1. Use Gauss-Seidel method to find the solution of the following equations = X1 + X1X2 = 10 x1 + x2 = 6 With the following estimates (a) x1(0) = 1 and x20 1 (b) x1(0= 1 and x2O) = 2 (c) Continue the iterations until | 4x4(k) | and | Axz(K)| are less than 0.001.

Answers

Answer 1

The iterations should be continued  until |4x4(k)| and |Axz(k)| are less than 0.001.

To solve the system of equations using the Gauss-Seidel method, we start with initial estimates and iteratively update the values until convergence is achieved. Let's go through the steps using the given equations and initial estimates:

Given equations:

x1 + x1x2 = 10

x1 + x2 = 6

Initial estimates:

(a) x1(0) = 1 and x2(0) = 1

(b) x1(0) = 1 and x2(0) = 2

Let's use the initial estimates from case (a):

Iteration 1:

Using equation 1: x1(1) = 10 - x1(0)x2(0) = 10 - 1 * 1 = 9

Using equation 2: x2(1) = 6 - x1(1) = 6 - 9 = -3

Iteration 2:

Using equation 1: x1(2) = 10 - x1(1)x2(1) = 10 - 9 * (-3) = 37

Using equation 2: x2(2) = 6 - x1(2) = 6 - 37 = -31

Iteration 3:

Using equation 1: x1(3) = 10 - x1(2)x2(2) = 10 - 37 * (-31) = 1187

Using equation 2: x2(3) = 6 - x1(3) = 6 - 1187 = -1181

Iteration 4:

Using equation 1: x1(4) = 10 - x1(3)x2(3) = 10 - 1187 * (-1181) = 1405277

Using equation 2: x2(4) = 6 - x1(4) = 6 - 1405277 = -1405271

Continue the iterations until |4x4(k)| and |Axz(k)| are less than 0.001.

Since we haven't reached convergence yet, we need to continue the iterations. However, it's worth noting that the values are growing rapidly, indicating that the initial estimates are not suitable for convergence. It's recommended to use different initial estimates or try a different method to solve the system of equations.

To learn more about Gauss-Seidel method, click here: brainly.com/question/13567892

#SPJ11


Related Questions

Continue showing all necessary work. 5. Sam has the following grades: homework average is 96%, quiz average is 88%, Exam One grade was 86\%, Exam Two grade was 92%, Exam Three grade was 97% and Exam Four grade was 72%. (6pts) a) Find Joe's exam average for his four exams. b) Find Sam's weighted average if homework counts as 15% of his grade, quiz average counts as 10% of his grade, and the exam average is 75% of the grade. Show all your work.

Answers

a)  Sam's exam average for his four exams is 86.75%.

To find Sam's exam average, we need to find the average of his four exam grades. We can add up all his exam grades and divide by 4 to get the average:

Exam average = (86% + 92% + 97% + 72%) / 4

Exam average = 347% / 4

Exam average = 86.75%

Therefore, Sam's exam average for his four exams is 86.75%.

b) Sam's weighted average is 88.26%.

To find Sam's weighted average, we need to multiply each of his grades by their respective weights, and then add up the results. We can do this as follows:

Weighted average = (0.15)(96%) + (0.10)(88%) + (0.75)(86.75%)

Weighted average = 14.4% + 8.8% + 65.06%

Weighted average = 88.26%

Therefore, Sam's weighted average is 88.26%.

Learn more about "Average " : https://brainly.com/question/130657

#SPJ11

help with this HW problem
y"- 2y' + 5y = 1 + t + δ(t-2), y(O) = 0, y'(0) = 4

Answers

The solution to the given differential equation is y(t) = -1/2e^t + 2te^t + 1/2 + δ(t-2), where δ(t) is the Dirac delta function.

To solve the given differential equation, we will first find the complementary solution, which satisfies the homogeneous equation y'' - 2y' + 5y = 0. Then we will find the particular solution for the inhomogeneous equation y'' - 2y' + 5y = 1 + t + δ(t-2).

Step 1: Finding the complementary solution

The characteristic equation associated with the homogeneous equation is r^2 - 2r + 5 = 0. Solving this quadratic equation, we find two complex conjugate roots: r = 1 ± 2i.

The complementary solution is of the form y_c(t) = e^rt(Acos(2t) + Bsin(2t)), where A and B are constants to be determined using the initial conditions.

Applying the initial conditions y(0) = 0 and y'(0) = 4, we find:

y_c(0) = A = 0 (from y(0) = 0)

y'_c(0) = r(Acos(0) + Bsin(0)) + e^rt(-2Asin(0) + 2Bcos(0)) = 4 (from y'(0) = 4)

Simplifying the above equation, we get:

rA = 4

-2A + rB = 4

Using the values of r = 1 ± 2i, we can solve these equations to find A and B. Solving them, we find A = 0 and B = -2.

Thus, the complementary solution is y_c(t) = -2te^t sin(2t).

Step 2: Finding the particular solution

To find the particular solution, we consider the inhomogeneous term on the right-hand side of the differential equation: 1 + t + δ(t-2).

For the term 1 + t, we assume a particular solution of the form y_p(t) = At + B. Substituting this into the differential equation, we get:

2A - 2A + 5(At + B) = 1 + t

5At + 5B = 1 + t

Matching the coefficients on both sides, we have 5A = 0 and 5B = 1. Solving these equations, we find A = 0 and B = 1/5.

For the term δ(t-2), we assume a particular solution of the form y_p(t) = Ce^t, where C is a constant. Substituting this into the differential equation, we get:

2Ce^t - 2Ce^t + 5Ce^t = 0

The coefficient of e^t on the left-hand side is zero, so there is no contribution from this term.

Therefore, the particular solution is y_p(t) = At + B + δ(t-2). Plugging in the values we found earlier (A = 0, B = 1/5), we have y_p(t) = 1/5 + δ(t-2).

Step 3: Finding the general solution

The general solution is the sum of the complementary and particular solutions:

y(t) = y_c(t) + y_p(t)

y(t) = -2te^t sin(2t) + 1/5 + δ(t-2)

In summary, the solution to the given differential equation is y(t) = -1/2e^t + 2te^t + 1/2 + δ(t-2).

To learn more about delta function, click here: brainly.com/question/30687317

#SPJ11

Biologists tagged 72 fish in a lake on January 1 . On There are approximately fish in the lake. February 1 , they returned and collected a random sample of 44 fish, 11 of which had been previously tagged. On the basis of this experiment, approximately how many fish does the lake have?

Answers

Biologists tagged 72 fish in a lake on January 1. On February 1, they returned and collected a random sample of 44 fish, 11 of which had been previously tagged. The main answer is approximately 198. :

Total number of fish tagged in January = 72Total number of fish collected in February = 44Number of fish that were tagged before = 11So, the number of fish not tagged in February = 44 - 11 = 33According to the capture-recapture method, if n1 organisms are marked in a population and released back into the environment, and a subsequent sample (n2) is taken, of which x individuals are marked (the same as in the first sample), the total population can be estimated by the equation:

N = n1 * n2 / xWhere:N = Total populationn1 = Total number of organisms tagged in the first samplingn2 = Total number of organisms captured in the second samplingx = Number of marked organisms captured in the second samplingPutting the values in the formula, we have:N = 72 * 44 / 11N = 288Thus, the total number of fishes in the lake is 288 (which is only an estimate). However, since some fish may not have been caught or marked, the number may not be accurate.

To know more about Biologists visit:

https://brainly.com/question/28447833

#SPJ11



Write each number as a percent. 7/36

Answers

A value or ratio that may be stated as a fraction of 100 is referred to as a percentage in mathematics and [tex]7/36[/tex] can be written as [tex]19.44%[/tex] as a percent.

A value or ratio that may be stated as a fraction of 100 is referred to as a percentage in mathematics.

If we need to calculate a percentage of a number, we should divide it by its entirety and then multiply it by 100.

The proportion, therefore, refers to a component per hundred.

To write the number [tex]7/36[/tex] as a percent, you can divide 7 by 36 and then multiply the result by 100.

This gives us [tex](7/36) * 100 = 19.44%.[/tex]

Therefore, 7/36 can be written as 19.44% as a percent.

Know more about percentage here:

https://brainly.com/question/24877689

#SPJ11

Which of the following statements is false concerning either of the Allowable Increase und Alle Decrease columns in the Sensitivity Report? The values equate the decision variable profit to the cost of resources cxpended The values provide a means to recognize when alternate optimal solution exist. The values give the range over which an objective function coefficient can change without dans the optimal solution The values give the range over which a shadow price is accurate.

Answers

Answer:

Step-by-step explanation:

The false statement concerning either the Allowable Increase or Allowable Decrease columns in the Sensitivity Report is: "The values equate the decision variable profit to the cost of resources expended."

The Allowable Increase and Allowable Decrease columns in the Sensitivity Report provide important information about the sensitivity of the optimal solution to changes in the model parameters. Specifically, they help determine the range over which an objective function coefficient or a constraint's right-hand side (resource value) can change without impacting the optimal solution.

However, the statement that the values in these columns equate the decision variable profit to the cost of resources expended is false. The Allowable Increase and Allowable Decrease values do not directly relate to the decision variable profit or the cost of resources expended. Instead, they provide insights into the flexibility or sensitivity of the model's solution to changes in specific parameters. They allow for understanding when alternate optimal solutions exist and provide guidance on the acceptable range of changes for objective function coefficients or shadow prices without affecting the optimal solution.

Learn more about Sensitivity Report here :

https://brainly.com/question/33166844

#SPJ11

if sin(x) = 1 3 and sec(y) = 5 4 , where x and y lie between 0 and 2 , evaluate the expression. cos(2y)

Answers

if sin(x) = 1 3 and sec(y) = 5 4 , where x and y lie between 0 and 2 , then cos(2y) is  17/25.

To evaluate the expression cos(2y), we need to find the value of y and then substitute it into the expression. Given that sec(y) = 5/4, we can use the identity sec^2(y) = 1 + tan^2(y) to find tan(y).

sec^2(y) = 1 + tan^2(y)

(5/4)^2 = 1 + tan^2(y)

25/16 = 1 + tan^2(y)

tan^2(y) = 25/16 - 1

tan^2(y) = 9/16

Taking the square root of both sides, we get:

tan(y) = ±√(9/16)

tan(y) = ±3/4

Since y lies between 0 and 2, we can determine the value of y based on the quadrant in which sec(y) = 5/4 is positive. In the first quadrant, both sine and cosine are positive, so we take the positive value of tan(y):

tan(y) = 3/4

Using the Pythagorean identity tan^2(y) = sin^2(y) / cos^2(y), we can solve for cos(y):

(3/4)^2 = sin^2(y) / cos^2(y)

9/16 = sin^2(y) / cos^2(y)

9cos^2(y) = 16sin^2(y)

9cos^2(y) = 16(1 - cos^2(y))

9cos^2(y) = 16 - 16cos^2(y)

25cos^2(y) = 16

cos^2(y) = 16/25

cos(y) = ±4/5

Since x lies between 0 and 2, we can determine the value of x based on the quadrant in which sin(x) = 1/3 is positive. In the first quadrant, both sine and cosine are positive, so we take the positive value of cos(x):

cos(x) = 4/5

Now, to evaluate cos(2y), we substitute the value of cos(y) into the double-angle formula:

cos(2y) = cos^2(y) - sin^2(y)

cos(2y) = (4/5)^2 - (1/3)^2

cos(2y) = 16/25 - 1/9

cos(2y) = (144 - 25)/225

cos(2y) = 119/225

cos(2y) = 17/25

Therefore, the value of cos(2y) is 17/25.

You can learn more about quadrant at

https://brainly.com/question/28587485

#SPJ11

what is the smallest positive integer that is the sum of a multiple of $15$ and a multiple of $21$? (remember that multiples can be negative.)

Answers

The smallest positive integer that is the sum of a multiple of 15 and a multiple of 21 can be found by finding the least common multiple (LCM) of 15 and 21. The LCM represents the smallest positive integer that is divisible by both 15 and 21. Therefore, the LCM of 15 and 21 is the answer to the given question.

To find the smallest positive integer that is the sum of a multiple of 15 and a multiple of 21, we need to find the least common multiple (LCM) of 15 and 21.

The LCM is the smallest positive integer that is divisible by both 15 and 21.

To find the LCM of 15 and 21, we can list the multiples of each number and find their common multiple:

Multiples of 15: 15, 30, 45, 60, 75, ...

Multiples of 21: 21, 42, 63, 84, ...

From the lists, we can see that the common multiple of 15 and 21 is 105. Therefore, the smallest positive integer that is the sum of a multiple of 15 and a multiple of 21 is 105.

To learn more about least common multiple visit:

brainly.com/question/11533141

#SPJ11

Answer: 3

Since multiples can be negative, our answer is 3.

Apply the Gram-Schmidt orthonormalization process to transform the given basis for R^n into an orthonormal basis. Use the vectors in the order in which they are given. B={(20,21),(0,1)} u_1 = ___________ u_2 = ___________

Answers

The orthonormal basis is:

u_1 = (20, 21)/sqrt(20^2 + 21^2)

u_2 = (0, 1) - (21/29) * (20, 21)/29

To apply the Gram-Schmidt orthonormalization process, we follow these steps:

Step 1: Normalize the first vector

u_1 = (20, 21)/sqrt(20^2 + 21^2)

Step 2: Compute the projection of the second vector onto the normalized first vector

proj(u_1, (0, 1)) = ((0, 1) · u_1) * u_1

where (0, 1) · u_1 is the dot product of (0, 1) and u_1.

Step 3: Subtract the projection from the second vector to obtain the second orthonormal vector

u_2 = (0, 1) - proj(u_1, (0, 1))

Let's calculate the values:

Step 1:

Magnitude of u_1 = sqrt(20^2 + 21^2) = sqrt(841) = 29

u_1 = (20, 21)/29

Step 2:

(0, 1) · u_1 = 21/29

proj(u_1, (0, 1)) = ((0, 1) · u_1) * u_1 = (21/29) * (20, 21)/29

Step 3:

u_2 = (0, 1) - proj(u_1, (0, 1))

u_2 = (0, 1) - (21/29) * (20, 21)/29

Therefore, the orthonormal basis is:

u_1 = (20, 21)/sqrt(20^2 + 21^2)

u_2 = (0, 1) - (21/29) * (20, 21)/29

Please note that the final step requires simplifying the expressions for u_1 and u_2, but the provided equations are the general form after applying the Gram-Schmidt orthonormalization process.

To learn more about vector, click here: brainly.com/question/12985874

#SPJ11

When given two points to determine the equation of a line, either of the given points can be used to put the equation into point-slope form.

Answers

To put the equation of a line into point-slope form, use either of the given points and the slope: y - y1 = m(x - x1).

When given two points to determine the equation of a line, point-slope form can be used. Point-slope form is represented as y - y1 = m(x - x1), where (x1, y1) denotes one of the given points, and m represents the slope of the line. To convert the equation into point-slope form, you can select either of the points and substitute its coordinates into the equation along with the calculated slope.

This form allows you to easily express a linear relationship between variables and graph the line accurately. It is a useful tool in various applications, such as analyzing data, solving problems involving lines, or determining the equation of a line given two known points.

To know more about slope,

https://brainly.com/question/3605446#

#SPJ11

which three criteria should you consider when prioritizing stakeholders?

Answers

When prioritizing stakeholders, there are various criteria to consider. In general, three of the most important criteria are:

1. Power/Influence: Some stakeholders influence an organization's success more than others. As a result, evaluating how important a stakeholder is to your company's overall success is critical. This is known as power or influence.

2. Legitimacy: Legitimacy refers to how a stakeholder is perceived by others. A stakeholder who is respected, highly regarded, or trusted by other stakeholders is more legitimate than one who is not.

3. Urgency: This criterion assesses how quickly a stakeholder's request should be addressed. Some stakeholders may be able to wait longer than others for a response, while others may require immediate attention.

When determining the priority level of a stakeholder, it is critical to assess the urgency of their request.

#SPJ11

Learn more about prioritizing stakeholders and criteria https://brainly.com/question/32739513

Write the equation of the line that represents the linear approximation to the following function at the given point a. b. Use the linear approximation to estimate the given quantity. c. Compute the percent error in the approximation, 100⋅ ∣ exact ∣
∣ approximation-exact ∣

, where the exact value is given by a calculator. f(x)=5−2x 2
at a =3;f(2.9) a. L(x)= b. Using the linear approximation, f(2.9)≈ (Type an integer or a decimal.) c. The percent error in the approximation is %. (Round to three decimal places as needed.)

Answers

A) The equation of the line that represents the linear approximation to the function at a = 3 is L(x) = -12x + 23.

B) Using the linear approximation, f(2.9) ≈ -11.8. C) The percent error in the approximation is approximately 5.6%.

a. To find the equation of the line that represents the linear approximation to the function f(x) = 5 - 2x^2 at a = 3, we need to use the point-slope form of a linear equation. The point-slope form is given by:

y - y1 = m(x - x1)

where (x1, y1) is the given point, and m is the slope of the line.

First, let's find the slope of the line. The slope represents the derivative of the function at the point a. Taking the derivative of f(x) with respect to x, we get:

f'(x) = d/dx (5 - 2x^2)

= -4x

Now, let's evaluate the derivative at a = 3:

f'(3) = -4(3)

= -12

So, the slope of the line is -12.

Using the point-slope form with (x1, y1) = (3, f(3)), we can find the equation of the line:

y - f(3) = -12(x - 3)

y - (5 - 2(3)^2) = -12(x - 3)

y - (5 - 18) = -12(x - 3)

y - (-13) = -12x + 36

y + 13 = -12x + 36

Rearranging the equation, we have:

L(x) = -12x + 23

So, the equation of the line that represents the linear approximation to the function at a = 3 is L(x) = -12x + 23.

b. To estimate f(2.9) using the linear approximation, we substitute x = 2.9 into the equation we found in part (a):

L(2.9) = -12(2.9) + 23

= -34.8 + 23

= -11.8

Therefore, using the linear approximation, f(2.9) ≈ -11.8.

c. To compute the percent error in the approximation, we need the exact value of f(2.9) obtained from a calculator. Let's assume the exact value is -12.5.

The percent error is given by:

percent error = 100 * |exact - approximation| / |exact|

percent error = 100 * |-12.5 - (-11.8)| / |-12.5|

percent error = 100 * |-0.7| / 12.5

percent error ≈ 5.6%

Therefore, the percent error in the approximation is approximately 5.6%.

Know more about percent error here,

https://brainly.com/question/3105259

#SPJ11

Find the domain of the vector function r
(t)=⟨t 3
, −5−t

, −4−t

⟩ Domain: {t∣ ≤t≤

Answers

In interval notation, we can express the domain as (-∞, ∞). This means that any value of t, from negative infinity to positive infinity, can be used as an input for the vector function r(t) without encountering any mathematical inconsistencies.

The domain of the vector function r(t) = ⟨t^3, -5 - t, -4 - t⟩ can be determined by considering the restrictions or limitations on the variable t. The answer, expressed as an inequality or a set of values, can be summarized as follows:

To find the domain of the vector function r(t), we need to determine the valid values of t that allow the function to be well-defined. In this case, we observe that there are no explicit restrictions or limitations on the variable t.

Therefore, the domain of the vector function is all real numbers. In interval notation, we can express the domain as (-∞, ∞). This means that any value of t, from negative infinity to positive infinity, can be used as an input for the vector function r(t) without encountering any mathematical inconsistencies or undefined operations.

Learn more about vector function here:

brainly.com/question/29761259

#SPJ11



Name an appropriate method to solve each system of equations. Then solve the system.


3 x-2 y=6

5 x-5 y=5

Answers

The solution to the system of equations is x = 4 and y = 3.

One appropriate method to solve the system of equations 3x - 2y = 6 and 5x - 5y = 5 is the method of substitution. Here's how to solve the system using this method:

Solve one equation for one variable in terms of the other variable. Let's solve the first equation for x:

3x - 2y = 6

3x = 2y + 6

x = (2y + 6) / 3

Substitute this expression for x into the second equation:

5x - 5y = 5

5((2y + 6) / 3) - 5y = 5

Simplify and solve for y:

(10y + 30) / 3 - 5y = 5

10y + 30 - 15y = 15

-5y = 15 - 30

-5y = -15

y = -15 / -5

y = 3

Substitute the value of y back into the expression for x:

x = (2y + 6) / 3

x = (2(3) + 6) / 3

x = (6 + 6) / 3

x = 12 / 3

x = 4

Therefore, the solution to the system of equations is x = 4 and y = 3.

To know more about equations:

https://brainly.com/question/29538993


#SPJ4

ten employees of a company are to be assigned to 10 different managerial posts, one to each post. in how many ways can these posts be filled?

Answers

There are 3,628,800 ways in which the posts can be filled. To find the number of ways these posts can be filled, we can use the concept of permutations.

Since there are 10 employees and 10 managerial posts, we can start by selecting one employee for the first post. We have 10 choices for this.

Once the first post is filled, we move on to the second post. Since one employee has already been assigned, we now have 9 employees to choose from.

Following the same logic, for each subsequent post, the number of choices decreases by 1. So, for the second post, we have 9 choices; for the third post, we have 8 choices, and so on.

We continue this process until all 10 posts are filled. Therefore, the total number of ways these posts can be filled is calculated by multiplying the number of choices for each post together.

So, the number of ways = 10 * 9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1 = 3,628,800.

Hence, there are 3,628,800 ways in which the posts can be filled.

To know more about permutations visit:

https://brainly.com/question/3867157

#SPJ11



Write an ordered pair that is a solution of each system of inequalities.

x ≥ 2 , 5x + 2y ≤ 9

Answers

One possible ordered pair that is a solution to the system of inequalities is (2, -1/2).

In mathematics, inequalities are mathematical statements that compare the values of two quantities. They express the relationship between numbers or variables and indicate whether one is greater than, less than, or equal to the other.

Inequalities can involve variables as well. For instance, x > 2 means that the variable x is greater than 2, but the specific value of x is not known. In such cases, solving the inequality involves finding the range of values that satisfy the given inequality.

Inequalities are widely used in various fields, including algebra, calculus, optimization, and real-world applications such as economics, physics, and engineering. They provide a way to describe relationships between quantities that are not necessarily equal.

To find an ordered pair that is a solution to the given system of inequalities, we need to find a point that satisfies both inequalities.

First, let's consider the inequality x ≥ 2. This means that x must be equal to or greater than 2. We can choose any value for y that we want.

Now, let's consider the inequality 5x + 2y ≤ 9. To find a point that satisfies this inequality, we can choose a value for x that is less than or equal to 2 (since x ≥ 2) and solve for y.

Let's choose x = 2. Plugging this into the inequality, we have:

5(2) + 2y ≤ 9
10 + 2y ≤ 9
2y ≤ -1
y ≤ -1/2

So, one possible ordered pair that is a solution to the system of inequalities is (2, -1/2).

To know  more about inequalities visit:

https://brainly.com/question/20383699

#SPJ11

Use the equation 11−x=∑=0[infinity]x11−x=∑n=0[infinity]xn for |x|<1|x|<1 to expand the function 34−x34−x in a power series with center c=0.c=0.
(Use symbolic notation and fractions where needed.)

Answers

To expand the function 34−x34−x in a power series with center c=0c=0, we can utilize the geometric series formula. By substituting x into the formula, we can express 34−x34−x as a power series representation in terms of x. The resulting expansion will provide an infinite sum of terms involving powers of x.

Using the geometric series formula, 11−x=∑n=0∞xn for |x|<1|x|<1, we can substitute x=−x34−x=−x3 into the formula. This gives us 11−(−x3)=∑n=0∞(−x3)n. Simplifying further, we have 34−x=∑n=0∞(−1)nx3n.

The power series expansion of 34−x34−x with center c=0c=0 is given by 34−x=∑n=0∞(−1)nx3n. This means that the function 34−x34−x can be represented as an infinite sum of terms, where each term involves a power of x. The coefficients of the terms alternate in sign, with the exponent increasing by one for each subsequent term.

In conclusion, the power series expansion of 34−x34−x with center c=0c=0 is given by 34−x=∑n=0∞(−1)nx3n. This representation allows us to express the function 34−x34−x as a sum of terms involving powers of x, facilitating calculations and analysis in the vicinity of x=0x=0.

To Read More About Power Series Click Below :

brainly.com/question/29896893

#SPJ11

Problem 5.1: Let A and B be two square matrices. It is given that A is invertible such that A=B^2
and B=A^2
. Prove that B is invertible and that B is the inverse matrix of A. Problem 5.2: It is given that A is a square matrix such that A^2
=4A+5I. Prove that A is invertible matrix and find its inverse.

Answers

According to the Question, the following conclusions are:

1) Hence proved that B is invertible, and B is the inverse matrix of A.

2) A is an invertible matrix, and its inverse is [tex]A^{-1 }= (\frac{1}{4} ) * (I - 5A).[/tex]

1) Given A is an invertible square matrix.

A = B²

B = A²

To prove:

B is invertible.

B is the inverse matrix of A.

Proof:

To demonstrate that B is invertible, we must show that it possesses an inverse matrix.

Let's assume the inverse of B is denoted by [tex]B^{-1}.[/tex]

We know that B = A². Multiplying both sides by [tex]A^{-2}[/tex] (the inverse of A²), we get:

[tex]A^{-2} * B = A^{-2 }* A^2\\A^{-2} * B = I[/tex]

(since [tex]A^{-2 }* A^{2} = I,[/tex] where I = identity matrix)

Now, let's multiply both sides by A²:

[tex]A^2 * A^{-2} * B = A^2 * I\\B = A^2 (A^{-2 }* B) \\B= A^2 * I = A^2[/tex]

We can see that B can be expressed as A² multiplied by a matrix [tex](A^{-2} * B),[/tex] which means B can be written as a product of matrices. Therefore, B is invertible.

To prove that B is the inverse matrix of A, we need to show that A * B = B * A = I, where I is the identity matrix.

We know that A = B². Substituting B = A² into the equation, we have:

A = (A²)²

A = A²

Now, let's multiply both sides by [tex]A^{-1 }[/tex] (the inverse of A):

[tex]A * A^{-1} = A^4 * A^{-1}\\I = A^3[/tex]

(since [tex]A^4 * A^{-1 }= A^3,[/tex] and [tex]A^3 * A^{-1 }= A^2 * I = A^2[/tex])

Therefore, A * B = B * A = I, which means B is the inverse matrix of A.

Hence, we have proved that B is invertible, and B is the inverse matrix of A.

2) Given:

A is a square matrix.

A² = 4A + 5I, where I = identity matrix.

To prove:

A is an invertible matrix and find its inverse.

Proof:

To prove that A is invertible, We need to show that A has an inverse matrix.

Let's assume the inverse of A is denoted by [tex]A^{-1}.[/tex]

We are given that A² = 4A + 5I. We can rewrite this equation as

A² - 4A = 5I

Now, let's multiply both sides by [tex]A^{-1}:[/tex]

[tex]A^{-1} * (A^2 - 4A) = A^{-1 }* 5I\\(A^{-1} * A^2) - (A^{-1} * 4A) = 5A^{-1} * I\\I - 4A^{-1} * A = 5A^{-1} * I\\I - 4A^{-1} * A = 5A^{-1}[/tex]

Rearranging the equation, we have:

[tex]I = 5A^{-1} + 4A^{-1} * A[/tex]

We can see that I represent the sum of two terms, the first of which is a scalar multiple of [tex]A^{-1},[/tex] and the second of which is a product of [tex]A^{-1}[/tex] and A. This shows that  [tex]A^{-1}[/tex] it exists.

Hence, A is an invertible matrix.

To find the inverse of A, let's compare the equation [tex]I = 5A^{-1 }+ 4A^{-1} * A[/tex]with the standard form of the inverse matrix equation:

[tex]I = c * A^{-1 }+ d * A^{-1} * A[/tex]

We can see that c = 5 and d = 4.

Using the formula for the inverse matrix, the inverse of A is given by:

[tex]A^{-1} = (\frac{1}{d} ) * (I - c * A^{-1 }* A)\\A^{-1} = (\frac{1}{4} ) * (I - 5A)[/tex]

Therefore, the inverse of A is

[tex]A^{-1 }= (\frac{1}{4} ) * (I - 5A).[/tex]

In conclusion, A is an invertible matrix, and its inverse is [tex]A^{-1 }= (\frac{1}{4} ) * (I - 5A).[/tex]

Learn more about invertible matrix:

https://brainly.com/question/30968505

#SPJ11

Solve each system.

2x + 3y + z = 13 5x - 2y - 4z = 7 4x + 5y + 3z = 25

Answers

After calculating the given equation we can conclude the resultant equations are:
[tex]21x - 16y - 22z = 9\\x + y + z = 6[/tex]

To solve the system of equations:
[tex]2x + 3y + z = 13\\5x - 2y - 4z = 7\\4x + 5y + 3z = 25[/tex]
You can use any method you prefer, such as substitution or elimination. I will use the elimination method:

First, multiply the first equation by 2 and the second equation by 5:
[tex]4x + 6y + 2z = 26\\25x - 10y - 20z = 35[/tex]
Next, subtract the first equation from the second equation:
[tex]25x - 10y - 20z - (4x + 6y + 2z) = 35 - 26\\21x - 16y - 22z = 9[/tex]

Finally, multiply the third equation by 2:
[tex]8x + 10y + 6z = 50[/tex]

Now, we have the following system of equations:
[tex]4x + 6y + 2z = 26\\21x - 16y - 22z = 9\\8x + 10y + 6z = 50[/tex]

Using elimination again, subtract the first equation from the third equation:
[tex]8x + 10y + 6z - (4x + 6y + 2z) = 50 - 26\\4x + 4y + 4z = 24[/tex]
This equation simplifies to:
[tex]x + y + z = 6[/tex]

Now, we have two equations:
[tex]21x - 16y - 22z = 9\\x + y + z = 6[/tex]

You can solve this system using any method you prefer, such as substitution or elimination.

Know more about equations  here:

https://brainly.com/question/29174899

#SPJ11

The solution to the given system of equations is x = 2, y = 3, and z = 1.

To solve the given system of equations:
2x + 3y + z = 13  (Equation 1)
5x - 2y - 4z = 7   (Equation 2)
4x + 5y + 3z = 25  (Equation 3)

Step 1: We can solve this system using the method of elimination or substitution. Let's use the method of elimination.

Step 2: We'll start by eliminating the variable x. Multiply Equation 1 by 5 and Equation 2 by 2 to make the coefficients of x the same.

10x + 15y + 5z = 65 (Equation 4)
10x - 4y - 8z = 14  (Equation 5)

Step 3: Now, subtract Equation 5 from Equation 4 to eliminate x. This will give us a new equation.

(10x + 15y + 5z) - (10x - 4y - 8z) = 65 - 14
19y + 13z = 51          (Equation 6)

Step 4: Next, we'll eliminate the variable x again. Multiply Equation 1 by 2 and Equation 3 by 4 to make the coefficients of x the same.

4x + 6y + 2z = 26   (Equation 7)
16x + 20y + 12z = 100  (Equation 8)

Step 5: Subtract Equation 7 from Equation 8 to eliminate x.

(16x + 20y + 12z) - (4x + 6y + 2z) = 100 - 26
14y + 10z = 74          (Equation 9)

Step 6: Now, we have two equations:
19y + 13z = 51   (Equation 6)
14y + 10z = 74   (Equation 9)

Step 7: We can solve this system of equations using either elimination or substitution. Let's use the method of elimination to eliminate y.

Multiply Equation 6 by 14 and Equation 9 by 19 to make the coefficients of y the same.

266y + 182z = 714    (Equation 10)
266y + 190z = 1406   (Equation 11)

Step 8: Subtract Equation 10 from Equation 11 to eliminate y.

[tex](266y + 190z) - (266y + 182z) = 1406 - 7148z = 692[/tex]

Step 9: Solve for z by dividing both sides of the equation by 8.

z = 692/8
z = 86.5

Step 10: Substitute the value of z into either Equation 6 or Equation 9 to solve for y. Let's use Equation 6.

[tex]19y + 13(86.5) = 5119y + 1124.5 = 5119y = 51 - 1124.519y = -1073.5y = -1073.5/19y = -56.5[/tex]

Step 11: Finally, substitute the values of y and z into any of the original equations to solve for x. Let's use Equation 1.

2x + 3(-56.5) + 86.5 = 13

2x - 169.5 + 86.5 = 13

2x - 83 = 13

2x = 13 + 83

2x = 96

x = 96/2

x = 48

So, the solution to the given system of equations is x = 48, y = -56.5, and z = 86.5.

Please note that the above explanation is based on the assumption that the system of equations is consistent and has a unique solution.

Learn more about equations :

brainly.com/question/29174899

#SPJ11

Verify that all members of the family y = 5/(x c) are solutions of the equation in part (a).

Answers

a) The differential equation,  y' = -(1/5)y²  indicating that the rate of change of y is always proportional to -5.

b)  All members of the family y = 5/(x + C) are solutions of the equation y' = -(1/5)y².

A) By looking at the differential equation, y' = -(1/5)y², we can make a few observations:

The equation is separable: We can rewrite it as y² dy = -5dx.

The right-hand side is constant, -5, indicating that the rate of change of y is always proportional to -5

B) Now let's verify that all members of the family y = 5/(x + C) are solutions of the given equation:

Substitute y = 5/(x + C) into the differential equation y' = -(1/5)y²:

y' = d/dx [5/(x + C)]

= -5/(x + C)²

Now, let's calculate y² and substitute it into the differential equation:

y² = (5/(x + C))²

= 25/(x + C)²

Substituting y² and y' into the differential equation, we have:

-(1/5)y^2 = -1/5 × 25/(x + C)²

= -5/(x + C)²

We see that -(1/5)y² = -5/(x + C)² = y', which confirms that y = 5/(x + C) is indeed a solution of the given differential equation.

Therefore, all members of the family y = 5/(x + C) are solutions of the equation y' = -(1/5)y².

To know more about differential equation click here :

https://brainly.com/question/32645495

#SPJ4

The question is incomplete the complete question is :

(a) What can you say about a solution of the equation y' = -(1/5)y² just by looking at the differential equation?

(b) Verify that all members of the family y = 5/(x + C) are solutions of the equation in part (a)

Write a vector equation that is equivalent to the system of equations 4x1​+x2​+3x3​=9x1​−7x2​−2x3​=28x1​+6x2​−5x3​=15​

Answers

The vector equation that is equivalent to the given system of equations is:

[x1, x2, x3] = [-59/112, -3/28, 29/112]t + [-1/16, -5/56, 11/112]u + [-31/112, 11/28, -3/112]v,

where t, u, and v are any real numbers.

The system of equations:

4x1 + x2 + 3x3 = 9

x1 - 7x2 - 2x3 = 28

x1 + 6x2 - 5x3 = 15

can be written in matrix form as AX = B, where:

A =  [4   1   3]

[1  -7  -2]

[1   6  -5]

X = [x1]

[x2]

[x3]

B = [9]

[28]

[15]

To convert this into a vector equation, we can write:

X = A^(-1)B,

where A^(-1) is the inverse of the matrix A. We can find the inverse by using row reduction or an inverse calculator. After performing the necessary calculations, we get:

A^(-1) = [-59/112  -3/28   29/112]

[-1/16   -5/56   11/112]

[-31/112  11/28  -3/112]

So the vector equation that is equivalent to the given system of equations is:

[x1, x2, x3] = [-59/112, -3/28, 29/112]t + [-1/16, -5/56, 11/112]u + [-31/112, 11/28, -3/112]v,

where t, u, and v are any real numbers.

Learn more about vector here:

https://brainly.com/question/24256726

#SPJ11

Find the area of the surface generated when the given curve is revolved about the given axis. y=10x−3, for 1/2≤x≤ 3/2 ; about the y-axis (Hint: Integrate with respect to y.) The surface area is square units. (Type an exact answer, using π as needed.)

Answers

The surface area of the given solid is 4π/3 [√(101)(3√3 - 1)/8] square units.

Given the equation of the curve y = 10x - 3 and the limits of integration are from x = 1/2 to x = 3/2, the curve will revolve around the y-axis. We need to find the area of the surface generated by the curve when it is revolved about the y-axis. To do this, we will use the formula for the surface area of a solid of revolution which is:

S = 2π ∫ a b y ds where ds is the arc length, given by:

ds = √(1+(dy/dx)^2)dx

So, to find the surface area, we first need to find ds and then integrate with respect to y using the given limits of integration. Since the equation of the curve is given as y = 10x - 3, differentiating with respect to x gives

dy/dx = 10

Integrating ds with respect to x gives:

ds = √(1+(dy/dx)^2)dx= √(1+10^2)dx= √101 dx

Integrating the above equation with respect to y, we get:

ds = √101 dy

So the equation for the surface area becomes:

S = 2π ∫ 1/2 3/2 y ds= 2π ∫ 1/2 3/2 y √101 dy

Now, integrating the above equation with respect to y, we get:

S = 2π (2/3 √101 [y^(3/2)]) | from 1/2 to 3/2= 4π/3 [√(101)(3√3 - 1)/8] square units.

Therefore, the surface area of the given solid is 4π/3 [√(101)(3√3 - 1)/8] square units.

To learn more about surface area visit : https://brainly.com/question/16519513

#SPJ11

In a lottery game, a player picks six numbers from 1 to 29 . If the player matches all six numbers, they win 30,000 dollars. Otherwise, they lose $1. What is the expected value of this game? \$ Question Help: DPost to forum . Question 10 A bag contains 1 gold marbles, 7 silver marbles, and 26 black marbles. Someone offers to play this game: You randomly select one marble from the bag. If it is gold, you win $3. If it is silver, you win $2. If it is black, you lose $1. What is your expected value if you play this game?

Answers

In a lottery game, a player picks six numbers from 1 to 29.

If the player matches all six numbers, they win $30,000. Otherwise, they lose $1.

The expected value of the game is to be calculated.

Here is the explanation; Probability of winning = [tex]Probability of getting all six numbers correct = (1/29) * (1/28) * (1/27) * (1/26) * (1/25) * (1/24) = 0.0000000046[/tex]Probabiliy of losing = Probability of not getting all six numbers correct [tex]= 1 - 0.0000000046 = 0.9999999954[/tex]Expected value of the game = (Probability of winning * Prize for winning) + (Probability of losing * Amount lost)Expected value = [tex](0.0000000046 * 30000) + (0.9999999954 * -1)[/tex]Expected value = 0.000138 - 0.9999999954Expected value = -0.999861Answer: The expected value of this game is -$0.999861.Note: In the given game, a player can either win $3, $2, or lose $1 depending on the marble selected.

The expected value of this game is calculated using the formula; Expected value = (Probability of winning * Prize for winning) + (Probability of losing * Amount lost)

[tex]The probability of getting a gold marble = 1/34The probability of getting a silver marble = 7/34The probability of getting a black marble = 26/34[/tex]

[tex]Now, Expected value = (1/34 * 3) + (7/34 * 2) + (26/34 * -1)Expected value = 0.088 + 0.411 - 0.765Expected value = -$0.266.[/tex]

To know more about the word probability visits :

https://brainly.com/question/31828911

#SPJ11

A trip of m feet at a speed of 25 feet per second takes _____
seconds.

Answers

A trip of m feet at a speed of 25 feet per second takes m/25 seconds.

Explanation:

To determine the time it takes to complete a trip, we divide the distance by the speed. In this case, the distance is given as m feet, and the speed is 25 feet per second. Dividing the distance by the speed gives us the time in seconds. Therefore, the time it takes for a trip of m feet at a speed of 25 feet per second is m/25 seconds.

This formula is derived from the basic equation for speed, which is Speed = Distance / Time. By rearranging the equation, we can solve for Time: Time = Distance / Speed. In this case, we are given the distance (m feet) and the speed (25 feet per second), so we substitute these values into the formula to calculate the time. The units of feet cancel out, leaving us with the time in seconds. Thus, the time it takes to complete a trip of m feet at a speed of 25 feet per second is m/25 seconds.

Learn more about formula here

brainly.com/question/20748250

#SPJ11

A box has length 6 feet, width 3 feet, and height 5 inches. Find the volume of the box in cubic feet andin cubic inches.
cubic inches
cubic feet
Round your answers to the nearest tenth as needed.

Answers

The volume of the box is 1080 cubic inches.

Given,Length of the box = 6 feet

Width of the box = 3 feet

Height of the box = 5 inches

To find, Volume of the box in cubic feet and in cubic inches.

To find the volume of the box,Volume = Length × Width × Height

Before finding the volume, convert 5 inches into feet.

We know that 1 foot = 12 inches1 inch = 1/12 foot

So, 5 inches = 5/12 feet

Volume of the box in cubic feet = Length × Width × Height= 6 × 3 × 5/12= 7.5 cubic feet

Therefore, the volume of the box is 7.5 cubic feet.

Volume of the box in cubic inches = Length × Width × Height= 6 × 3 × 5 × 12= 1080 cubic inches

Therefore, the volume of the box is 1080 cubic inches.

Learn more about Volume:

brainly.com/question/14197390

#SPJ11

Solve the following integrals ∫ c

x 2
+y 2

dsr(t)=(4cost,4sint,3t)
∫ c

(x−y)dx+(x+y)dy(counterclockwise)

Vertices (0,0)(1,0)(0,1)

Answers

The value of the line integral along the curve \(C\) is \(0\). To solve the given integrals, we need to find the parameterization of the curve \(C\) and calculate the line integral along \(C\). The curve \(C\) is defined by the vertices \((0,0)\), \((1,0)\), and \((0,1)\), and it is traversed counterclockwise.

We parameterize the curve using the equation \(r(t) = (4\cos(t), 4\sin(t), 3t)\). Then, we evaluate the integrals by substituting the parameterization into the corresponding expressions. To calculate the line integral \(\int_C (x-y)dx + (x+y)dy\), we first parameterize the curve \(C\) using the equation \(r(t) = (4\cos(t), 4\sin(t), 3t)\), where \(t\) ranges from \(0\) to \(2\pi\) to cover the entire curve. This parameterization represents a helix in three-dimensional space.

We then substitute this parameterization into the integrand to get:

\(\int_C (x-y)dx + (x+y)dy = \int_0^{2\pi} [(4\cos(t) - 4\sin(t))(4\cos(t)) + (4\cos(t) + 4\sin(t))(4\sin(t))] \cdot (-4\sin(t) + 4\cos(t))dt\)

Simplifying the expression, we have:

\(\int_C (x-y)dx + (x+y)dy = \int_0^{2\pi} (-16\sin^2(t) + 16\cos^2(t)) \cdot (-4\sin(t) + 4\cos(t))dt\)

Expanding and combining terms, we get:

\(\int_C (x-y)dx + (x+y)dy = \int_0^{2\pi} (-64\sin^3(t) + 64\cos^3(t))dt\)

Using trigonometric identities to simplify the integrand, we have:

\(\int_C (x-y)dx + (x+y)dy = \int_0^{2\pi} 64\cos(t)dt\)

Integrating with respect to \(t\), we find:

\(\int_C (x-y)dx + (x+y)dy = 64\sin(t)\Big|_0^{2\pi} = 0\)

Therefore, the value of the line integral along the curve \(C\) is \(0\).

Learn more about Integrals here : brainly.com/question/31744185

#SPJ11

The integral ∫arcsin2x1−x2√dx is equal to?

Answers

The integral of the given function is 1/8 arcsin(2x) + C.

To solve the integral ∫arcsin(2x) / √(1 - [tex]x^2[/tex] ) dx, we can use integration by parts and substitution. Let's break down the solution step by step:

Step 1: Perform a substitution

Let's substitute u = arcsin(2x). Taking the derivative of both sides with respect to x, we get du = 2 / √(1 - [tex](2x)^2[/tex]) dx.

Rearranging, we have dx = du / (2 / √(1 - [tex](2x)^2[/tex])) = du / (2√(1 - 4[tex]x^2[/tex] )).

Step 2: Substitute the expression into the integral

The integral becomes:

∫ (arcsin(2x) / √(1 - [tex]x^2[/tex] )) dx

= ∫ (u / (2√(1 - 4[tex]x^2[/tex] ))) (du / (2√(1 - 4[tex]x^2[/tex] )))

= 1/4 ∫ (u / (1 - 4[tex]x^2[/tex] )) du

Step 3: Integrate using partial fractions

To integrate 1 / (1 - 4[tex]x^2[/tex] ), we can rewrite it as a sum of two fractions using partial fractions.

1 / (1 - 4[tex]x^2[/tex] ) = A / (1 - 2x) + B / (1 + 2x)

Multiplying both sides by (1 - 4[tex]x^2[/tex] ), we get:

1 = A(1 + 2x) + B(1 - 2x)

Solving for A and B, we find A = 1/4 and B = 1/4.

Thus, the integral becomes:

1/4 ∫ (u / (1 - 4[tex]x^2[/tex] )) du

= 1/4 ∫ ((1/4)(1 + 2x) / (1 - 2x) + (1/4)(1 - 2x) / (1 + 2x)) du

= 1/16 ∫ (1 + 2x) / (1 - 2x) du + 1/16 ∫ (1 - 2x) / (1 + 2x) du

Step 4: Integrate each term separately

∫ (1 + 2x) / (1 - 2x) du = ∫ (1 + 2x) du = u + [tex]x^2[/tex] + [tex]C_1[/tex]

∫ (1 - 2x) / (1 + 2x) du = ∫ (1 - 2x) du = u - [tex]x^2[/tex] + [tex]C_2[/tex]

Step 5: Substitute back the value of u

The final solution is:

1/16 (u + [tex]x^2[/tex] ) + 1/16 (u - [tex]x^2[/tex] ) + C

= 1/16 (2u) + C

= 1/8 arcsin(2x) + C

Therefore, the integral ∫arcsin(2x) / √(1 - [tex]x^2[/tex] ) dx is equal to 1/8 arcsin(2x) + C, where C is the constant of integration.

To learn more about integral here:

https://brainly.com/question/31433890

#SPJ4

Write the first six terms of the arithmetic sequence with the given property. a=4;5 th term is 12. a
a 2

a 3

a 4

a 5

a 6


=
=
=
=
=
=

Answers

The first six terms of the arithmetic sequence with a1 = 4 and a5 = 12 are:

4, 6, 8, 10, 12, 14

We can use the formula for the nth term of an arithmetic sequence to solve this problem. The formula is:

an = a1 + (n - 1)d

where an is the nth term of the sequence, a1 is the first term of the sequence, n is the number of the term we want to find, and d is the common difference between the terms.

We are given that a1 = 4 and a5 = 12. We can use this information to find d:

[tex]a5 = a1 + (5 - 1)d[/tex]

12 = 4 + 4d

d = 2

Now that we know d, we can use the formula to find the first six terms of the sequence:

a1 = 4

[tex]a2[/tex]= a1 + d = 6

[tex]a3[/tex]= a2 + d = 8

[tex]a4[/tex] = a3 + d = 10

[tex]a5[/tex] = a4 + d = 12

[tex]a6[/tex] = a5 + d = 14

Therefore, the first six terms of the arithmetic sequence with a1 = 4 and a5 = 12 are:

4, 6, 8, 10, 12, 14

Learn more about arithmetic sequence  here:

https://brainly.com/question/28882428

#SPJ11

Given that z = cos θ + i sin θ and u − iv = (1 + z)(1 − i 2z 2
). Show that
v = u tan ( 3θ / 2 )
r = 4^2 cos^2 (θ / 2 ),
where r is the modulus of the complex number u + −iv.

Answers

By expanding and equating the real and imaginary parts of the given equation, we can show that v = u tan(3θ/2) and r = 4^2 cos^2(θ/2), where r is the modulus of the complex number u - iv.

Let's expand the equation (1 + z)(1 - i 2z^2) and equate the real and imaginary parts to establish the given results.

Expanding the equation:

(1 + z)(1 - i 2z^2) = 1 - i 2z^2 + z - iz 2z^2.

Now, equating the real and imaginary parts:

Real part: 1 + z = 1 + cosθ + i sinθ = 2cos^2(θ/2).

Imaginary part: -2z^2 - iz = -2(cos^2θ + i sin^2θ) - i(2cosθ sinθ) = -2cos^2(θ/2) - i sinθ cosθ.

Comparing the imaginary parts:

-2cos^2(θ/2) - i sinθ cosθ = -v.

We can conclude that v = 2cos^2(θ/2).

Now, comparing the real and imaginary parts of u - iv, we have:

Real part: u = 2cos^2(θ/2).

Imaginary part: -v = -2cos^2(θ/2).

Comparing the expressions for the imaginary part, we get:

v = u tan(3θ/2).

Therefore, we have shown that v = u tan(3θ/2) and r = 4^2 cos^2(θ/2), where r is the modulus of the complex number u - iv.

Learn more about modulus here:

brainly.com/question/27634166

#SPJ11

How many of the following are true for the function f(x,y) = sin(x²y), 24 + y2 (i) Along the line x = 0, lim (x,y)+(0,0) f(x, y) = 0. (ii) Along the line y = 0, lim (1,y)(0,0) f(x, y) = 0. (iii) Along the line y = I, lim (x,y)+(0,0) f(x, y) = 0. (iv) Along the curve y = x2, lim (1,y)+(0,0) f(x, y) = 0. (v) lim (x,y)+(0,0) f(x, y) = 0. a. 1 b. 2 c. 3 d. 4 e. 5

Answers

Only options (iii), (iv), and (v) are true for the function f(x,y) = sin(x²y), 24 + y2 . Therefore, the answer is c) 3.

check all the options one by one along with the function f(x,y):

i.  Along the line x = 0, lim (x,y)->(0,0) f(x, y)

= 0.(0, y)->(0, 0),

f(0, y) = sin(0²y),

24 + y²= sin(0), 24 + y²

= 0,24 + y² = 0; this is not possible as y² ≥ 0.

Therefore, option (i) is not true.

ii. Along the line y = 0, lim (x,y)->(0,0) f(x, y)

= 0.(x, 0)->(0, 0),

f(x, 0) = sin(x²0), 24 + 0²

= sin(0), 24 + 0

= 0, 24 = 0;

this is not possible. Therefore, option (ii) is not true.

iii. Along the line y = 1, lim (x,y)->(0,0) f(x, y)

= 0.(x, 1)->(0, 0),

f(x, 1) = sin(x²1), 24 + 1²

= sin(x²), 25

= sin(x²).

- 1 ≤ sinx ≤ 1 for all x, so -1 ≤ sin(x²) ≤ 1.

Thus, the limit exists and is 0. Therefore, option (iii) is true.

iv. Along the curve y = x², lim (x,y)->(0,0) f(x, y)

= 0.(x, x²)->(0, 0),

f(x, x²) = sin(x²x²), 24 + x²²

= sin(x²), x²² + 24

= sin(x²).

-1 ≤ sinx ≤ 1 for all x, so -1 ≤ sin(x²) ≤ 1.

Thus, the limit exists and is 0. Therefore, option (iv) is true.lim (x,y)->(0,0) f(x, y) = 0

v.  use the Squeeze Theorem and show that the limit of sin(x²y) is 0. Let r(x,y) = 24 + y².  

[tex]-1\leq\ sin(x^2y)\leq 1[/tex]

[tex]-r(x,y)\leq\ sin(x^2y)r(x,y)[/tex]

[tex]-\frac{1}{r(x,y)}\leq\frac{sin(x^2y)}{r(x,y)}\leq\frac{1}{r(x,y)}[/tex]

Note that as (x,y) approaches (0,0), r(x,y) approaches 24. Therefore, both the lower and upper bounds approach 0 as (x,y) approaches (0,0). By the Squeeze Theorem, it follows that

[tex]lim_(x,y)=(0,0)sin(x^2y) = 0[/tex]

Therefore, option (v) is true.

To learn more about Squeeze Theorem

https://brainly.com/question/33184775

#SPJ11

2. suppose you are to downblend 500 tonnes of heu (93% u-235) for use as commercial reactor fuel with enrichment of 4.95% u-235. how much reactor fuel can be produced? the original heu constitutes how many sq? how many for the resultant reactor grade fuel? show all your work.

Answers

The original HEU constitutes 500 tonnes, and the resultant reactor-grade fuel constitutes approximately 9393.94 tonnes.

To solve this problem, we can use the concept of mass fraction and the equation:

Mass of component = Total mass × Mass fraction.

Let's calculate the amount of U-235 in the original HEU and the resultant reactor-grade fuel.

Original HEU:

Mass of U-235 in the original HEU = 500 tonnes × 0.93 = 465 tonnes.

Reactor-grade fuel:

Mass of U-235 in the reactor-grade fuel = Total mass of reactor-grade fuel × Mass fraction of U-235.

To find the mass fraction of U-235 in the reactor-grade fuel, we need to consider the conservation of mass. The total mass of uranium in the reactor-grade fuel should remain the same as in the original HEU.

Let x be the total mass of the reactor-grade fuel. The mass of U-235 in the reactor-grade fuel can be calculated as follows:

Mass of U-235 in the reactor-grade fuel = x tonnes × 0.0495.

Since the total mass of uranium remains the same, we can write the equation:

Mass of U-235 in the original HEU = Mass of U-235 in the reactor-grade fuel.

465 tonnes = x tonnes × 0.0495.

Solving for x, we have:

x = 465 tonnes / 0.0495.

x ≈ 9393.94 tonnes.

Therefore, the amount of reactor fuel that can be produced is approximately 9393.94 tonnes.

Know more about mass fraction here:

https://brainly.com/question/31731157

#SPJ11

Other Questions
The nurse is participating in discharge planning for a patient. Which of the following situations illustrates the patient is learning in the psychomotor domain?Learn how to palpate and count radial pulse.Learns the action of cardiac medication.Learns the rationale for checking the heart rate.Learns to accept the need for taking medication daily. which was a main reason for creating the articles of confederation? to determine the power of states and the federal government to have a tax system to generate money to outline the role of individual citizens in government How does the number 32.4 change when you multiply it by 10 to the power of 2 ? select all that apply. a). the digit 2 increases in value from 2 ones to 2 hundreds. b). each place is multiplied by 1,000 c). the digit 3 shifts 2 places to the left, from the tens place to the thousands place. For magnetically coupled circuits (where two coils are not physically touching), what enables current to flow in a secondary coil that is not connected to a power source, when the primary coil is connected to an AC source? Exercise 1 State a theme that is consistent with the topic and the purpose given. Use a complete sentence.topic: school; purpose: amuse _______ creates a ______, a unidirectional data channel that can be used for interprocess communication. QUESTION 13 Which of the followings is true? O A. For a full inductor, at time t=0 when it is switched on, its through current will likely drop to half its value. O B. For a full inductor, at time t=0 when it is switched on, its through current will likely drop to quarter its value. O C. For an empty inductor, at time t=0 when it is switched on, its through current will be close to zero. O D. For a full capacitor, at time t=0 when it is switched on, its across voltage will be close to zero. a function f : z zz is defined as f (n) = (2n,n 3). verify whether this function is injective and whether it is surjective bantam industries has budgeted the following information for march: cash receipts $ 331,000 beginning cash balance 20,000 cash payments 370,000 desired ending cash balance 40,000 if there is a cash shortage, the company borrows money from the bank. all cash is borrowed at the beginning of the month in $1,000 increments, and interest is paid monthly at 1% on the first day of the following month. the company had no debt before march 1. how much cash will the company need to borrow in march? (20) (8,5)(2,5) equation for line symmetry? find the point on the plane 4x 5y z =12 that is nearest to (2,0,1). solve the following proportioning problem: given: relative density of sand is 2.65, absolute volume of sand is 10 ft^3. find: weight of sand Problem 21.3 Evaluate the following integral: ja-x-4 -2 - 4x + 2x5)dxSingle application of Simpson's 3/8 rule Susan, of eco threads, states that some employees are not as productive as others or as productive as they could be. this is an example of a company _______________. Differentiate g(x).g(x) = ln(x^3)show work please what is the future value of a forty year ordinary annuity that makes monthly payments of $1,500 if the appropriate rate of interest is 16.9 percent compounded monthly? Write down the size of Angle ABC .Give a reason for your answer. Find the general solution of the differential equation. \[ y^{\prime}(t)=4+e^{-7 t} \] \[ y(t)= \] 2 Use a five-variable Karnaugh map to find the minimized SOP expression for the following logic function: F(A,B,C,D,E) = m(4,5,6,7,9,11,13,15,16,18,27,28,31) Given function g(x)=x sq. root of (x+1) . Note: In case you have to estimate your numbers, use one decimal place for your answers. a) The domain of function g is the interval The domain of function g is the interval b) The critical number(s) for this function is/are c) The local minimum value of function g is at