Most buckling-resistant to most buckling-prone: Clamped-clamped bar, Clamped-pinned bar, Pinned-pinned bar, Clamped-free bar.
Arrange the following cases from the most buckling-resistant to the most buckling-prone: Pinned-pinned bar, Clamped-pinned bar, Clamped-free bar, Clamped-clamped bar, based on the lowest critical buckling load (Per) in each case.To find the critical buckling load (Per) for the four cases mentioned, we consider different boundary conditions for a bar.
The pinned-pinned bar has both ends pinned, allowing rotation but not translation.
The clamped-pinned bar has one end clamped, preventing both rotation and translation, while the other end is pinned.
The clamped-free bar has one end clamped, and the other end is free to rotate and translate.
The clamped-clamped bar has both ends clamped, prohibiting both rotation and translation.
For each case, the critical buckling load is determined by the specific boundary conditions and the properties of the bar.
The lowest Per value represents the most buckling-resistant case, while the highest value indicates the most buckling-prone case.
By arranging the cases based on the lowest Per in descending order, we can determine the ranking of the four cases from the most buckling-resistant to the most buckling-prone.
Learn more about buckling-resistant
brainly.com/question/30281610
#SPJ11
A car of mass 860kg travels along a straight horizontal road. The power provided by the car's engine is P W and the resistance of the car's motion is R N. The car passes through one point with speed 4.5m/s and acceleration 4m/s2. The car passes through another point with speed 22.5m/s and acceleration 0.3m/s2. Find the values of P and R
Given data:mass of car, m = 860 kgInitial speed, u = 4.5 m/sFinal speed, v = 22.5 m/sAcceleration, a1 = 4 m/s² and a2 = 0.3 m/s²We need to find out the values of the power, P and the resistance of the car’s motion, R.Final velocity v = u + atFrom this formula, acceleration can be calculated as:a = (v - u) / t (for constant acceleration).
Putting the given values in this formula, we get[tex]:a1 = (v - u) / t1 => t1 = (v - u) / a1 = (22.5 - 4.5) / 4 = 4.5 s[/tex]
Again, putting the values in this formula for second acceleration,
[tex]a2 = (v - u) / t2 => t2 = (v - u) / a2 = (22.5 - 4.5) / 0.3 = 180 s[/tex]
Now, using the formula for distance, S = ut + 1/2 at²The distance covered in the first 4.5 seconds of travel,
[tex]s1 = u * t1 + 1/2 * a1 * t1²= 4.5 * 4.5 + 1/2 * 4 * 4.5²= 40.5 m[/tex]
Similarly, the distance covered in the next 180 – 4.5 = 175.5 seconds of travel,
[tex]s2 = u * t2 + 1/2 * a2 * t2²= 22.5 * 175.5 + 1/2 * 0.3 * 175.5²= 33832.38 m[/tex]
The total distance travelled,
[tex]S = s1 + s2= 40.5 + 33832.38= 33872.88 m[/tex]
Now, we will use the formula for power,P = F * vwhere F is the net force acting on the car and v is the velocity at that point.As the car is moving with constant velocity, v = 22.5 m/s.So, the power of the engine, P = F * 22.5As per Newton's second law of motion,F = m * aWhere m is the mass of the car and a is the acceleration of the car.As the car is moving with two different accelerations, we will calculate the force on the car separately in each case:In the first case, F1 = m * a1= 860 * 4= 3440 NIn the second case, F2 = m * a2= 860 * 0.3= 258 N.
To know more about motion visit:
https://brainly.com/question/2748259
#SPJ11
1. Sketch the complete CMOS logic circuit using minimum number of transistors that realize the function below. (Assume that the available inputs are A, B, C, D and E). Y = AB+C(B+DE) 2. What is total number of transistors needed? 3. Find the transistor sizing for the circuit of question 1 in terms of the size of the inverter's transistors. 1. Sketch the complete CMOS logic circuit using minimum number of transistors that realize the function below. (Assume that the available inputs are A, B, C, D and E). Y = AB+C(B+DE) 2. What is total number of transistors needed? 3. Find the transistor sizing for the circuit of question 1 in terms of the size of the inverter's transistors.
1. As a result, the circuit will only function if both A and C are high, and it will produce the desired output signal Y. Y = AB + C(B + DE) 2.There are a total of 12 transistors used in the circuit. 3 .Alternatively, we can use the SPICE simulation tool to optimize the sizing of the transistors based on the specific technology used.
1. The circuit is illustrated in the figure below.
For CMOS implementation, we can first build an OR gate using a PMOS transistor and an NMOS transistor, and then combine the output with other PMOS transistors and NMOS transistors to form the complete circuit.
We'll use this method to implement the given function, with the objective of using the fewest transistors possible.
To do this, we can begin by recognizing that the logic function F1 = B+DE is the sum of two products.
F1 = (B) + (DE) = (B) + (D)(E)
We can use this as a starting point for constructing the circuit diagram.
The B signal can be used to control the PMOS transistor Q1 and the NMOS transistor Q2, while the DE signal can be used to control the PMOS transistor Q3 and the NMOS transistor Q4.
When C is high, the gate voltage of the PMOS transistor Q5 is high, so the transistor is conducting and the output signal Y is pulled high through the pull-up resistor R.
If C is low, the transistor Q5 is turned off, and the output signal Y is pulled low by the NMOS transistor
Q6. A is used to control the PMOS transistor Q7 and the NMOS transistor Q8, which are connected to the gate of the transistor Q6.
As a result, we can make sure that when A is high, the output signal Y will be pulled up to a high level through the pull-up resistor R.
If A is low, the output signal Y will be pulled down to a low level by the NMOS transistor Q6.
As a result, the circuit will only function if both A and C are high, and it will produce the desired output signal Y.
Y = AB + C(B + DE)
2. There are a total of 12 transistors used in the circuit.
3. We can adjust the sizing of the transistors to optimize the circuit's performance and minimize power consumption.
For example, to determine the transistor size for the inverter, we can use the equation
WL = 2ID/(kn(VGS-VT)^2),
where ID is the drain current, W is the width of the transistor, L is the length of the transistor, kn is the process-specific constant, VGS is the gate-to-source voltage, and VT is the threshold voltage.
The transistors can be sized by finding the required current for each transistor and solving for the W/L ratio.
Alternatively, we can use the SPICE simulation tool to optimize the sizing of the transistors based on the specific technology used.
to know more about transistors visit:
https://brainly.com/question/31052620
#SPJ11
The toughness of steels increase by increasing a) tempering time b) both tempering time and temperature c) tempering temperature
The toughness of steels increases by increasing tempering time.
Tempering is a heat treatment process that follows the hardening of steel. During tempering, the steel is heated to a specific temperature and then cooled in order to reduce its brittleness and increase its toughness. The tempering time refers to the duration for which the steel is held at the tempering temperature.
By increasing the tempering time, the steel undergoes a process called tempering transformation, where the internal structure of the steel changes, resulting in improved toughness. This transformation allows the steel to relieve internal stresses and promote the formation of a more ductile microstructure, which enhances its ability to absorb energy and resist fracture.
Know more about tempering here:
https://brainly.com/question/15115052
#SPJ11
18. A balanced delta connected load draws 10 a line
current and 3 kw at 220 v. the reactance per of each
phase of the load in ohms
The formula for finding the reactive power is given as:
Reactive power [tex]Q = $\sqrt {S^2 - P^2}$[/tex] Where S is the apparent power and P is the real power Formula for finding the apparent power is given as:
S = P/Fp Where Fp is the power factor. Formula for finding the power factor.
We are given the line current as 10 A and line voltage as 220 V, hence we can find the total power consumption.P = 10 × 220 = 2200 WNow, we know that the load is balanced delta connected and we can find the phase power.
Now, we can find the impedance of each phase.
Z_phase = V_phase/I_phase
= 126.49/10
= 12.65 Ω Thus, the reactance per phase of the load is 4085.96/3 = 1361.98 VAR (Volt Ampere Reactive).
To know more about Reactive visit:
https://brainly.com/question/29819445
#SPJ11
A large air-conditioned building with a total internal volume of 1,00,000 m³ is maintained at 25°C (DBT) and 50% RH, while the outside conditions are 35°C and 45% RH. It has a design occupancy of 10,000 150 people, all non-smoking. The infiltration rate through the building is equal to 1.0, ACH. Estimate the heat transfer rate due to ventilation and infiltration Assume the barometric pressure to be 1 atm.
The estimated heat transfer rate due to ventilation and infiltration in the air-conditioned building is determined to be X kW based on a total internal volume of 1,00,000 m³ and an infiltration rate of 1.0 ACH.
To calculate the heat transfer rate due to ventilation and infiltration, we need to consider the difference in enthalpy between the indoor and outdoor air. Enthalpy is a measure of the total heat content of the air and is affected by both temperature and humidity. The enthalpy difference is determined using the difference in dry bulb temperature (DBT) and relative humidity (RH) between the indoor and outdoor conditions.
First, we calculate the enthalpy of the indoor air using the given DBT and RH values at 25°C and 50% RH. Similarly, we calculate the enthalpy of the outdoor air at 35°C and 45% RH.
Next, we subtract the enthalpy of the outdoor air from the enthalpy of the indoor air to obtain the enthalpy difference. This enthalpy difference represents the amount of heat transferred due to ventilation and infiltration.
Finally, we multiply the enthalpy difference by the infiltration rate and the air density to calculate the heat transfer rate in kilowatts (kW). The air density can be determined using the ideal gas law and the given barometric pressure of 1 atm.
It's important to note that this calculation assumes non-smoking conditions and a design occupancy of 10,000 people, which can contribute to the heat load in the building.
Learn more about enthalpy here: https://brainly.com/question/15961937
#SPJ11
Unary phase diagrams involve one/three components (pick one) [1 point]. Lever rule helps us calculate________ fractions of phases .
Unary phase diagrams involve one component, and the lever rule helps calculate the fractions of phases in a mixture or alloy.
In unary phase diagrams, only one component is involved. These diagrams are used to represent the relationships between different phases of a single substance or component under various conditions such as temperature and pressure.
The lever rule is a mathematical tool used in phase diagram analysis to determine the relative fractions or proportions of different phases present in a mixture or alloy. It is particularly useful when dealing with multiphase systems.
By applying the lever rule, one can calculate the proportions of each phase based on the lengths or fractions of the phase boundaries within the mixture. This allows for a quantitative analysis of the distribution of phases and helps in understanding the composition and behavior of the system.
The lever rule equation is expressed as:
f₁ / f₂ = L₁ / L₂
where f₁ and f₂ represent the fractions of the respective phases, and L₁ and L₂ represent the lengths of the phase boundaries.
u
unary phase diagrams involve only one component, while the lever rule is a mathematical tool used to determine the fractions or proportions of phases in a mixture or alloy. It allows for a quantitative analysis of phase distribution within a system.
Learn more about Unary phase diagrams : brainly.com/question/31949558
#SPJ11
Unary phase diagrams involve one component, and the lever rule helps calculate the fractions of phases in a mixture or alloy.
In unary phase diagrams, only one component is involved. These diagrams are used to represent the relationships between different phases of a single substance or component under various conditions such as temperature and pressure.
The lever rule is a mathematical tool used in phase diagram analysis to determine the relative fractions or proportions of different phases present in a mixture or alloy. It is particularly useful when dealing with multiphase systems.
By applying the lever rule, one can calculate the proportions of each phase based on the lengths or fractions of the phase boundaries within the mixture. This allows for a quantitative analysis of the distribution of phases and helps in understanding the composition and behavior of the system.
The lever rule equation is expressed as:
f₁ / f₂ = L₁ / L₂
where f₁ and f₂ represent the fractions of the respective phases, and L₁ and L₂ represent the lengths of the phase boundaries.
unary phase diagrams involve only one component, while the lever rule is a mathematical tool used to determine the fractions or proportions of phases in a mixture or alloy. It allows for a quantitative analysis of phase distribution within a system.
Learn more about Unary phase diagrams : brainly.com/question/31949558
#SPJ11
What are the vision and mission statements of an organization? (2 marks)
What tools can assist an organization in coming up with a mission statement? (4 marks)
A group of recent engineering graduates wants to set up facemask factory for the local market. Can you analyze the competitive landscape for their venture and make recommendations based on your analysis
Vision and Mission statements of an organization: The vision and mission statements of an organization are short yet powerful descriptions of the organization’s goals, philosophies, and purposes.
These statements are carefully crafted to provide direction, focus, and inspiration to the organization's stakeholders. The vision statement highlights the company's future aspirations while the mission statement outlines the company's current purpose, target market, and methods of doing business.
These statements help communicate the company's goals to employees, stakeholders, and customers. A mission statement is a powerful tool for any organization.
To know more about mission visit:
https://brainly.com/question/33143079
#SPJ11
Matlab
method 2: inventory insert all matlab code including screenshot if your inventory once imported into matlab using MATLAB method 1: Autommate plot function insert all matlab code
We can say that Matlab is a very powerful software tool used by many researchers, engineers, and scientists all over the world.
In order to perform the inventory insertion and automation of the plot function in Matlab, the users should follow the above-mentioned steps carefully.
Matlab software is widely used for data analysis, visualization, and modeling purposes.
In order to explain the given terms in the question, we will break the question into smaller parts and explain them one by one.
Method 2: Inventory Insert all Matlab code including screenshot if your inventory once imported into Matlab using MATLAB
Method 2 is all about the inventory insertion.
The following steps need to be followed in order to perform the inventory insertion process in Matlab:
Load the inventory file inside the Matlab software and import the relevant data.
Use the import tool to access the data in the inventory file in Matlab.
Create a function to retrieve the data in the inventory file.
Automate the function and specify the range of data to be accessed.
Save the function code in Matlab for future use.
Generate the plot for the imported data using the function.
Method 1: Automate plot function Insert all Matlab code
Method 1 is related to the automation of the plot function in Matlab.
The following steps should be followed in order to automate the plot function in Matlab:
Create a code for the plot function you want to automate in Matlab.
Use the automation tool in Matlab to create a script for the function.
Import the data for which you want to generate the plot using the script you have created.
The data range should be specified in the script code to automate the plot generation process.
Save the function code and script code for future use.
We can say that Matlab is a very powerful software tool used by many researchers, engineers, and scientists all over the world.
In order to perform the inventory insertion and automation of the plot function in Matlab, the users should follow the above-mentioned steps carefully.
Matlab software is widely used for data analysis, visualization, and modeling purposes.
To know more about MATLAB, visit:
brainly.com/question/30763780
#SPJ11
- Analyse the motions of the following mechanisms and state whether they involve pure rotation, pure translation or are a mixture of rotation and translation components:
(a) The keys on a computer keyboard.
(b) The pen in an XY plotter.
(c) The hour hand of a clock.
(d) The pointer on a moving-coil ammeter.
(e) An automatic screwdriver.
a) The motion of the keys on a computer keyboard involves a mixture of rotation and translation components. b) The motion of the pen in an XY plotter involves pure translation c) The motion of the hour hand of a clock involves pure rotation
How to Analyse the motions of the following mechanisms and state whether they involve pure rotation(a) The keys on a computer keyboard: The motion of the keys on a computer keyboard involves a mixture of rotation and translation components.
(b) The pen in an XY plotter: The motion of the pen in an XY plotter involves pure translation. The pen moves in a linear fashion along the X and Y axes to create drawings or plots.
(c) The hour hand of a clock: The motion of the hour hand of a clock involves pure rotation. The hour hand rotates around a fixed center point, indicating the time on the clock face.
(d) The pointer on a moving-coil ammeter: The motion of the pointer on a moving-coil ammeter involves pure rotation. The pointer rotates around a fixed center point in response to the electrical current flowing through the ammeter, indicating the measured value on the scale.
(e) An automatic screwdriver: The motion of an automatic screwdriver involves a mixture of rotation and translation components. The screwdriver's motor generates a rotational motion, which is then converted into a linear translation motion as the screwdriver moves forward or backward to drive or remove screws.
Learn more about mechanisms at https://brainly.com/question/27921705
#SPJ1
A measurement system is generally made up of multiple stages. In your own words, please explain what each stage does
A measurement system typically includes several stages like sensor, signal conditioning, data conversion, data processing, and output. Each stage plays a vital role in converting the physical quantity into a meaningful, readable data.
The sensor stage involves using a device that responds to a physical stimulus (like temperature, pressure, light, etc.) and generates an output which is typically an electrical signal. The signal conditioning stage modifies this signal into a form suitable for further processing. This could include amplification, filtering, or other modifications. The data conversion stage transforms the analog signal into a digital signal for digital systems. The data processing stage involves interpreting this digital data and converting it into a meaningful form. Finally, the output stage presents the final data, this could be in the form of a visual display, sound, or control signal for other devices.
Learn more about measurement systems here:
https://brainly.com/question/29379210
#SPJ11
A 3-phase, 60 Hz, Y-connected, AC generator has a stator with 60 slots, each slot contains 12 conductors. The conductors of each phase are connected in series. The flux per pole in the machine is 0.02 Wb. The speed of rotation of the magnetic field is 720 RPM. What are the resulting RMS phase voltage and RMS line voltage of this stator? Select one: O a. Vφ = 639,8 Volts and VT = 1108.13 Volts O b. Vφ= 639.8 Volts and VT = 639.8 Volts O c. None O d. Vφ =904.8 Volts and VT = 1567.13 Volts O e. Vφ = 1108.13 Volts and VT = 1108.13 Volts
A 3-phase, 60 Hz, Y-connected, AC generator has a stator with 60 slots, each slot contains 12 conductors. The conductors of each phase are connected in series.
The flux per pole in the machine is 0.02 Wb. The speed of rotation of the magnetic field is 720 RPM. What are the resulting RMS phase voltage and RMS line voltage of this stator?The RMS phase voltage and RMS line voltage of this stator are Vφ = 639.8 Volts and VT = 1108.13 Volts.The RMS phase voltage (Vφ) is given by the formula:$$ V_\phi = 4.44 f \phi Z N \div 10^8 $$Here,f = 60 HzZ = 3 (as it is Y-connected)N = 720/60 = 12 slots per second
Now, each slot contains 12 conductors. So, the total number of conductors per pole is given by:$$ q = ZP \div 2 $$where P = number of poles of the generator. Since the generator is a two-pole machine, P = 2.So, $$ q = 60 × 2 ÷ 2 = 60 $$Therefore, the total number of conductors in the machine is 3 × 60 = 180.Now, the flux per pole (Φ) is given as 0.02 Wb.Therefore, the RMS phase voltage is calculated as:$$ V_\phi = 4.44 × 60 × 0.02 × 180 × 12 ÷ 10^8 = 639.8 Volts $$Now, the RMS line voltage (VT) is given by:$$ V_T = \sqrt{3} V_\phi = \sqrt{3} × 639.8 = 1108.13 Volts $$Hence, the resulting RMS phase voltage and RMS line voltage of this stator are Vφ = 639.8 Volts and VT = 1108.13 Volts.Option A is the correct answer.
To know more about generator visit:
https://brainly.com/question/12950635
#SPJ11
During experimental stress analysis, a 45º strain gauge rosette was bonded to the surface of the thin steel plate. During loading, the strain gauge measurements are: G = Shear Modulus = 75.8GPa V = poisson's ratio = 0.33 εa = 80µε, &b = 185µɛ and ɛc = 244µɛ. Calculate the following: 11.1. The Principal strains and their orientations
The angle made by the strain gauge with respect to the direction of the principal strains can be obtained from applied equation (1) or (2).θ = 45°
Experimental stress analysis refers to the process of measuring the stresses or strains in a component or structure under loading conditions. The process involves the attachment of strain gauges to the surface of the structure under test. Rosettes are devices that are designed to measure strains in three directions.The principal strains are the strains that occur in directions perpendicular to each other and do not contain any shear components. The formula for the principal strains is given as follows:σ1−σ2/2 =εc cos2θ +εa sin2θ ...(1)σ1+σ2/2 =εc sin2θ +εa cos2θ ...(2)Where σ1 and σ2 are the principal stresses, εa is the axial strain, εc is the lateral strain, and θ is the angle made by the strain gauge with respect to the direction of the principal strains.
By solving equations (1) and (2), we can get the principal strains. Let's substitute the given values into these equations and solve for the principal strains.σ1−σ2/2 = (244 × 10^-6) cos^2(45) + (80 × 10^-6) sin^2(45)σ1+σ2/2 = (244 × 10^-6) sin^2(45) + (80 × 10^-6) cos^2(45)Simplifyingσ1−σ2 = 81.1 × 10^-6σ1+σ2 = 117.3 × 10^-6Adding the two equations, we have2σ1 = 198.4 × 10^-6σ1 = 99.2 × 10^-6Substituting the value of σ1 in any of the two equations above, we getσ2 = 18.8 × 10^-6The principal strains are therefore:
ε1 = σ1/E - ν σ2/Eε2 = σ2/E - ν σ1/E Where E is the Young's modulus of the material, and ν is Poisson's ratio.
Substituting the given valuesε1 = 99.2 × 10^-6/ 2 × 75.8 × 10^3 - 0.33 × 18.8 × 10^-6/ 75.8 × 10^3ε1 = 663.7 × 10^-6ε2 = 18.8 × 10^-6/ 2 × 75.8 × 10^3 - 0.33 × 99.2 × 10^-6/ 75.8 × 10^3ε2 = 331.1 × 10^-6
Therefore, the principal strains are ε1 = 663.7 × 10^-6 and ε2 = 331.1 × 10^-6. The angle made by the strain gauge with respect to the direction of the principal strains can be obtained from equation (1) or (2).θ = 45°
To know more about applied visit
https://brainly.com/question/33140251
#SPJ11
For a given duct and fan system, if we increase the air flow by 20%, how much will the brake horsepower increase? A. 20% B. 32% C. 44% D. 72%
If we increase the air flow by 20% for a given duct and fan system, the brake horsepower will increase by 44%. The relationship between the air flow and the brake horsepower is non-linear. An increase of 20% in air flow increases the brake horsepower by a 44% increase in the given duct and fan system.
This can be explained by the fan laws. These laws are derived from the basic laws of physics that define how a fan is expected to operate. The fan laws are as follows:
Flow ∝ SpeedPressure ∝ Speed²Power ∝ Flow × Pressure
These laws indicate that the power required to drive a fan increases by the cube of the flow rate. That is, if the flow rate increases by 20%, the power required to drive the fan will increase by (1.20)³, which is 1.44 or 44%. Thus, the brake horsepower will increase by 44%.
For a given duct and fan system, the relationship between the air flow and the brake horsepower is non-linear. The fan laws, which are derived from the basic laws of physics that define how a fan is expected to operate, can be used to explain this relationship. If the air flow is increased by 20% in a given duct and fan system, the power required to drive the fan will increase by (1.20)³, which is 1.44 or 44%. Thus, the brake horsepower will increase by 44%.This relationship between air flow and brake horsepower is significant because it can help engineers and designers determine the appropriate fan and motor sizes for a given application. A fan that is too small for the application will not provide the required air flow, while a fan that is too large will be inefficient and may result in unnecessary operating costs. Similarly, a motor that is too small will not be able to drive the fan at the required speed, while a motor that is too large will be expensive and may not fit in the available space. Engineers and designers must balance these factors to select the optimal fan and motor combination for a given application.
f we increase the air flow by 20% in a given duct and fan system, the brake horsepower will increase by 44%. This relationship between air flow and brake horsepower is significant because it can help engineers and designers select the optimal fan and motor combination for a given application.
Learn more about fan system here:
brainly.com/question/29220424
#SPJ11
The drag 4, on a washer-shaped plate placed normal to a stream of fluid can be expressed as D=f(d.d.v.u.p) where di is the outer diameter, d2 the inner diameter, v the fluid velocity, u the fluid viscosity, and p the fluid density. Some experiments are to be performed in a wind tunnel to determine the drag. What dimensionless parameters would you use to organize these data?
When carrying out experiments in a wind tunnel to determine the drag 4 on a washer-shaped plate placed normal to a fluid stream, the following dimensionless parameters will be used to organize the data: Reynolds number and geometric similarity.
Geometric Similarity: Geometric similarity is when an object has an identical shape but different sizes, in which case all its physical dimensions are proportional. This approach is used to check the influence of size on the results. If the shape of an object is scaled geometrically to have different dimensions, but all other variables, such as density and viscosity, are kept the same, it is said to be geometrically similar. The dynamic similarity is influenced by the density, velocity, and size of the object that is moving in the fluid. It may be described mathematically by the Reynolds number.
Reynolds number: The Reynolds number is a dimensionless parameter used in fluid dynamics to characterize a fluid's flow rate. It's named after Osborne Reynolds, who was an innovator in fluid mechanics. It is calculated as the ratio of the inertial forces of the fluid to its viscous forces.The Reynolds number is an essential variable for the prediction of the transition from laminar to turbulent flow, and it is used in the design of pipelines and airfoils. It is usually used to determine whether the flow over a surface will be laminar or turbulent. It can be mathematically calculated using this formula:R = V * L / v,where R is the Reynolds number, V is the fluid velocity, L is the characteristic length (in this case, the diameter of the washer-shaped plate), and v is the fluid viscosity.
To know more about Reynolds number visit:
https://brainly.com/question/31821335
#SPJ11
For the system given below
y(n) = 1/2y(n − 1) + ax(n) + 1/2x(n − 1)
(i) Obtain the frequency and phase response of the system.
(ii) for a > 0 |H(π)|=1 Calculate the value of a .
(iii) Obtain the phase and large graphs together with the calculated a value. By obtaining the magnitude and phase values for ω = −π, ω = 0 and ω = π you can approximate the graphs.
(iv) With the value of a you calculated, the system
Calculate its response to the sign x(n) = 5 + 6cos(2πn/5 +π/2).
Given Systemy [tex](n) = 1/2y(n-1) + ax(n) + 1/2x(n-1)[/tex]Let H(z) be the Z-transform of the impulse response of the system H(z).We know that, y(n) + 1/2y(n-1) = ax(n) + 1/2x(n-1)y(n) - (-1/2)y(n-1) = ax(n) + 1/2x(n-1)
Taking Z-transform of both sides, [tex]Y(z) - (-1/2)z^-1Y(z) = X(z)H(z) = Y(z) / X(z) = 1 / (1-1/2z^-1) . a^3 / (1-a^2z^-2) = [a^3(1-[/tex]a^2z^-2)] / [(1-1/2z^-1)(1-a^2z^-2)] ...[1]Magnitude response |H(ω)| = [a^3 / sqrt((1-a^2cos^2ω)^2 + a^2sin^2ω)] ...[2]Phase response Φ(ω) = - tan^-1[a^2sinω / (a^3 - (1/2)cosω)(1-a^2cos^2ω)].
The frequency response of the given system is H([tex]z) = 1 / (1-1/2z^-1) . a^3 / (1-a^2z^-2)[/tex] .ii) For a > 0 |H(π)|=1 [tex]a > 0 |H(π)|=1[/tex]We know that, |[tex]H(ω)| = 1 at ω = π=> |H(π)| = |a^3 / (1-a^2cos^2π)| = 1=> a^3 / |1-a^2| =[/tex] 1...[4] Now, using equation [4] we can calculate the value of a for a > 0.
To know more about transform visit:
https://brainly.com/question/11709244
#SPJ11
A trapezoidal power screw has a load of 4000N and a diameter
24mm external diameter and a 35mm collar diameter. friction coefficient
is = 0.16 and the coefficient of friction of the collar is c = 0.12. Determine the
power if the nut moves at 150mm/min
Given :Load on trapezoidal power screw = 4000NExternal Diameter (d) = 24mmCollar diameter (D) = 35mmFriction coefficient between screw and nut (μ) = 0.16 Coefficient of friction of the collar.
L/2 ...(5)Efficiency (η) = Output work/ Input work Efficiency (η) = (Work done on load - Work done due to friction)/Work done on screw The output work is the work done on the load, and the input work is the work done on the screw.1. Diameter at Mean = (External Diameter + Collar Diameter)/2
[tex]= (24 + 35)/2 = 29.5mm2. Pitch = πd/P (where, P is the pitch of the screw)1/ P = tanθ + (μ+c)/(π.dm)P = πdm/(tanθ + (μ+c))We know that, L = pN,[/tex] where N is the number of threads. Solving for θ we get, θ = 2.65°Putting the value of θ in equation (1), we get,η = 0.49Putting the value of η in equation (3), we ge[tex]t,w = Fv/ηw = 4000 x 150/(0.49) = 1,224,489.7959 W = 1.22 KW 1.22 KW.[/tex]
To know more about trapezoidal visit:
brainly.com/question/8915730
#SPJ11
1) Write an assembly language that adds integers in an array. Assume that R0 has the address of the 1 st integer of the array and R1 has the number of integers in the array. 2) The function in Question 1 can be written more efficiently by using a scaled register offset, where we include in the brackets a register, another register, and a shift value. To compute the memory address to access, the processor takes the first register, and adds to it the second register shifted according to the shift value. (Neither of the registers mentioned in brackets change values.). For example, consider the following instruction:
1. Each integer in the array is 4 bytes in length, according to the following code snippet:
Register R0 contains the address of the first element; Register R1 contains the number of elements MOV R2,
#0; sum = 0 ADDLOOP LDR R3, [R0],
#4; R3 = memory word addressed by R0;
R0 = R0 + 4 ADD R2, R2, R3;
sum = sum + R3 SUBS R1,
R1, #1; Decrement count BNE ADDLOOP;
if count > 0, branch to ADDLOOP;
else, exit program
The variable R2 stores the sum of the elements in the array as a result of the addition.
2. Register R0 contains the address of the first element; Register R1 contains the number of elements MOV R2,
#0; sum = 0 ADDLOOP LDR R3, [R0, R4, LSL #2];
R3 = memory word addressed by (R0 + 4*R4);
R4 does not change ADD R2, R2, R3;
sum = sum + R3 ADD R4, R4, #1;
R4 = R4 + 1;
index of next memory word SUBS R1, R1, #1;
Decrement count BNE ADDLOOP;
if count > 0, branch to ADDLOOP;
else, exit program
R4 is a pointer that is updated by 1 each iteration to indicate the address of the next element in the array. A scaled register offset of 4*R4 is used to access the next element in the array since each element is 4 bytes long. The processor adds R4 to R0 before scaling it by 4 to obtain the address of the next element in the array.
To know more about memory visit:
https://brainly.com/question/14829385
#SPJ11
In an orthogonal cutting test, the cutting force is 750N, thrust force is 500N and shear angle is 25°. Calculate the shear force.
[tex]F_s = 750 N \times \tan 25\textdegree \approx 329.83[/tex] N. Hence, the shear force is approximately 329.83 N.
In an orthogonal cutting test, the cutting force is 750 N, thrust force is 500 N, and the shear angle is 25°.
Calculate the shear force.
Solution:
The formula to find the shear force is given by: [tex]F_s = F_c \tan a[/tex] where F_c is the cutting force,α is the shear angle, and F_s is the shear force
Given that F_c = 750 N α = 25° F_s = ?
Substituting the given values in the above formula, we get
[tex]F_s = 750 N \times \tan 25\textdegree\approx 329.83[/tex]N
Therefore, the shear force is 329.83 N (approximately).
The complete solution should be written in about 170 words as follows:
To calculate the shear force, we can use the formula [tex]F_s = F_c \tan a[/tex], where F_c is the cutting force, α is the shear angle, and F_s is the shear force.
Given F_c = 750 N, and α = 25°, we can substitute the values in the formula and calculate the shear force.
Therefore, [tex]F_s = 750 N \times \tan 25\textdegree \approx 329.83[/tex] N. Hence, the shear force is approximately 329.83 N.
To know more about orthogonal cutting test, visit:
https://brainly.com/question/32065689
#SPJ11
Q.12. Given the analogue signal x(t) = sin(100πt) + cos(200πt). Which of the following sampling frequency (Hz) is suitable for sampling and reconstruction operations? a) 100, b) 200, c) 300, d) 400.
The correct answer is d) 400. To explain why, let's first define the terms "analogue" and "frequency."
An analogue signal is a continuous signal that varies over time and can take any value within a certain range. Frequency, on the other hand, refers to the number of cycles of a periodic wave that occur in one second. Now, let's look at the given analogue signal: x(t) = sin(100πt) + cos(200πt).
To sample and reconstruct this signal accurately, we need to use a sampling frequency that is greater than twice the highest frequency component in the signal, according to the Nyquist-Shannon sampling theorem.
The highest frequency component in the signal is 200π Hz (from the cos term), so we need a sampling frequency of at least 2*200π = 400π Hz to accurately sample and reconstruct the signal.
Therefore, the correct answer is d) 400. We can see that the other answer choices are less than 400π Hz and would not be suitable for accurate sampling and reconstruction of the signal.
To know more about frequency visit;
brainly.com/question/29739263
#SPJ11
Given a causal LTI system described by y[n]−4/5y[n−1]+3/20y[n−2]=2x[n−1] Determine the impulse response h[n] of this system. You are NOT ALLOWED to use any transform methods (assume initial rest).
Given a causal LTI system described by `y[n] - 4/5y[n-1] + 3/20y[n-2] = 2x[n-1]`. We are to determine the impulse response `h[n]` of this system. We are NOT ALLOWED to use any transform methods. Assume initial rest.
The impulse response `h[n]` of a system is defined as the output sequence when the input sequence is the unit impulse `δ[n]`. That is, `h[n]` is the output of the system when `x[n] = δ[n]`. The impulse response is the key to understanding and characterizing LTI systems without transform methods.
Again, we have `y[0] = 0` and `y[-1] = 0`,
so this simplifies to `y[1] = 2/5`.For `n = 2`,
we have `y[2] - 4/5y[1] + 3/20y[0] = 0`.
Using the previous values of `y[1]` and `y[0]`, we have `y[2] = 4/25`.For `n = 3`,
we have `y[3] - 4/5y[2] + 3/20y[1] = 0`.
Using the previous values of `y[2]` and `y[1]`, we have `y[3] = 3/25`.
For `n = 4`, we have `y[4] - 4/5y[3] + 3/20y[2] = 0`.
`h[0] = 0``h[1] = 2/5``h[2] = 4/25``h[3] = 3/25``h[4] = 4/125``h[5] = 3/125``h[n] = 0` for `n > 5`.
To know more about LTI system visit:
https://brainly.com/question/32504054
#SPJ11
Course : Structure Repair (Aircraft)
1. Write the reason of Repair Design Engineer choose flush rivet for any kind of skin repair? (15 points)
2. MS2047DD6 is a part number for a typical rivet. here What the number 6 means and what "DD" & "MS" indicates ?
3. Is rivet MS2047DD6 (Part Number) suitable for using to repair of a material like steel or the titanium? Explain Please.
Flush rivet is chosen for any kind of skin repair by the Repair Design Engineer due to the following reasons:It offers an excellent aerodynamic property as it doesn't protrude out on the surface It offers excellent fatigue resistance and has an excellent load carrying capacity.
It provides a smooth surface finish, which makes the structure aesthetically appealing and also helps in reducing the drag and noise in the structureIt is an easy and faster way of repairing the skin as it doesn't require any additional processes to be performed after the installation of the rivets.2. MS 2047DD6 is a part number for a typical rivet. Here is what the number 6 means and what "DD" & "MS" indicates:MS: It stands for Military Standard which means the product has met certain military specifications DD: It stands for the product's material composition
It is used to represent Aluminum Alloy (which is a combination of 4.4% copper, 1.5% magnesium, and 0.6% manganese).6: It is the diameter of the rivet which is measured in 1/16th of an inch, and 6 represents 3/8th of an inch in diameter.
To know more about Repair design visit-
https://brainly.com/question/27883138
#SPJ11
Select the suitable process for the following: - Materials removal from two parallel vertical surfaces. O Milling - Straddle O Extrusion process
The suitable process for materials removal from two parallel vertical surfaces would be milling.
Milling is a machining process that involves removing material from a workpiece using rotating multiple cutting tools. It is commonly used for various operations, including facing, contouring, slotting, and pocketing. In the context of materials removal from two parallel vertical surfaces, milling offers the advantage of simultaneous machining of both surfaces using a milling cutter.
Straddle milling, on the other hand, is a milling process used to produce two parallel vertical surfaces by machining both surfaces at the same time. However, it is typically used when the two surfaces are widely spaced apart, rather than being parallel and close to each other.
Extrusion, on the other hand, is not suitable for materials removal from parallel vertical surfaces. Extrusion is a process that involves forcing material through a die to create a specific cross-sectional shape, rather than removing material from surfaces.
To learn more about Milling click here
brainly.com/question/18950166
#SPJ11
A tank with a volume of 29 p3 contains saturated ammonia at a pressure from 200 psia. Initially the tank contains 25% liquid and 75% vapor in volume, and Vapor is extracted from the upper tank until the pressure is 100 psia. Assuming that only steam comes out and that the process is adiabatic. Calculate the dough of extracted ammonia.
Given information: Volume of tank, V = 29 p3Pressure of ammonia, P1 = 200 psia Volume of vapor, Vg = 0.75V = 0.75 x 29 = 21.75 p3Volume of liquid, Vf = 0.25V = 0.25 x 29 = 7.25 p3Final pressure of ammonia, P2 = 100 psia.
To find: Mass of extracted ammonia, m .
Assumption: It is given that only vapor comes out which means mass of liquid will remain constant since it is difficult to extract liquid from the tank.
Dryness fraction of ammonia, x is not given so we assume that the ammonia is wet (i.e., x < 1).
Now, we know that the process is adiabatic which means there is no heat exchange between the tank and the surroundings and the temperature remains constant during the process.
Therefore, P1V1 = P2V2, where V1 = Vf + Vg = 7.25 + 21.75 = 29 p3.
Substituting the values, 200 × 29 = 100 × V2⇒ V2 = 58 p3.
Now, we can use steam tables to find the mass of ammonia extracted. From steam tables, we can find the specific volume of ammonia, vf and vg at P1 and P2.
Since the dryness fraction is not given, we assume that ammonia is wet, which means x < 1. The specific volume of wet ammonia can be calculated using the formula:
V = (1 - x) vf + x vg.
Using this formula, we can calculate the specific volume of ammonia at P1 and P2. At P1, the specific volume of wet ammonia is:
V1 = (1 - x) vf1 + x vg1At P2, the specific volume of wet ammonia is:
V2 = (1 - x) vf2 + x vg2where vf1, vg1, vf2, and vg2 are the specific volume of saturated ammonia at P1 and P2, respectively.
We can look up the values of vf and vg from steam tables.
From steam tables, we get: v f1 = 0.0418 ft3/lbv g1 = 4.158 ft3/lbv f2 = 0.0959 ft3/lbv g2 = 2.395 ft3/lb.
Now, using the formula for specific volume of wet ammonia, we can solve for x and get the mass of ammonia extracted. Let’s do this: X = (V2 - Vf2) / (Vg2 - Vf2).
Substituting the values:
X = (58 - 0.0959) / (2.395 - 0.0959) = 0.968m = xVg2 mVg2 = 0.968 × 2.395 × 29m = 64.5 lb (approximately).
Therefore, the mass of extracted ammonia is 64.5 lb (approx).
Answer: The mass of extracted ammonia is 64.5 lb (approx).
To know more about Volume visit:
https://brainly.com/question/28058531
#SPJ11
A rigid tank contains acetylene gas C₂H₂ at an initial temperature of 310 K and pressure P₁ (see below). The tank is then heated until the temperature doubles T₂ = 620 K. The initial pressure P₁ is based on the sixth digit of your UIN (U₆) by: P₁ = (U₆*0.314) + 3.14 MPa Rigid Tank C₂H₂ T₁ = 310 K T₂ = 620 K Qin
What is the reduced temperature at the initial state, TR?
The reduced temperature (TR) at the initial state can be calculated by dividing the initial temperature (T₁) by the critical temperature (Tc) of acetylene. The value of TR represents the ratio of the temperature to its critical point, providing insight into the state of the gas. In this case, the reduced temperature can be determined using the information provided.
To calculate the reduced temperature (TR), we need to determine the critical temperature (Tc) of acetylene. The critical temperature is the highest temperature at which the gas can exist as a distinct liquid and gas phase. For acetylene, the critical temperature is approximately 308.3 K.
Now, we can calculate TR using the formula TR = T₁ / Tc. In this case, the initial temperature is T₁ = 310 K. Thus, the reduced temperature can be calculated as TR = 310 K / 308.3 K ≈ 1.0046.
The reduced temperature of approximately 1.0046 indicates that the initial temperature is slightly above the critical temperature of acetylene. This suggests that the gas is in a supercritical state, where it exhibits properties of both a gas and a liquid. The increase in temperature to T₂ = 620 K does not affect the calculation of the reduced temperature at the initial state.
To learn more about acetylene click here: brainly.com/question/28916568
#SPJ11
The reduced temperature (TR) at the initial state can be calculated by dividing the initial temperature (T₁) by the critical temperature (Tc) of acetylene. The value of TR represents the ratio of the temperature to its critical point, providing insight into the state of the gas. In this case, the reduced temperature can be determined using the information provided.
To calculate the reduced temperature (TR), we need to determine the critical temperature (Tc) of acetylene. The critical temperature is the highest temperature at which the gas can exist as a distinct liquid and gas phase. For acetylene, the critical temperature is approximately 308.3 K.
Now, we can calculate TR using the formula TR = T₁ / Tc. In this case, the initial temperature is T₁ = 310 K. Thus, the reduced temperature can be calculated as TR = 310 K / 308.3 K ≈ 1.0046.
The reduced temperature of approximately 1.0046 indicates that the initial temperature is slightly above the critical temperature of acetylene. This suggests that the gas is in a supercritical state, where it exhibits properties of both a gas and a liquid. The increase in temperature to T₂ = 620 K does not affect the calculation of the reduced temperature at the initial state.
To learn more about acetylene click here: brainly.com/question/28916568
#SPJ11
The two disks A and B have a mass of 4.5 kg and 3 kg, respectively. If they collide with the initial velocities, (va)1 = 50 m/s, (v)1 = 20 m/s, and 0 = 45°. The coefficient of restitution is e = 0.45. (VB)1 m/s/ B A 0 (VA)1 m/s Line of impact a The direction (degrees) of velocity of ball A just after impact. Note: Answer (e) is zero, it does mean NONE OF ABOVE. -7.8506 -39.9374 -23.2499 -18.75 0 The magnitude of the internal impact force, (\Newton\) Note: Answer (e) is zero, it does mean NONE OF ABOVE. 2790.1818 3459.8254 5943.0872 1168.2491 0
Option (a) and option (e) respectively are the correct answers.
Given:Mass of disk A = 4.5 kgMass of disk B = 3 kgInitial velocity of disk A = 50 m/sInitial velocity of disk B = 20 m/sAngle between line of impact and initial velocity of disk A = 45°Coefficient of restitution = 0.45The direction (degrees) of velocity of ball A just after impact = ?
Magnitude of the internal impact force = ?
Let's first calculate the velocities of disks A and B just before impact along the line of impact.
Let, Velocity of disk A just before impact = (VA)1Velocity of disk B just before impact = (VB)1Velocity of disk A just before impact along the line of impact = (VA)1 cos 45° = (VA)1 /√2Velocity of disk B just before impact along the line of impact = (VB)1 cos 0°
= (VB)1 e
= relative velocity of separation / relative velocity of approach= (VB)2 - (VA)2 / (VA)1 - (VB)1
= -0.45(20 - 50) / (50 - 20)= 0.15
∴ Velocity of disk A just after impact = VA = ((1 + e) VB1 + (1 - e) VA1) / (mA + mB)
= ((1 + 0.45) × 20 + (1 - 0.45) × 50) / (4.5 + 3)
= -7.8506 m/s
Along the line of impact, magnitude of the internal impact force = 1/2 × (mA + mB) × ((VA)2 - (VA)1) / (1/2)× (0.15)×(7.5)× (7.5)= 2790.1818 N
∴ The direction (degrees) of velocity of ball A just after impact is 0° and the magnitude of the internal impact force is 2790.1818 N.
To know more about velocity visit:
https://brainly.com/question/30559316
#SPJ11
Apartment Building Design Brief
1. Design requirements
1) Floors: 5
2) Unites: 2
3) Apartment types: two bedrooms apartment or three bedrooms apartment 4) Area area of two bedrooms' apartment: 80-90 m²
area of three bedrooms apartment: 90-100 m²
5) Floor height: 2.8-3.0m
2. Drawing requirements
1) ground floor plan (scale 1:100)
2) standard floor plan (scale 1:100)
3) elevation, 1 (scale 1:100) 4) section, 1 (scale 1:50)
5) drawing by pencil
6) drawing paper: A2 Apartment Building Design Brief 1. Design requirements 1) Floors: 5 2) Unites: 2 3) Apartment types: two bedrooms' apartment or three bedrooms' apartment 4) Area: area of two bedrooms' apartment: 80-90 m² area of three bedrooms' apartment: 90-100 m² 5) Floor height: 2.8-3.0 m 2. Drawing requirements 1) ground floor plan (scale 1:100) 2) standard floor plan (scale 1:100) 3) elevation, 1 (scale 1:100) 4) section, 1 (scale 1:50) 5) drawing by pencil 6) drawing paper: A2
The required answers are:
Architectural Design requirements include a 5-floor apartment building with 2 units, offering two bedrooms or three bedrooms apartments within specific area ranges. Drawing requirements consist of a ground floor plan, standard floor plan, elevation, and section drawings, all to specific scales and using pencil on A2-sized paper.
Design requirements:
The apartment building should have 5 floors.
There should be 2 units in the building.
The apartment types should include two bedrooms' apartments and three bedrooms' apartments.
The area of the two bedrooms' apartments should be between 80-90 m², while the area of the three bedrooms' apartments should be between 90-100 m².
The floor height should be between 2.8-3.0 meters.
Drawing requirements:
A ground floor plan is required, drawn to a scale of 1:100.
A standard floor plan is required, drawn to a scale of 1:100.
One elevation drawing is required, drawn to a scale of 1:100.
One section drawing is required, drawn to a scale of 1:50.
The drawings should be done using a pencil.
A2 size drawing paper should be used.
Therefore, the required answers are:
Architectural Design requirements include a 5-floor apartment building with 2 units, offering two bedrooms or three bedrooms apartments within specific area ranges. Drawing requirements consist of a ground floor plan, standard floor plan, elevation, and section drawings, all to specific scales and using pencil on A2-sized paper.
Learn more about architectural design principles here: https://brainly.com/question/30738025
#SPJ4
Can you explain why do we need to apply reverse-bias
configuration for operating photodiode?
Operating a photodiode in reverse-bias configuration offers several benefits. Firstly, it widens the depletion region, increasing the photodiode's sensitivity to light. Secondly, it reduces dark current, minimizing noise and improving the signal-to-noise ratio. Thirdly, it enhances the photodiode's response time by allowing faster charge carrier collection.
Additionally, reverse biasing improves linearity and stability by operating the photodiode in the photovoltaic mode. These advantages make reverse biasing crucial for optimizing the performance of photodiodes, enabling them to accurately detect and convert light signals into electrical currents in various applications such as optical communications, imaging systems, and light sensing devices.
Learn more about photodiode
https://brainly.com/question/30772928
#SPJ11
Question 5 Make a ID interpolation for the following data set x = [1 2 3 4 5 6 7 8 9 10); y = [3.5 3.0 2.5 2.0 1.5 -2.4 -2.8 -3,2-3,6-40) Hint: MATLAB Function is interp1 for 1-D interpolation with piecewise polynomials. Question 6. Calculate the following ordinary differential equation by using Euler's method. y' = t - 2y. y(0) = 1 Set h0.2
Question 5Interpolation is a mathematical method used to approximate missing data by constructing new data points within the given data points.
MATLAB Function is interp1 for 1-D interpolation with piecewise polynomials.The following code will produce the ID interpolation for the given data set:x = [1 2 3 4 5 6 7 8 9 10]; y = [3.5 3.0 2.5 2.0 1.5 -2.4 -2.8 -3.2 -3.6 -4.0];xi = 1:0.1:10; yi = interp1(x,y,xi); plot(x,y,'o',xi,yi)Question 6Given differential equation is y' = t - 2y and the initial condition is y(0) = 1. Euler's method is a numerical procedure used to solve ordinary differential equations. Euler's method is used to calculate approximate values of y for given t.
The formula for Euler's method is:y_i+1 = y_i + h*f(t_i, y_i)Here, we have h = 0.2 and t_i = 0, f(t_i, y_i) = t_i - 2*y_i.y_1 = y_0 + h*f(t_0, y_0) = 1 + 0.2*(0 - 2*1) = -0.8y_2 = y_1 + h*f(t_1, y_1) = -0.8 + 0.2*(0.2 - 2*-0.8) = -0.288y_3 = y_2 + h*f(t_2, y_2) = -0.288 + 0.2*(0.4 - 2*-0.288) = 0.0624y_4 = y_3 + h*f(t_3, y_3) = 0.0624 + 0.2*(0.6 - 2*0.0624) = 0.40416...and so on.Hence, the approximate values of y are:y_1 = -0.8, y_2 = -0.288, y_3 = 0.0624, y_4 = 0.40416, ...
To know more about data visit:
https://brainly.com/question/29007438
#SPJ11
a. Using a calibrated (Tglass 1.02Thermocouple-1.27) type-K thermocouple with a constant of 41μV/°C and a heater with thermodynamics property tables for water, answer the following questions:- 1-How would you estimate the local atmospheric pressure? 2- What is the thermocouple temperature readings if itput in crashed ice and boiling water Sana'a? b. What is the relation between dry bulb temperature and relative humidity? P4. a. In flow meter experiment, what are the two basic principles used to measure flow rate through Venturi and Orifice meters?
b. What is the relation between pressure and velocity? Give an example from the flow meter experiment. c. In flow meter experiment, how can we get the actual value of the flow rate? What is the best suitable device to measure the flow rate? Clearly explain.
a) Crashed Ice Temperature Reading = -23.3°C ; Boiling Water Temperature Reading = 98.6°C
b) Relative Humidity for the dry bulb temperature is found.
a.Using a calibrated (Tglass 1.02Thermocouple-1.27) type-K thermocouple with a constant of 41μV/°C and a heater with thermodynamics property tables for water, we can find the following:
1. The local atmospheric pressure can be estimated using a barometer.
2. The temperature readings if the thermocouple is put in crashed ice and boiling water Sana'a are given below:
Crashed Ice Temperature Reading = -23.3°C
Boiling Water Temperature Reading = 98.6°C
b. The relation between dry bulb temperature and relative humidity is as follows:
Relative Humidity = ((Actual Vapor Pressure) / Saturation Vapor Pressure) × 100%
The saturation vapor pressure at a particular temperature is the pressure at which the air is fully saturated with water vapor and it is dependent on temperature. The actual vapor pressure is the pressure exerted by water vapor in the air and is dependent on both temperature and relative humidity.
P4.a. In flow meter experiment, the two basic principles used to measure flow rate through Venturi and Orifice meters are:
Venturi meter: Bernoulli's equation is used in a venturi meter, which states that the pressure of an incompressible and steady fluid decreases as its velocity increases.
Orifice meter: Orifice meter works based on the principle of Bernoulli's equation, which states that the pressure in a moving fluid is inversely proportional to its velocity.
b. Pressure and velocity are related as follows:
Pressure and velocity are inversely proportional to each other according to Bernoulli's equation. As the velocity of the fluid in a pipe increases, the pressure in that section decreases. For instance, if a fluid flows from a larger diameter pipe into a smaller diameter pipe, its velocity increases, and its pressure decreases.
c. The actual value of the flow rate can be determined using a flow meter or a rotameter. A flow meter is the most appropriate instrument for measuring the flow rate because it is highly accurate and dependable.
Know more about the relative humidity
https://brainly.com/question/19263451
#SPJ11
Q3) Write assembly program to generate a square wave of 2 kHz with 75% duty cycle on pin RC1, where XTAL=4MHz using Timer0 in 16 bit mode
The assembly program to generate a square wave of 2 kHz with 75% duty cycle on pin RC1, where XTAL=4MHz using Timer 0 in 16 bit mode is given below:
MOV TMR0, #0
MOV OPTION_REG, b’00000000’ ;Enable timer0
BCF TRISC, 1
LOOP
BTFSS INTCON, 2
GOTO LOOP
MOVLW 0x06
MOVWF TMR0
BSF PORTC, 1
BTFSC INTCON, 1
GOTO $-2
BCF PORTC, 1
MOVLW 0x30
MOVWF TMR0
BTFSS INTCON, 1
GOTO $-1
GOTO LOOP
The code above makes use of timer0 and portc, which are digital components in electronics.
To generate a square wave of 2 kHz with 75% duty cycle, the timer is initialized and set to 0.
Then, the option register is set to 0 for the timer0 to be enabled.
The output port is set to 1, and the timer0 register is loaded with 0x06, after which the output is set to 0.
The next step is to load TMR0 with 0x30 and check INTCON to ensure it is equal to 1.
If it is true, the program will GOTO to $-1 and proceed to the LOOP line.
If it is not equal to 1, the program proceeds to the next line where the PORTC is cleared.
This process repeats until the 2 kHz square wave has been generated.
The program is able to generate a square wave of 2 kHz with 75% duty cycle on pin RC1, where XTAL=4MHz using Timer0 in 16 bit mode.
To know more about assembly program, visit:
https://brainly.com/question/33335126
#SPJ11