Al2O3 70 mol % SiO2 refractory cooled to room temperature. When Cas9 cuts DNA and triggers repair mechanisms in the cell random mutations can of specificity? result. Why would these mutations be useful to scientists? Uber in 2018 6 This case was prepared by Charles W. L. Hill ofthe School of Business, University of Washington, Seattle give theSWOT Analysis When load testing a battery, which battery rating is usually used to determine how much load to apply to the battery? A) CCA B) MCA C) \( R C \) D) CA 6) Given the complex number z = 343cis (). Find the cube roots of in terms oft and represent your answers on a labelled Argand diagram. (18 marks) Question 34 Method of treatment to help transplanted organs survive because it blocks the co-stimulation step required in B-cell activation A. Rapamycin B. Anti-CD3C. Cyclosporin AD. Mab-IgEE. CTLA-4IgQuestion 35 The first immunoglobulin response made by the fetus isA. IgG B. IgA C. IgM D. IgD E. all of the Ig's are synthesized at the same time Question 36 The most common test to diagnose lupusA. the complement fixation test B. double gel diffusion C. RAST test D. microcytotoxcity test E. ANA test A gear train system is to be used to drive a square thread screw to lift a load of 20 kN (under Earth gravitational influence) that will travel within 0.9 to 1.25 m/s. Assume that the length of the power screw is infinite and 100% power from the final driven gear is transferred to the power screw. The linear displacement per turn on power screw is at 20 mm per turn. Meanwhile, on the gear system, the driver is rotating at 4500 rpm counter-clockwise and has 15 teeth and Pd of 16. The gear attached to at the square thread has 20 teeth and Pd of 20. The configuration of the machine is shown below. a) Solve the torque required to raise and lower the load and the speed on the final driven gear attached on the square power screw. b) Construct this gear train by using several idler gears (must be more than 4 gears) with any gear tooth size. The distance between the driver gear and final driver gear must be not more that 1250mm. Prove your design by showing appropriate calculation. c) Assume that the loss of torque and power is 12% and 15% respectively on each gear addition to the previous powered gear, calculate the torque and power needed at the driver gear to lift the load on the square thread screw. d) If the machine operated on the Moon's surface, calculate the speed range of the load lifted presuming the value of torque and power in (b) if the gear train configuration in (c) is maintained. (Moon's gravity is 1/6 of Earth's gravity) When you eat enough carbs, your protein is sparedgluconeogenesis. What does this mean? Check my Axons that release norepinephrine (NE) are called adrenergic, while axons that release acetylcholine (ACH) are called Fill in the blank A simply supported reinforced concrete beam is reinforced with 2-20mm diameter rebars at the top and 3-20mm diameter rebars at the bottom. The beam size is 250mm x 400mm by 7 m with a cover of 60mm for both top and bottom of beam section. Find the safe maximum uniformly distributed load that the beam can carry. fc = 21Mpa, fy=276MPa. Assume both tension and compression bars will yield. Can the beam carry an ultimate moment of 971 kNm? solved using matlab.Write a function called Largest that returns the largest of three integers. Use the function in a script that reads three integers from the user and displays the largest.