1. Write a thorough explanation in about 150 words of the step in the carbon cycle of how carbon moves from fossil fuels to the atmosphere when fuels are burned.
2. Write a thorough explanation in about 150 words of the step in the carbon cycle of how carbon moves from the atmosphere to the oceans.

Answers

Answer 1

When fossil fuels are burned, carbon is released into the atmosphere as carbon dioxide (CO₂). This step in the carbon cycle involves the combustion of fossil fuels, such as coal, oil, and natural gas, which releases stored carbon back into the atmosphere as a greenhouse gas.

Carbon moves from the atmosphere to the oceans through a process called carbon sequestration. Atmospheric CO₂ dissolves in seawater, forming carbonic acid, which reacts with water molecules to produce bicarbonate ions and hydrogen ions. These bicarbonate ions are then used by marine organisms, such as corals and shellfish, to build their shells and skeletons. Over time, these shells and skeletons can sink to the ocean floor, where they accumulate and become part of the sediments. This process, known as carbon sequestration, effectively removes carbon from the atmosphere and stores it in the oceans.

When fossil fuels are burned, such as during the combustion of coal, oil, or natural gas for energy production, the carbon stored in these fuels is released into the atmosphere as carbon dioxide (CO₂). Fossil fuels are derived from ancient organic matter, such as plants and marine organisms, that have undergone geological processes over millions of years. When these fuels are burned, the carbon they contain combines with oxygen from the air, resulting in the formation of CO₂. This process is a significant contributor to the increase in atmospheric CO₂ levels, leading to the greenhouse effect and global warming.

Carbon moves from the atmosphere to the oceans through a process known as carbon sequestration. Atmospheric CO₂ dissolves in seawater, where it undergoes chemical reactions. The dissolved CO₂ combines with water to form carbonic acid (H₂CO₃), which further dissociates into bicarbonate ions (HCO⁻₃) and hydrogen ions (H⁺). This reaction is facilitated by the presence of carbonate ions (CO²⁻₃) already present in seawater. The bicarbonate ions formed in this process can be utilized by marine organisms, such as corals, shellfish, and phytoplankton, to build their shells, skeletons, and tissues through a process called biomineralization. Over time, these shells and skeletons can sink to the ocean floor, where they accumulate and become part of the sediments. This process effectively removes carbon from the atmosphere and stores it in the oceans, acting as a natural sink for atmospheric CO₂.

Learn more about carbon cycle visit:

brainly.com/question/30633292

#SPJ11


Related Questions

1. How did Penicillin rupture the E. coli cells in the video? Or stated another way, what cellular target does the antibiotic attack and what is its mechanism of action? 2. Explain the bacterial cell wall structure and compare/contrast the Gram positive and Gram negative bacterial cell wall.
3. Will Penicillin act equally well on all types of bacteria? If you have answered yes, then explain why? If you have answered no, then which type of cell would be more susceptible to Penicillin? What is it about that one type of cell that allows penicillin to act more effectively??

Answers

1-By inhibiting this enzyme, penicillin prevents the proper formation of the cell wall, leading to weakened cell walls and ultimately the rupture of E. coli cells.

2-Gram-positive bacteria have a thick peptidoglycan layer that retains the crystal violet stain, while Gram-negative bacteria have a thinner peptidoglycan layer surrounded by an outer membrane.

3-Penicillin does not act equally well on all types of bacteria.

1. Penicillin primarily targets the bacterial cell wall. It inhibits the formation of peptidoglycan, a crucial component of the cell wall in bacteria. The cell wall provides structural support and protection to the bacterial cell. Penicillin binds to and inhibits the enzyme transpeptidase, also known as penicillin-binding protein (PBP), which is responsible for cross-linking the peptidoglycan strands during cell wall synthesis. By inhibiting this enzyme, penicillin prevents the proper formation of the cell wall, leading to weakened cell walls and ultimately the rupture of E. coli cells.

2. Bacterial cell walls can be broadly categorized into Gram-positive and Gram-negative based on their staining characteristics. Gram-positive bacteria have a thick peptidoglycan layer that retains the crystal violet stain, while Gram-negative bacteria have a thinner peptidoglycan layer surrounded by an outer membrane. In Gram-positive bacteria, the cell wall consists mainly of peptidoglycan, which forms a thick, continuous layer. It provides rigidity and structural support to the cell. In Gram-negative bacteria, the cell wall consists of a thin layer of peptidoglycan sandwiched between two lipid bilayers, forming an outer membrane. The outer membrane acts as an additional protective barrier and contains various proteins, lipopolysaccharides (LPS), and porins that regulate the passage of substances into and out of the cell.

3. Penicillin does not act equally well on all types of bacteria. Gram-positive bacteria are generally more susceptible to penicillin because their cell walls are primarily composed of peptidoglycan, which is the target of penicillin. The thick peptidoglycan layer in Gram-positive bacteria provides more binding sites for penicillin, allowing the antibiotic to have a greater inhibitory effect on cell wall synthesis.

In contrast, Gram-negative bacteria have a thinner peptidoglycan layer, and the presence of the outer membrane acts as an additional barrier for penicillin. The outer membrane limits the access of penicillin to the peptidoglycan layer, making Gram-negative bacteria less susceptible to the antibiotic.

for more questions on penicillin
https://brainly.com/question/11849121
#SPJ8

Which possible form of control described below is the fastest for cellular enzyme activities O Control of transcription via activators and repressors. RNA-mediated genetic control. O Biochemical regulation by metabolites or cofactors. Alterations of DNA sequence by mutation.

Answers

The possible form of control described below that is the fastest for cellular enzyme activities is "Biochemical regulation by metabolites or cofactors."

What is an enzyme?

An enzyme is a protein catalyst that speeds up chemical reactions in a living system without being changed. The rate at which enzymes catalyze chemical reactions is affected by several factors.

Enzymes can be regulated in a variety of ways to meet the specific demands of an organism. Cells make a variety of metabolic pathways by regulating enzyme activity, which is critical for life.

Biochemical regulation by metabolites or cofactors is the most important form of enzyme regulation. Enzyme activities are regulated by a number of molecules in a cell that are known as metabolites or cofactors.

The function of an enzyme is influenced by its environment and the molecules that bind to it. The activity of an enzyme can be regulated by these molecules. The activity of an enzyme is influenced by its environment and the molecules that bind to it. A cofactor is a molecule that aids in the catalytic activity of an enzyme.

The enzyme's activity can be increased or decreased by the presence of these molecules. Therefore, biochemical regulation is the fastest method of regulating cellular enzyme activities.

learn more about cellular enzyme :https://brainly.com/question/1596855

#SPJ11

Explain how you would sample Bacillus cereus from the
environment. What stain would you use and what would those results
look like?

Answers

Bacillus anthracis and Listeria monocytogenes(B) Bacillus cereus and Clostridium perfringens(C) Bacillus cereus and Clostridium tetani(D) Corynebacterium

Bacillus cereus is a soil-dwelling, facultative anaerobe, spore-forming, rod-shaped bacterium. Here are the steps to sample Bacillus cereus from the environment.Obtain environmental samples: Collect soil or water samples and transport them to the laboratory using sterile containers. For soil samples, collect at least 10 grams from the top layer of soil.Streak plate method:

The streak plate method is used to isolate and purify Bacillus cereus from the sample.Using aseptic technique, obtain a small amount of the environmental sample and streak it onto the surface of a nutrient agar plate. Bacillus cereus colonies will appear as smooth, white colonies with a ground-glass appearance on the nutrient agar plate.

The spore stain is used to detect the spores of Bacillus cereus. The spores of Bacillus cereus appear as green, oval structures located at one end of the rod-shaped cells. If more than 100 spores per milliliter of food are present, it is considered potentially harmful.

To more about Bacillus visit;

brainly.com/question/33302369

#spj11

During development: cells die or survive based on their receptor’s stickiness (affinity) to what?
B cells undergo this development process in what organ? T cells undergo this development process in what organ? Place the cells in the squares below based on whether they will survive or die during the development process. These can either be B cells or T cells as they both undergo this process in their respective organs.
After Development: Once part of the immune system as mature adaptive cells (i.e., survived development), Adaptive cells can be ACTIVATED based on their receptor specificity. Both B cells and T cells under the clonal selection process during activation, if they detect (stick to) their prospective antigens.

Answers

During development, cells die or survive based on their receptor's stickiness (affinity) to self-antigens.

B cells undergo this development process in the bone marrow, while T cells undergo this development process in the thymus.

Survive: B cells with receptors that do not recognize self-antigens, T cells with receptors that can recognize self-antigens but not too strongly.

Die: B cells with receptors that strongly recognize self-antigens, T cells with receptors that cannot recognize self-antigens.

After development, mature adaptive cells (both B cells and T cells) can be activated based on their receptor specificity. They undergo clonal selection, where they are activated if they detect (stick to) their prospective specific antigens. This activation leads to the proliferation and differentiation of the selected cells, resulting in an immune response tailored to the detected antigen.

To know more about self-antigens,

https://brainly.com/question/32408633

#SPJ11

Compare the functions of the nervous and endocrine systems in
maintaining homeostasis (IN SIMPLEST FORM)

Answers

The nervous system uses electrical impulses and neurotransmitters to quickly transmit signals, while the endocrine system relies on hormones to regulate bodily functions over a longer duration.

The nervous system and endocrine system work together to maintain homeostasis, which refers to the stable internal environment of the body. The nervous system coordinates rapid responses to changes in the external and internal environment, while the endocrine system regulates various bodily functions over a longer duration.

The nervous system uses electrical impulses and neurotransmitters to transmit signals between neurons and target cells. It allows for quick responses to stimuli and helps regulate processes such as muscle contraction, sensory perception, and coordination.

For example, when body temperature rises, the nervous system triggers sweating to cool down the body.

On the other hand, the endocrine system releases hormones into the bloodstream to target cells and organs throughout the body. Hormones are chemical messengers that regulate processes such as metabolism, growth and development, reproduction, and stress responses.

They act more slowly but have long-lasting effects. For instance, the endocrine system releases insulin to regulate blood glucose levels.

In summary, the nervous system enables rapid responses to stimuli through electrical impulses, while the endocrine system regulates bodily functions through the release of hormones, allowing for long-term homeostasis maintenance. Together, these systems ensure the body maintains a balanced and stable internal environment.

Learn more about hormones here:

https://brainly.com/question/30367679

#SPJ11

1. List sugar, galactose, and glucose in order of
efficiency of fementation. (Describe reasons as well)
2. How temperature can affect ethanol fermentation?

Answers

1. List sugar, galactose, and glucose in order of efficiency of fermentation along with their explanation:Galactose: Galactose is a monosaccharide, similar to glucose, that can be converted to glucose-1-phosphate before being used in glycolysis,

Galactose is converted into glucose-6-phosphate in the liver. The sugar, which is an epimer of glucose, is not a key sugar used in fermentation. The efficiency of fermentation of galactose is less than that of glucose.Glucose: Glucose is the primary fuel for glycolysis, and it has the highest efficiency of fermentation among sugars. Glucose, unlike other sugars, does not need to be converted into a different type of sugar before being used in glycolysis. Glucose is broken down into pyruvate, which is a critical product of glycolysis, during glycolysis. Glucose fermentation is highly efficient.

Sugar: Sugar is a disaccharide consisting of fructose and glucose molecules, which is hydrolyzed into glucose and fructose before being used in fermentation. As a result, fermentation efficiency is less than glucose.2. How temperature can affect ethanol fermentation?Ethanol fermentation, like other enzymatic reactions, is influenced by temperature. Fermentation's optimal temperature range is between 20°C and 35°C. Lower temperatures reduce enzyme activity, and hence fermentation rate, while higher temperatures can cause enzyme denaturation or destruction, which will prevent ethanol fermentation from occurring. Therefore, the temperature can affect the ethanol fermentation.

TO know more about that galactose visit:

https://brainly.com/question/31819544

#SPJ11

Which of the following statement about genetic drift is true? a. Genetic drift can cause a population to adapt to its environment. b. Genetic drift cannot fix alleles in a population without the action of natural selection. c. Genetic drift is unbiased: the frequency of an allele in a population is equally likely to go up or down. d. When populations are large, genetic drift is not invoved in causing them to differentiate. e. Genetic drift causes non-random loss of alleles from a population.

Answers

Genetic drift is a mechanism of evolution that affects the genetic structure of populations. It refers to the random fluctuations in allele frequencies that occur due to chance events rather than natural selection. Genetic drift is more pronounced in small populations, where chance events can have a significant impact on the genetic composition of the population.

In response to your question, option (e) is true about genetic drift. Genetic drift causes non-random loss of alleles from a population. This is because genetic drift refers to random fluctuations in allele frequencies, which can lead to the loss of alleles from the population. This can occur due to various chance events, such as mutations, migrations, or the death of individuals carrying particular alleles.

Genetic drift can also result in the fixation of alleles in a population, whereby one allele becomes the only allele present in the population. This can occur in small populations where chance events can have a significant impact on the genetic composition of the population. In summary, genetic drift is an important mechanism of evolution that can cause random fluctuations in allele frequencies, leading to the loss or fixation of alleles in a population.

To know more about composition visit:

https://brainly.com/question/32502695

#SPJ11

Breast cancer involves several proteomic modifications. A surgeon has operated on a breast cancer patient and provided you with a sample from the breast tissue of the patient containing a piece of the tumor to analyze its proteome. Design the experiment. Which method are you going to use and why? which approach and why? Don't forget to mention the controls you will use, and the different steps in your workflow, and where will you deposit your results.

Answers

The experiment involves using mass spectrometry-based proteomics to analyze the proteome of a breast cancer tumor sample.

The chosen method, mass spectrometry-based proteomics, allows for comprehensive analysis of proteins in the tumor sample. Label-free quantitative proteomics approach will be employed to compare protein abundances between the tumor sample and controls. The workflow includes sample preparation, protein digestion, mass spectrometry analysis, data analysis, and potential validation of selected proteins. Controls such as a positive breast cancer control and a negative healthy tissue control will be used for comparison. The results will be deposited in public proteomics databases for accessibility and further research.

Learn more about mass spectrometry-based proteomics  here:

https://brainly.com/question/26500669

#SPJ11

In cladograms depicted with terminal branches facing up, what does the horizontal axis (how far terminal taxa are placed relative to one other) represent? It is proportional to the amount of DNA sequence similarity O Nothing It is proportional to the degree of morphological difference It is proportional to the amount of evolutionary time since divergence You would like to investigate evolutionary relationships among the following groups of organisms: beetles, butterflies, ants, spiders, and crabs. Which of these would be a better outgroup? Feel free to consult any sources to make an educated suggestion. Trilobite Scorpion Turtle Roundworm

Answers

The horizontal axis in cladograms depicted with terminal branches facing up represents the amount of evolutionary time since divergence. This is proportional to the distance between the tips of terminal branches in a cladogram. The further apart two terminal taxa are on a cladogram, the more evolutionary time that has elapsed since they diverged from a common ancestor.

Therefore, the horizontal axis of a cladogram represents the relative timing of evolutionary events, with older events to the left and more recent events to the right.In order to choose a better outgroup among beetles, butterflies, ants, spiders, and crabs, we need to look for an organism that is evolutionarily related to these groups but branched off earlier. The purpose of an outgroup is to provide a reference point to help us determine which traits are ancestral (shared by the outgroup and the ingroup) and which are derived (unique to the ingroup).

Trilobites are a group of extinct arthropods that lived during the Paleozoic era, and they are thought to be closely related to insects and crustaceans. Because trilobites branched off from the arthropod lineage earlier than insects and crustaceans, they would make a good outgroup for these groups of organisms.

To know more about cladogram visit:

https://brainly.com/question/27405768

#SPJ11

Check my Axons that release norepinephrine (NE) are called adrenergic, while axons that release acetylcholine (ACH) are called Fill in the blank

Answers

Axons that release acetylcholine (ACH) are called cholinergic. In the nervous system, different neurons release specific neurotransmitters to transmit signals across synapses. Axons that release norepinephrine (NE) are referred to as adrenergic, while axons that release acetylcholine (ACH) are called cholinergic.

Adrenergic neurons primarily utilize norepinephrine as their neurotransmitter. Norepinephrine is involved in regulating various physiological processes such as the fight-or-flight response, mood, attention, and arousal. Adrenergic pathways are important in the sympathetic division of the autonomic nervous system.

On the other hand, cholinergic neurons release acetylcholine as their neurotransmitter. Acetylcholine plays a crucial role in muscle contractions, memory, cognitive functions, and the parasympathetic division of the autonomic nervous system.

The classification of axons as adrenergic or cholinergic is based on the specific neurotransmitter they release. Adrenergic axons release norepinephrine, while cholinergic axons release acetylcholine. This classification helps in understanding the diverse functions and effects of these neurotransmitters in the body and their involvement in different pathways and systems within the nervous system.

Learn more about axons here: https://brainly.com/question/31598696

#SPJ11

1. When you stand on a foam pad with eyes closed in a
BESS test, the primary sensory input for balance is ______ .
a. olfaction
b. vestibular
c. somatosensation
d. vision
2. Olfaction affects the accu

Answers

The BESS test:When standing on a foam pad with closed eyes in the BESS (Balance Error Scoring System) test, the primary sensory input for balance is somatosensation. This is defined as the body’s internal and external sensory systems that help control balance and movement.

The somatosensory system comprises cutaneous and proprioceptive receptors located in the skin, muscles, joints, and bones of the body.

Olfaction affects the accuracy of taste: Olfaction (sense of smell) affects the accuracy of taste. Olfaction and gustation (sense of taste) are interconnected senses that work together to produce the perception of flavor. While the tongue is responsible for detecting taste, the nose is responsible for identifying smells. These two senses work together to produce a complete picture of flavor.

When the olfactory system is damaged, the sense of taste may be compromised, making it difficult to distinguish between different flavors. For example, without olfaction, foods may taste bland, and it may be challenging to differentiate between salty, sweet, bitter, or sour tastes.Hence, we can conclude that somatosensation is the primary sensory input for balance in the BESS test, and olfaction affects the accuracy of taste.

Learn more about Olfaction here ;

https://brainly.com/question/32009384

#SPJ11

Which of the following statements about viruses is FALSE? Viruses have a nucleus but no cytoplasm. а Viruses can reproduce only when they are inside a living host cell. Viruses cannot make proteins on their own. Some viruses use RNA rather than DNA as their genetic material.

Answers

The option that is untrue of the ones offered is "Viruses have a nucleus but no cytoplasm."

Acellular infectious organisms with a fairly straightforward structure are viruses. They are made up of genetic material, either DNA or RNA, that is encased in a protein shell called a capsid. A virus's outer envelope may potentially be derived from the membrane of the host cell.However, biological organelles like a nucleus or cytoplasm are absent in viruses. They lack the equipment needed to synthesise proteins or carry out autonomous metabolic processes. In place of doing these things themselves, viruses rely on host cells.

The remaining assertions made are accurate:

- Only when a virus is inside a living host cell can it proliferate. They use the host cell's biological machinery to stealthily copy their genetic material.

learn more about cytoplasm here :

https://brainly.com/question/17909268

#SPJ11

Discuss the properties of the following non-nutritive sweeteners: aspartame, saccharin, neotame, cyclamate and sucralose (include their chemical structures). (10)

Answers

Non-nutritive sweeteners are substitutes for sugar that do not provide any nutritional value but have a sweet taste. Aspartame, saccharin, neotame, cyclamate, and sucralose are examples of non-nutritive sweeteners. These sweeteners are a safe and low-calorie alternative to sugar that can help people who are trying to reduce their calorie intake.

Here are the properties of the following non-nutritive sweeteners:

Aspartame: Aspartame is a dipeptide composed of aspartic acid and phenylalanine. It is 200 times sweeter than sugar. Aspartame is easily metabolized in the body, and its breakdown products are eliminated through urine. It is not suitable for baking because it breaks down when exposed to heat.

Aspartame is commonly used in diet sodas, chewing gum, and other low-calorie foods. Saccharin: Saccharin is an artificial sweetener that is 300 times sweeter than sugar. It is synthesized from toluene and sulfur dioxide. It is not broken down by the body, so it passes through the digestive system unchanged.

Saccharin was first discovered in 1879, and it is one of the oldest artificial sweeteners still in use today. Saccharin is commonly used in tabletop sweeteners, soft drinks, and other low-calorie foods.

Neotame: Neotame is an artificial sweetener that is 7,000 to 13,000 times sweeter than sugar. It is a derivative of aspartame, but it is more stable and does not break down when exposed to heat. It is metabolized in the body and eliminated through urine. Neotame is approved for use in the United States, Canada, Australia, and other countries. Neotame is commonly used in tabletop sweeteners, soft drinks, and other low-calorie foods.

Cyclamate: Cyclamate is an artificial sweetener that is 30 to 50 times sweeter than sugar. It is synthesized from cyclohexylamine and sulfamic acid. Cyclamate is not broken down by the body, so it passes through the digestive system unchanged. It was discovered in 1937 and was widely used in the 1960s and 1970s. Cyclamate is commonly used in tabletop sweeteners and other low-calorie foods.

Sucralose: Sucralose is an artificial sweetener that is 600 times sweeter than sugar. It is synthesized from sucrose by replacing three hydroxyl groups with chlorine atoms. Sucralose is not broken down by the body, so it passes through the digestive system unchanged. It is heat-stable and can be used in baking.

Sucralose is commonly used in tabletop sweeteners, soft drinks, and other low-calorie foods.

To know more about sweeteners visit:

https://brainly.com/question/28901679

#SPJ11

Make a simple dichotomous key for taxonomic identification
all 13 7:58 Instructions: How to make a simple dichotomous key for taxonomic identification Dichotomous keys are based on the use of pairs of contrasting statements. That is, the pairs of statements a

Answers

To make a simple dichotomous key for taxonomic identification, follow the instructions given below: Step 1: Choose an organismSelect the organism that you want to identify.

For example, let's choose an insect.Step 2: List characteristicsList a few characteristics of the organism you selected. For instance, an insect has six legs, two wings, and compound eyes.Step 3: Group the characteristicsGroup the characteristics into two categories based on their similarities. For example, legs and wings can be grouped under one category, while compound eyes can be grouped under another. Step 4: Create a contrast statement Create a statement that contrasts the two categories.

For example, the contrast statement for the categories created in step 3 can be "Does the organism have legs and wings or compound eyes?"Step 5: Create more categories and statementsAdd more categories and contrast statements until there are no more characteristics left to differentiate the organism. For instance, more categories like "has antennae or not" and "more than 100 legs or less than 100 legs" can be added to differentiate insects further.Step 6: Label the categoriesLabel each category, starting with category 1 and ending with the last category added.

To know more about taxonomic visit:

https://brainly.com/question/27026075

#SPJ11

The following question is about the citric acid cycle. Select all the enzymes that catalyze oxidation reactions. O citrate synthase O aconitase O isocitrate dehydrogenase O a-ketoglutarate dehydrogenase complex O succinyl-CoA synthetase O succinate dehydrogenase O fumarase O malate dehydrogenase

Answers

The citric acid cycle (CAC) is a complex metabolic pathway that occurs in the mitochondria of eukaryotic cells and the cytosol of prokaryotic cells.  

The pathway is used to break down acetyl-CoA, generated from the oxidation of glucose and other molecules, and generate energy in the form of ATP. The enzymes that catalyze oxidation reactions in the citric acid cycle include isocitrate dehydrogenase, a-ketoglutarate dehydrogenase complex, succinate dehydrogenase, and malate dehydrogenase. Isocitrate dehydrogenase catalyzes the oxidation of isocitrate to a-ketoglutarate, producing NADH in the process.

A-ketoglutarate dehydrogenase complex catalyzes the conversion of a-ketoglutarate to succinyl-CoA, producing NADH in the process. Succinate dehydrogenase catalyzes the oxidation of succinate to fumarate, producing FADH2 in the process. Malate dehydrogenase catalyzes the oxidation of malate to oxaloacetate, producing NADH in the process. The enzymes that catalyze non-oxidation reactions in the citric acid cycle include citrate synthase, aconitase, succinyl-CoA synthetase, and fumarase.

Succinyl-CoA synthetase catalyzes the formation of succinyl-CoA from succinate and CoA, producing ATP in the process. Fumarase catalyzes the conversion of fumarate to malate.

To know more about metabolic visit:

https://brainly.com/question/15464346

#SPJ11

When Cas9 cuts DNA and triggers repair mechanisms in the cell random mutations can of specificity? result. Why would these mutations be useful to scientists?

Answers

When Cas9 cuts DNA and triggers repair mechanisms in the cell, random mutations can result. These mutations can be useful to scientists because they allow for targeted genetic modifications and gene editing. By introducing specific guide RNAs (gRNAs) along with the Cas9 enzyme, scientists can direct Cas9 to specific locations in the genome and induce targeted DNA double-strand breaks (DSBs). When the cell repairs these breaks, it may introduce random mutations in the process, such as insertions, deletions, or substitutions of nucleotides. These mutations can be leveraged to disrupt specific genes, create gene knockouts, or introduce specific genetic changes.

By understanding and manipulating these repair mechanisms, scientists can modify the genetic material of organisms for various purposes, such as studying gene function, developing disease models, and potentially treating genetic disorders. The ability to induce specific mutations through Cas9-mediated gene editing has revolutionized the field of molecular biology and opened up new avenues for genetic research and therapeutic applications.

To know more about gRNA,

https://brainly.com/question/33357601

#SPJ11

(Hair color in trolls is only produced when the T allele is present. Individuals of the tt genotype have white hair. If color is present, the color is determined by the P locus. PP or Pp results in purple color, while pp results in pink hair color. What is the expected phenotypic ratio from a cross between a white-haired female troll with the genotype Ttpp and a purple-haired male troll with the genotype TtPp?)

Answers

The expected phenotypic ratio from the cross between a white-haired female troll with genotype Ttpp and a purple-haired male troll with genotype TtPp is 1:1:1:1, meaning an equal number of offspring with purple hair (regardless of genotype) and offspring with pink hair (regardless of genotype). This results in a balanced distribution of hair color phenotypes.

From the given genotypes, we can determine the possible gametes for each parent:

The white-haired female troll with genotype Ttpp can produce gametes Tp and tp.The purple-haired male troll with genotype TtPp can produce gametes TP, Tp, tP, and tp.

Now, let's determine the phenotypic ratio from the cross between these two trolls:

Possible genotypes of the offspring:

1/4 of the offspring will have genotype TTPP and exhibit purple hair color.

1/4 of the offspring will have genotype TTpp and exhibit pink hair color.

1/4 of the offspring will have genotype TtPP and exhibit purple hair color.

1/4 of the offspring will have genotype Ttpp and exhibit pink hair color.

Therefore, the expected phenotypic ratio from this cross is 1:1:1:1, meaning an equal number of trolls with purple hair (regardless of genotype) and trolls with pink hair (regardless of genotype).

Learn more about genotype at:

https://brainly.com/question/30784786

#SPJ11

Question 34 Method of treatment to help transplanted organs survive because it blocks the co-stimulation step required in B-cell activation A. Rapamycin B. Anti-CD3
C. Cyclosporin A
D. Mab-IgE
E. CTLA-4Ig
Question 35 The first immunoglobulin response made by the fetus is
A. IgG B. IgA C. IgM D. IgD E. all of the Ig's are synthesized at the same time Question 36 The most common test to diagnose lupus
A. the complement fixation test B. double gel diffusion C. RAST test D. microcytotoxcity test E. ANA test

Answers

Question 34: The correct answer is option A. Rapamycin

Question 35: The correct answer is option. C. IgM

Question 36: The correct answer is option. E. ANA test

Question 34:

Method of treatment that helps transplanted organs survive because it blocks the co-stimulation step required in B-cell activation is Rapamycin. It is used in the treatment of transplant rejection and is a macrocyclic lactone produced by Streptomyces hygroscopicus.The target protein of rapamycin is called mammalian target of rapamycin (mTOR), which is a serine/threonine protein kinase that regulates cell growth, division, and survival in eukaryotic cells. Rapamycin targets the immune system, particularly T cells, by preventing the activation and proliferation of immune cells by inhibiting the mTORC1 pathway. This drug has anti-proliferative and anti-inflammatory properties that inhibit the immune response to a foreign antigen. It blocks co-stimulatory signals that induce T cell activation. This makes it very useful in the prevention of organ transplant rejection.

Question 35:

The first immunoglobulin response made by the fetus is IgM. It is synthesized and secreted by the plasma cells of the fetus' liver, bone marrow, and spleen. IgM is a pentameric immunoglobulin that is the first antibody that is synthesized during fetal development. The primary function of IgM is to bind to and neutralize foreign antigens, making it critical for the immune system's initial response to an infection.

Question 36:

The most common test to diagnose lupus is the ANA (antinuclear antibody) test. This test detects antibodies that target the cell nuclei in the body's cells. The ANA test is not diagnostic of lupus, but it is a helpful tool to diagnose the disease along with other clinical and laboratory criteria. If the ANA test is positive, other tests, such as the anti-dsDNA, anti-Sm, anti-Ro/La, or anti-phospholipid antibody tests, may be performed to support the diagnosis of lupus.

Learn more about Rapamycin:

https://brainly.com/question/13128260

#SPJ11

What is the correct ecological term for non-synchronous fluctuations in predator and prey populations?
A. A 'time lag'
B. Predator prey dynamics
C. Oscillations
D. All of the above

Answers

The correct ecological term for non-synchronous fluctuations in predator and prey populations is time lag.

When the fluctuations in predator and prey populations are not synchronous, there is a time lag between the population cycles of the two species. During this time lag, there is a time delay between the population growth of the two species, leading to fluctuations in the population of one species before the other. In this way, ecological time lag is the time difference between the population cycles of different species within an ecosystem. It's crucial to remember that ecological time lags and synchronous fluctuations are related. Synchronous fluctuations refer to the fact that two populations rise and fall in unison over time, while ecological time lags refer to the time differential between these population cycles.

Learn more about non-synchronous here:

https://brainly.com/question/1167303

#SPJ11

Why do mutations in asexual organisms produce greater evolutionary changes than in organisms that reproduce sexually?
a. Mutations in organisms that reproduce asexually are expressed immediately.
b. Organisms that reproduce asexually invest more time and energy in the reproduction process.
c. Organisms that reproduce sexually can produce more offspring in a given period of time.
d. Organisms that reproduce asexually will exhibit greater genetic variation than those that reproduce sexually.

Answers

Organisms that reproduce asexually will exhibit greater genetic variation than those that reproduce sexually (option d) is the right answer.

Organisms reproduce asexually by splitting into two identical daughter cells, unlike sexual reproduction, which involves the exchange of genetic material between two parents, resulting in offspring with varied genetic traits. Although mutations can happen in both asexual and sexual organisms, mutations in asexual organisms tend to generate more significant evolutionary changes than those in sexual organisms.

Mutations can occur spontaneously due to external or internal forces. A mutation is an alteration in a DNA sequence that may or may not cause any effect on an organism. The mutation can result in increased genetic variation in a population, which is an essential factor in evolution.

In asexual organisms, mutations are expressed immediately, and the single mutated organism becomes an entire population. It will result in a genetic shift in the entire population over time, making the mutation more prominent. On the other hand, sexual reproduction increases the variation of genes in the offspring because of the blending of two different sets of genes. Each child receives half of their genetic material from each parent, leading to a more diverse population.

However, the rate of genetic variation is slow in comparison to the rapid production of genetically identical offspring by asexual reproduction. Hence, mutations in asexual organisms produce greater evolutionary changes than in organisms that reproduce sexually.

Learn more about genetic variation here:

https://brainly.com/question/2088746

#SPJ11

Many females prefer to mate with territorial males and NOT with males that hold no territories. Why?

Answers

Females prefer mating with territorial males due to resource access, genetic superiority, parental care, and a competitive advantage, ensuring higher survival and reproductive success for themselves and their offspring.

The preference of females for mating with territorial males can be attributed to several factors, many of which are rooted in evolutionary biology and reproductive strategies. Here are some reasons why females may show a preference for territorial males:

Resource availability: Territorial males often have access to more resources within their territories, such as food, nesting sites, or shelter. By choosing a territorial male, females can gain access to these resources, which can enhance their own survival and the survival of their offspring.Good genes hypothesis: Territorial males may demonstrate higher genetic quality, indicating their ability to survive and succeed in acquiring and defending a territory. Females can benefit from mating with such males as it increases the likelihood of their offspring inheriting advantageous traits, including better disease resistance, physical prowess, or cognitive abilities.Parental care: Territorial males are more likely to invest in parental care, as they have a stake in protecting and providing for their offspring within their territories. By selecting a territorial male, females increase the chances of receiving support and assistance in raising their young, leading to higher survival rates for their offspring.Competitive advantage: Mating with a territorial male can also confer a competitive advantage to the female. Territorial males often engage in aggressive behaviors to defend their territories from other males, reducing the chances of infidelity and ensuring the offspring's paternity.

It's important to note that while these preferences may be observed in many species, including some primates and birds, mating preferences can vary across different animal groups, and not all females exhibit the same preferences. Additionally, social and ecological factors can influence the extent to which these preferences are expressed in a given population or species.

To learn more about genetic superiority, Visit:

https://brainly.com/question/4961219

#SPJ11

4 Liquid nitrogen is used in dermatology mainly: for its emollient effects O for its antiinflammatory effects for its caustic effects for its keratolytic effects O for its astringent effects

Answers

This means that it is used to remove certain types of skin growths or lesions that have a rough or scaly texture like warts, actinic keratosis, seborrheic keratosis, and others. This process is called cryotherapy or cryosurgery.An explanation for each of the options is given below:-

For its emollient effects: This option is incorrect because liquid nitrogen is not used for its emollient effects. Emollients are substances that are used to soothe or soften the skin and are usually used in skin moisturizers.- For its anti-inflammatory effects:

This option is incorrect because liquid nitrogen is not used for its anti-inflammatory effects. Anti-inflammatory substances are used to reduce inflammation and are used to treat conditions like eczema, psoriasis, and others.- For its caustic effects: This option is incorrect because liquid nitrogen is not used for its caustic effects. Caustic substances are used to burn or destroy tissues and are not used in dermatology.- For its astringent effects: This option is incorrect because liquid nitrogen is not used for its astringent effects. Astringents are substances that are used to tighten the skin and reduce oiliness and are usually used in toners.

TO know more about that keratosis visit:

https://brainly.com/question/12653558

#SPJ11

13. Which of the following represents the correct order of stages during Drosophila development?
Select one:
a.
zygote, syncytial blastoderm, cellular blastoderm, gastrula, larva, pupa, adult
b.
syncytial blastoderm, cellular blastoderm, zygote, gastrula, larva, pupa, adult
c.
zygote, larva, gastrula, pupa, syncytial blastoderm, cellular blastoderm, adult
d.
cellular blastoderm, syncytial blastoderm, zygote, gastrula, pupa, larva, adult
and.
zygote, cellular blastoderm, syncytial blastoderm, gastrula, larva, pupa, adult
14.The following protein represents an inductive signal for the creation of lens tissue:
Select one:
a.
FGF8
b.
BMP4
c.
crystalline
d.
all of the above
and.
a and b are correct
15.The following molecule acts as a paracrine factor:
Select one:
a.
wnt
b.
hedgehog
c.
Delta
d.
all of the above
and.
a and b are correct

Answers

14. The protein that represents an inductive signal for the creation of lens tissue is: c. crystalline.

15. The molecule that acts as a paracrine factor is: d. all of the above (a. wnt and b. hedgehog).

these are correct answers.

Crystalline is a protein involved in the development and function of the lens in the eye. It plays a crucial role in the formation of lens tissue during development.

Both Wnt and Hedgehog molecules are examples of paracrine factors. Paracrine signaling refers to the release of signaling molecules by one cell to act on nearby cells, affecting their behavior or gene expression. Both Wnt and Hedgehog molecules function as paracrine signals in various developmental processes and tissue homeostasis.

To know more about tissue visit:

brainly.com/question/13251272

#SPJ11

DNA sequencing and genotyping of "indigenous" people from around the world can identify haplotypes that are relatively specific to particular countries or areas in the world. Consider a person whose ancestors lived for many generations in one part of the world. That person has reason to believe that one of their 4 x great grandparents came from a different far away part of the world (and that 4 x great parents ancestors were also from that different far away part of the world). A. What fraction of the person's DNA is expected to contain haplotypes from the far away part of the world? B. Given that humans have approximately 6,000,000,000 bp of DNA in their genome, how many base pairs do you expect to have in common with your ancestors from the different far away part of the world? C. How many SNPs are you expected to have in common with your ancestors in the far away part of the world?

Answers

Solution of Question A:

A. The fraction of the person's DNA expected to contain haplotypes from the far away part of the world would be 1/64 (or approximately 0.0156).

Each generation contributes half of their DNA to the next generation. Since the person in question has a single 4 x great grandparent from the far away part of the world, that ancestor's DNA would represent 1/64 (2^(-6)) of the person's total DNA. This fraction represents the probability that any given segment of the person's DNA would have originated from the far away part of the world.

Solution of Question B:

B. Given that humans have approximately 6,000,000,000 bp of DNA in their genome, the number of base pairs expected to be in common with the ancestors from the different far away part of the world would depend on the specific genomic region and the extent of genetic similarity between populations.

Without specific information about the specific genomic regions that might contain haplotypes from the far away part of the world, it is challenging to provide an accurate estimation of the number of base pairs in common. However, it's important to note that the human genome is remarkably similar across populations, with more than 99.9% of the DNA sequence being shared among individuals. The specific shared base pairs with the ancestors from the far away part of the world would depend on the genetic variations specific to that population and the extent of shared ancestry.

Solution of Question C:

C. The number of SNPs (single nucleotide polymorphisms) expected to be in common with the ancestors in the far away part of the world would depend on the genetic diversity of that population and the degree of shared ancestry.

SNPs are variations in a single nucleotide base pair within the DNA sequence. The number of SNPs that a person is expected to have in common with their ancestors from the far away part of the world would depend on the genetic diversity and prevalence of specific SNPs within that population. Without detailed information about the specific population and the person's specific genetic profile, it is challenging to provide a precise estimate. However, it is likely that there would be some shared SNPs, as humans across the globe share a considerable portion of their genetic variation.

To know more about DNA sequence.  click here,

https://brainly.com/question/31650148

#SPJ11

About 70% of the salt in our diet typically comes from _______ a. meals prepared at home b. peanut butter, ketchup, mustard, and other condiments c. prepared or processed food from the grocery store or restaurants d. potato chips and similar salty/crunchy snacks

Answers

About 70% of the salt in our diet typically comes from prepared or processed food from the grocery store or restaurants. The correct option is c).

Processed and prepared foods from grocery stores or restaurants contribute to about 70% of the salt in our diet. These foods often contain high amounts of added salt for flavoring and preservation purposes.

Common examples include canned soups, frozen meals, deli meats, bread, and savory snacks. Additionally, condiments like ketchup, mustard, and salad dressings can also add significant salt content to our diet.

It is important to be mindful of our salt intake as excessive consumption can increase the risk of high blood pressure and other related health issues. Therefore, the correct option is c).

To know more about processed foods, refer to the link:

https://brainly.com/question/32343900#

#SPJ11

1. In eukaryotes, the net ATP produced from glycolysis to aerobic respiration is 36 while in prokaryotes is 38. Explain why. (5 pts.)
2. Explain chemiosmotic mechanism of ATP generation. (5 pts.)
3. Place a picture of an electron transport chain and mark the following using the appropriate letter: (4 pts)
a. the acidic side of the membrane
b. the side with a positive electrical charge
c. potential energy
d. kinetic energy
4. Why must NADH be reoxidized? How does this happen in an organism that uses respiration? Fermentation? (5 pts.).

Answers

eukaryotes produce 36 net ATP while prokaryotes produce 38 net ATP due to differences in the transport of electrons. In eukaryotes,

energy from NADH and FADH2 produced from glycolysis, the transition reaction and Krebs cycle is transported to the electron transport chain through shuttle systems resulting in a loss of two ATPs. In prokaryotes, energy from NADH and FADH2 is transferred directly to the electron transport chain, which produces an additional 2 ATP.2. Chemiosmotic mechanism of ATP generation is the process of making ATP using the energy of the proton gradient formed by the electron transport chain.

In this mechanism, electrons pass through the electron transport chain releasing energy that pumps protons from the matrix into the intermembrane space. As protons accumulate in the intermembrane space, a gradient is formed. ATP synthase uses this gradient to generate ATP by allowing protons to move from the intermembrane space into the matrix, driving the rotation of ATP synthase. This rotation converts ADP and Pi to ATP.3. I am sorry, as it is not possible to place an image on the text box.4. NADH must be reoxidized to maintain the redox balance of the cell. In respiration, NADH is reoxidized by donating electrons to the electron transport chain, which generates ATP.

TO know more about that prokaryotes visit:

https://brainly.com/question/29054000

#SPJ11

Ants outnumber and outweigh all of the following living organisms on earth except Bacteria Cattle Humans Termites

Answers

Ants outnumber and outweigh all of the following living organisms on earth except for Bacteria and Termites. The statement is true.

Ants are social insects that form colonies and live in different habitats and environments. They play an essential role in ecosystems, such as pollination and soil aeration.Ants outnumber and outweigh all of the following living organisms on earth except for bacteria and termites because they have higher biomass than all other insects combined. They are abundant on almost every continent and are found in a variety of habitats from deserts to rainforests. Ants form colonies of different sizes, and these colonies can contain from a few dozen individuals to millions of ants.The total number of ants on Earth is difficult to estimate, but it is believed that there are more than ten thousand known species of ants. They have many different ecological roles, and they play a significant role in the food chain of many ecosystems.Ants have complex social behavior and communicate with each other using chemical signals. They work together to build and maintain their nests and collect food. They are considered one of the most successful groups of insects on earth because of their social behavior and ability to adapt to changing environments.

Learn more about bacteria at https://brainly.com/question/15490180

#SPJ11

4. Discuss the reactions and events of glycolysis indicating substrates, products, and enzymes - in order! I did the first for you. Substrate Enzyme Product i. glucose hexokinase/glucokinase glucose-6-phosphate ii. iii. iv. V. vi. vii. viii. ix. X.

Answers

Glycolysis is a multistep process involving the breakdown of glucose into pyruvate for the generation of energy.

The steps involved in glycolysis are as follows:

1. Glucose → (enzyme hexokinase) → glucose-6-phosphate

2. Glucose-6-phosphate → (enzyme phosphoglucose isomerase) → Fructose-6-phosphate

3. Fructose-6-phosphate → (enzyme phosphofructokinase-1) → Fructose-1,6-bisphosphate

4. Fructose-1,6-bisphosphate → (enzyme aldolase) → Dihydroxyacetone phosphate (DHAP) and Glyceraldehyde-3-phosphate (G3P)

5. DHAP → (enzyme triose phosphate isomerase) → Glyceraldehyde-3-phosphate (G3P)

6. Glyceraldehyde-3-phosphate → (enzyme glyceraldehyde-3-phosphate dehydrogenase) → 1,3-bisphosphoglycerate

7. 1,3-bisphosphoglycerate → (enzyme phosphoglycerate kinase) → 3-phosphoglycerate

8. 3-phosphoglycerate → (enzyme phosphoglycerate mutase) → 2-phosphoglycerate

9. 2-phosphoglycerate → (enzyme enolase) → Phosphoenolpyruvate (PEP)

10. Phosphoenolpyruvate (PEP) → (enzyme pyruvate kinase) → Pyruvate

Learn more about glycolysis in:

https://brainly.com/question/26990754

#SPJ4

When you eat enough carbs, your protein is spared
gluconeogenesis. What does this mean?

Answers

When you eat enough carbs, your protein is spared from gluconeogenesis. This implies that when carbohydrates are present in the diet, protein molecules are not broken down to produce glucose molecules.

Instead, carbohydrates are converted to glucose molecules, which meet the body's energy requirements. Gluconeogenesis is the procedure of generating glucose from non-carbohydrate sources such as amino acids from protein, lactate, and glycerol.

In the absence of adequate carbohydrate supplies, this process occurs as a means of replenishing blood glucose concentrations. When a person eats an adequate quantity of carbohydrates, the glucose molecules can be used for energy, and there is no need for protein breakdown to create glucose. This is crucial since protein breakdown can result in the loss of muscle tissue, which may lead to weakness, weight loss, and an increased risk of chronic disease.

In short, it implies that when the body is fed adequate carbohydrates, the protein in the diet is utilized for its designated role in the body, which includes tissue repair, muscle growth and maintenance, and other metabolic processes rather than being used for energy generation.

Learn more about gluconeogenesis here:

https://brainly.com/question/13032017

#SPJ11

The replication method for making tissue scaffolds is also know as?

Answers

The replication method for making tissue scaffolds is commonly known as bioprinting.

Bioprinting is a revolutionary technology used in tissue engineering to create three-dimensional structures known as tissue scaffolds. It involves the precise deposition of living cells, biomaterials, and growth factors layer by layer to build functional tissue constructs. Bioprinting utilizes specialized printers equipped with bioink cartridges containing cell-laden materials. The process begins with the design of a digital model or blueprint of the desired tissue structure, which is then converted into printer instructions. These instructions guide the bioprinter to deposit the bioink in a controlled manner, mimicking the natural architecture and organization of the target tissue. As the bioink is deposited, the living cells within it can adhere, proliferate, and differentiate, gradually forming mature tissue. Bioprinting offers several advantages, including the ability to create complex tissue structures with high precision, customization to match patient-specific requirements, and the potential for rapid fabrication. This technology holds great promise for regenerative medicine and has the potential to revolutionize the field by enabling the production of functional tissues and organs for transplantation and drug testing purposes.

Learn more about bioprinting:

https://brainly.com/question/11138981

#SPJ11

Other Questions
Answer these discussion questions.Topic # 1: Plant growth hormone and chemical complementation: Plant scientists postulate that a new class of plant growth hormones may control Arabidopsis growth. To confirm their idea, the scientists knock out a gene in Arabidopsis wildtype Ler-0 (Landsberg erecta) and succeed in generating a stunted mutant they call de-etiolated2 (det2). Using a purified form of the hormone "brassinosteroid," they rescue the mutants phenotype such that it is indistinguishable from Ler-0. What are the geneticists to make of their observations?Topic #2: Plant flowering time control: Plants sense day length to determine the appropriate time for flowering. This is controlled mainly be phytochrome and its conversion from one for to another. Describe how this process works. Endurance exercise performance is improved through aerobic (endurance) exercise training due to ...a. an enhanced capacity of muscle fibres to generate ATP.b. improvements in central and peripheral blood flow.c. both an enhanced capacity of muscle fibres to generate ATP, and improvements in central and peripheral blood flow.d. none of these answers. Explain why you think that cuisine hasn't historically beenmentioned with the other "arts" and why you agree or disagree withthis exclusion. Please provide realistic, workable and well-supported recommendations for action for Apple Inc. internationally. Please provide data to support why these recommendations are being made. You may include charts and tables where appropriate. What are modes of natural selections (name them only) and ofthem, which one is an ideal model for rapid speciation? Why? Question 101 Homework Unanswered Fill in the Blanks Type your answers in all of the blanks and submit X X H106 + Cr-10 + Cr+ For the previous redox reaction, enter the correct coefficient For the same operating conditions and air properties as Q.1(T1 = 20C = 293K; T3 = 1000C = 1273K; rp = 8;Data for air, cp = 1.01 kJ/kg-K; g = 1.4)but using compressor and turbine isentropic efficiencies of hC = 0.85, hT = 0.90 respectively:-Sketch and annotate a T-s diagram of the cycle.Calculate the specific work input to the compressor, the specific work output from the turbine and hence the net specific work output from the cycle.[Answers: 283 kJ/kg, -518 kJ/kg, -235 kJ/kg]Calculate the cycle thermal efficiency[Answer: 0.33]Calculate the net power output if the air mass flow rate through the system is 15 kg/s.[Answer: 3555 kW] I just want answers without justification, I only have10 minutes to solve themAutonomic motor nerves innervate all 1 poir of the following except: The heart The small intestine The salivary glands The biceps muscle Which of these elements is a 1 poir compound of the parasympath Partitions and roadmaps (30 points). For the free workspace in Fig. 2, do the following: Pgoal Pstart Fig. 2: Problem 3. (i). (10 points) Sketch the free workspace and trapezoidate it (using the sweeping trapezoidation algorithm). (ii). (10 points) Sketch the dual graph for the trapezoidal partition and the roadmap. (iii). (10 points) Sketch a path from start point to goal point in the dual graph and an associated path in the workspace that a robot can follow. If a 4-bit ADC with maximum detection voltage of 32V is used for a signal with combination of sine waves with frequencies 20Hz, 30Hz and 40Hz. Find the following:i) The number of quantisation levels,ii) The quantisation interval, A steel (E=30,000 ksi) bar of rectangular cross section consists of a uniform-width segment (1) and a tapered segment (2), as shown. The width of the tapered segment varied linearly from 2 in. at the bottom to 5 in. at top. The bar has a constant thickness of 0.50 in. Determine the elongation of the bar resulting from application of the 30 kip load. Neglect the weight of the bar.(E=30,000 ksi) (a) Assuming a typical burn time for a rocket, calculate the effect on Av if a rocket is launched totally vertically throughout its flight. Comment on your answer. (b) Explain why in terms of achievab A firm has the cost function C(Q) = 4Q2+12Q+36. It operates in a perfectly competitive market. (25 points)1. At what price will this firm make exactly zero profit? (10 points)2. What is the firm's short run supply curve? (2 points)3. There are 16 identical firms in the market. Market demand is given by QD = 76-2P. Find short run market equilibrium price and quantity. Are profits positive or negative? (8 points)4. Will firms enter or exit the industry in the long run? What is the long run equilibrium market quantity and how many firms are there in the long run? Hint: the number of firms will be a fraction. (5 points a) Compare the mechanisms of nucleotide excision repair in E.coli and human cells. Discuss the mechanistic differences between transcription coupled repair and global genome repair in both organisms. In their famous experiment, Alfred Hershey and Martha Chase concluded that DNA, not protein, is the genetic material. This conclusion was drawn from two complementary experiments: one with radioactive sulphur (S) and one with radioactive phosphorus (P). a) What conclusion could have been drawn if only radioactive P was used (not also radioactive S)? b) What conclusion could have been drawn if only radioactive S was used (not also radioactive P)? [2 marks] Which ketone are you using? If you used 2-butanoneas your ketone for the aldol condensation, go back and change your selection to cyclopentanone "virtually". Use the virtual data provided in place of Among the nuclei with the longest half-life is 232U i.e. T/2 = 4.47 10 years with an abundance at this time of 99.27%. (1). Explain the physical (phenomenological) meaning of the abundance of 40. How is Climate Change linked to land management? Degrading land use results in loss of carbon from vegetation and soil to the atmosphere Increased irrigation increases water in circulation which i A closed, rigid tank is filled with water. Initially the tank holds 0.8 lb of saturated vapor and 6.0 b of saturated liquid, each at 212F The water is heated until the tank contains only saturated vapor, Kinetic and potential energy effects can be ignored Determine the volume of the tank, in ft, the temperature at the final state, in F, and the heat transferi in Btu What is the pressure when a gas originally at 1.81 atm and a volumeof 1.80 L is expanded to 3.16 L ?